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Abstract

Medical concept normalization helps in dis-
covering standard concepts in free-form text
i.e., maps health-related mentions to standard
concepts in a clinical knowledge base. It is
much beyond simple string matching and re-
quires a deep semantic understanding of con-
cept mentions. Recent research approach con-
cept normalization as either text classification
or text similarity. The main drawback in exist-
ing a) text classification approach is ignoring
valuable target concepts information in learn-
ing input concept mention representation b)
text similarity approach is the need to sep-
arately generate target concept embeddings
which is time and resource consuming. Our
proposed model overcomes these drawbacks
by jointly learning the representations of input
concept mention and target concepts. First, we
learn input concept mention representation us-
ing RoBERTa. Second, we find cosine similar-
ity between embeddings of input concept men-
tion and all the target concepts. Here, embed-
dings of target concepts are randomly initial-
ized and then updated during training. Finally,
the target concept with maximum cosine simi-
larity is assigned to the input concept mention.
Our model surpasses all the existing methods
across three standard datasets by improving ac-
curacy up to 2.31%.

1 Background

Internet users use social media to voice their views
and opinions. Medical social media is a part of
social media in which the focus is limited to health
and related issues (Pattisapu et al., 2017). User gen-
erated texts in medical social media include tweets,
blog posts, reviews on drugs, health related ques-
tion and answers in discussion forums. This rich
source of data can be utilized in many health re-
lated applications to enhance the quality of services
provided (Kalyan and Sangeetha, 2020b).

Medical concept normalization aims at discov-
ering standard medical concepts in free-form text.
In this task, health related mentions are mapped
to standard concepts in a clinical knowledge base.
For example, the concept mention ‘hard to stay
awake’ is mapped to the standard concept ‘drowsy’.
The common public express their health related
conditions in an informal way using layman terms
while clinical knowledge base contains concepts
expressed in scientific language. This variation
(colloquial vs scientific) in the languages of com-
mon public and knowledge bases makes concept
normalization an essential step in understanding
user-generated texts. This task is much beyond
simple string matching as the same concept can
be expressed in a descriptive way using colloquial
words or in multiple ways using aliases, acronyms,
partial names and morphological variants. Further,
noisy nature of user-generated texts and the short
length of health-related mentions make the task of
concept normalization more challenging.

Research in medical concept normalization
started with string matching techniques (Aronson,
2001; McCallum et al., 2005; Tsuruoka et al., 2007)
followed by machine learning techniques (Leaman
et al., 2013; Leaman and Lu, 2014). The inability
of these methods to consider semantics into ac-
count shifted research towards deep learning meth-
ods with embeddings as input (Limsopatham and
Collier, 2016; Lee et al., 2017; Tutubalina et al.,
2018; Subramanyam and Sangeetha, 2020). For
example, Lee et al. (2017) and Tutubalina et al.
(2018) experimented with RNN on the top of do-
main specific embeddings. Further, lack of large
labeled datasets and necessity to train deep learn-
ing models like CNN or RNN from scratch (except
embeddings) shifted research towards using pre-
trained language models like BERT and RoBERTa
(Miftahutdinov and Tutubalina, 2019; Kalyan and
Sangeetha, 2020a; Pattisapu et al., 2020). Miftahut-
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dinov and Tutubalina (2019) experimented with
BERT based fine-tuned models while Kalyan and
Sangeetha (2020a) provided a comprehensive eval-
uation of BERT based general and domain specific
models. The approach of Pattisapu et al. (2020)
is based on RoBERTa (Liu et al., 2019) and graph
embedding based target concept vectors. The main
drawbacks in existing work are :

• text classification approach (Limsopatham
and Collier, 2016; Lee et al., 2017; Subra-
manyam and Sangeetha, 2020; Kalyan and
Sangeetha, 2020a) is not exploiting target con-
cepts information in learning input concept
mention representation . However, recent
work in various natural language processing
and computer vision tasks highlights the im-
portance of exploiting target label information
in learning input representation. (Rodriguez-
Serrano et al., 2013; Akata et al., 2015; Wang
et al., 2018; Pappas and Henderson, 2019; Liu
et al., 2020).

• text similarity approach of Pattisapu et al.
(2020) is the need to generate target concept
embeddings separately using graph embed-
ding methods. This is time and resource
consuming when different vocabularies are
used for mapping in different data sets (e.g.,
SNOMED-CT is used in CADEC (Karimi
et al., 2015) and PsyTAR (Zolnoori et al.,
2019) datasets, MedDRA (Mozzicato, 2009)
is used in SMM4H2017 (Sarker et al., 2018)).
Moreover, the quality of generated concept
embeddings using graph embedding methods
depends on the comprehensiveness of vocab-
ulary. For example, MedDRA is less fine
grained compared to SNOMED-CT (Boden-
reider, 2009). This requirement of compre-
hensive vocabulary limits the effectiveness of
this approach.

Our model normalizes input concept mention by
jointly learning the representations of input con-
cept mention and target concepts. By learning the
representations of target concepts along with input
concept mention, our model a) exploits target con-
cepts information unlike existing text classification
approaches (Tutubalina et al., 2018; Miftahutdi-
nov and Tutubalina, 2019; Kalyan and Sangeetha,
2020a) and b) eliminates the time and resource
consuming process of separately generating target
concept embeddings unlike existing text similarity

approach (Pattisapu et al., 2020). Our key contribu-
tions are :

• We propose a simple and novel approach
which exploits the target concepts informa-
tion in normalizing concept mention by jointly
learning the representations of input concept
mention and all the target concepts. It is the
first work in medical concept normalization
which jointly learns the representations of in-
put concept mention and the target concepts.

• Our model achieves the best results across
three standard data sets surpassing all the ex-
isting methods with an accuracy improvement
of up to 2.31%.

2 Methodology

2.1 Model Description

Our model normalizes concept mentions in two
phases. First, it learns input concept mention repre-
sentation using RoBERTa (Liu et al., 2019). Sec-
ond, it finds cosine similarity between embeddings
of input concept mention and all the target con-
cepts. Here, embeddings of target concepts are ran-
domly initialized and then updated during training.
Finally, the target concept with maximum cosine
similarity is assigned to the input concept mention.

Input concept mention is encoded into a fixed
size vector m ∈ Rd using RoBERTa. RoBERTa
is a contextualized embedding model pre-trained
on 160 GB of text corpus. It consists of an embed-
ding layer followed by a sequence of transformer
encoders (Liu et al., 2019).

m = RoBERTa(mention) (1)

Input concept mention vector m is transformed
into cosine similarity vector q ∈ RN by finding
cosine similarity between m and randomly initial-
ized embeddings {c1, c2, c3, . . .cN} of all target
concepts {C1,C2, . . .CN} where ci ∈ Rd and N
represents total number of unique target concepts
in the dataset. During training, the target concept
embeddings and parameters of RoBERTa are up-
dated. Here d is equal to size of hidden state vector
in RoBERTa (768 in RoBERTa-base and 1024 in
RoBERTa-large).

q = [qi]
N
i=1where qi = CS(m, ci) (2)
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Here i = 1, 2, 3, . . .N and the function CS() rep-
resents cosine similarity defined as

CS(m, c) =

∑d
i=1mi × ci√∑d

i=1(mi)2 ×
√∑d

i=1(ci)
2

(3)
Cosine similarity vector q is normalized to q̂ using
softmax function.

q̂ = Softmax(q) (4)

Finally, model parameters and target concept
embeddings are updated using AdamW optimizer
(Loshchilov and Hutter, 2019) which minimizes
cross entropy loss (L) between normalized cosine
similarity vector q̂ and one hot encoded ground
truth vector p ∈ RN . Here M represents number
of training instances.

L = − 1

M

M∑
i=1

N∑
j=1

pijlog(q̂
i
j) (5)

2.2 Evaluation Metric
We evaluate our normalization system using accu-
racy metric, as in the previous works (Miftahutdi-
nov and Tutubalina, 2019; Kalyan and Sangeetha,
2020a; Pattisapu et al., 2020). Accuracy repre-
sents the percentage of correctly normalized men-
tions. In case of CADEC (Karimi et al., 2015) and
PsyTAR (Zolnoori et al., 2019) datasets which are
multi-fold, reported accuracy is average accuracy
across folds.

3 Experimental Setup

3.1 Implementation Details
Pre-processing of input concept mentions include
a) removal of non-ASCII and special characters b)
normalizing words with more than two consecutive
repeating characters (e.g., sleeep→ sleep) and c)
replacing English contraction and medical acronym
words with corresponding full forms (e.g., can’t→
cannot, bp→ blood pressure). The list of medical
acronyms is gathered from acronymslist.com and
Wikipedia. Pattisapu et al. (2020) generate addi-
tional labeled instances by considering synonyms
in mapping lexicon as user-geneated concept men-
tions and augment training set with these labeled
instances. However, we don’t augment the training
set with any additional labeled instances generated
from mapping lexicon and we use only the training
instances available in the datasets . We choose 10%

of training set for validation and find optimal hy-
perparameter values using random search. We use
AdamW optimizer (Loshchilov and Hutter, 2019)
with a learning rate of 3e-5. The final results re-
ported are based on the optimal hyperparameter
settings. To implement our model, we choose Py-
Torch framework and transformers library (Wolf
et al., 2019).

3.2 Datasets

SMM4H2017 : This dataset is released for task3
of SMM4H 2017 (Sarker et al., 2018) shared tasks.
It consists of ADR phrases extracted from twitter
using drug names as keywords and then mapped
to Preferred Terms (PTs) from MedDRA. In this,
training set includes 6650 phrases assigned with
472 PTs and test set includes 2500 phrases assigned
with 254 PTs.

CADEC: CSIRO Adverse Drug Event Corpus
(CADEC) includes user generated medical reviews
related to Diclofenac and Lipitor (Karimi et al.,
2015). The manually identified health related men-
tions are mapped to target concepts in SNOMED-
CT vocabulary. The dataset includes 6,754 men-
tions mapped to one of the 1029 SNOMED-CT
codes. As the random folds of CADEC dataset
created by Limsopatham and Collier (2016) have
significant overlap between train and test instances,
Tutubalina et al. (2018) create custom folds 1 of
this dataset with minimum overlap.

PsyTAR: Psychiatric Treatment Adverse Reac-
tions (PsyTAR) corpus includes psychiatric drug
reviews obtained from AskaPatient (Zolnoori et al.,
2019). Zolnoori et al. (2019) manually identify
6556 health related mentions and map them to one
of 618 SNOMED-CT codes. Due to significant
overlap between train and test sets of random folds
released by Zolnoori et al. (2019), Miftahutdinov
and Tutubalina (2019) create custom folds2 of this
dataset with minimum overlap.

We evaluate our model using SMM4H2017, cus-
tom folds of CADEC and PsyTAR datasets.

4 Results

Table 1 provides a comparison of our model and
the existing methods across three standard con-
cept normalization datasets CADEC, PsyTAR and

1https://cutt.ly/Gi6kka6
2https://doi.org/10.5281/zenodo.3236318
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Method CADEC PsyTAR SMM4H17

(Tutubalina et al., 2018) 70.05 - -

(Subramanyam and Sangeetha, 2020) 75.12 - -

(Han et al., 2017) - - 87.20

(Belousov et al., 2017) - - 87.70

(Miftahutdinov and Tutubalina, 2019) 79.83 77.52 89.64

(Kalyan and Sangeetha, 2020a) 82.62 - -

(Pattisapu et al., 2020) 83.18 82.42 -

Roberta-base + concept embeddings⊥ 82.60 81.90 90.15

Roberta-large + concept embeddings⊥ 85.49 (2.31 ↑) 83.68 (1.26 ↑) 90.84 (1.2 ↑)

Table 1: Accuracy of existing methods and our proposed model across CADEC, PsyTAR and SMM4H2017
datasets. ⊥ - concept embeddings are randomly initialized and then updated during training.

SMM4H2017. The first seven rows represent ex-
isting systems and the next two rows represent our
approach. Our model achieves new state-of-the-art
accuracy of 85.49%, 83.68% and 90.84% across
three datasets. Our model outperforms the existing
state-of-the-art method of Pattisapu et al. (2020)
with accuracy improvement of 2.31%, 1.26% and
1.2% respectively. We didn’t augment the training
set with labeled instances generated out of syn-
onyms from mapping lexicon like Pattisapu et al.
(2020), but still our approach achieved significant
improvements. State-of-the-art results achieved by
our model across three standard datasets illustrate
that learning target concept representations along
with input mention representations is simple and
much effective compared to separately generating
target concept representations using graph embed-
ding methods and then using them.

5 Analysis

Here, we discuss merits and demerits of our pro-
posed method.

5.1 Merit Analysis
We illustrate the effectiveness of our approach in
the following two cases.

• In case I, existing methods map the con-
cept mention ‘no concentration’ to a closely
related target concept ‘Poor concentration
(26329005)’ instead of the correct target con-
cept ‘Unable to concentrate (60032008)’.
Similarly, ‘sleepy’ is mapped to ‘hypersomnia
(77692006)’ instead of ‘drowsy (271782001)’.

• In case II, ‘horrible pain’ is mapped to ab-
stract target concept ‘Pain (22253000)’ in-
stead of fine-grained target concept ‘Severe

pain (76948002)’. Similarly, ‘fatigue in arms’
is mapped to ‘fatigue (84229001)’ instead of
‘muscle fatigue (80449002)’.

In both the cases, existing methods are unable to
exploit target concept information effectively and
fail to assign the correct concept. However, our
approach exploits target concept information by
jointly learning representations of input concept
mention and target concepts and hence assigns the
concepts correctly.

5.2 Demerit Analysis
Our model aims to map health related mentions to
standard concepts. We observe the predictions of
our model and identify the following errors.

• In case I, errors are related to insufficient
number of training instances. For example,
‘hard to stay awake’ is assigned with more
frequent concept ‘insomnia (193462001)’ in-
stead of the ground truth concept ‘drowsy
(271782001)’. Similarly ‘muscle cramps in
lower legs’ is assigned with ‘cramp in lower
limb (449917004)’ instead of ‘cramp in lower
leg (449918009)’.

• In case II, errors are related to the inability
in learning appropriate representations for do-
main specific rare words. For example, the
mentions ‘pruritus’ and ‘hematuria’ are as-
signed to completely unrelated concepts ‘Tin-
nitus (60862001)’ and ‘diarrhea (62315008)’
respectively.

6 Conclusion

In this work, we deal with medical concept normal-
ization in user generated texts. Our model over-
comes the drawbacks in existing text classification
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and text similarity approaches by jointly learning
the representations of input concept mention and
target concepts. By learning target concept repre-
sentations along with input concept mention repre-
sentations, our approach a) exploits valuable target
concepts information unlike existing text classifi-
cation approaches and b) eliminates the need to
separately generate target concept embeddings un-
like existing text similarity approach. Our model
surpasses all the existing methods across three stan-
dard datasets by improving accuracy up to 2.31%.
In future, we would like to explore other possible
options to include target concept information which
may further improve the results.
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