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RÉSUMÉ
Dans cet article, nous montrons que l’information syntaxique issue du schéma Universal Dependencies
(UD) constitue une alternative viable à celle issue du schéma Penn Treebank (PTB) pour la tâche
d’identification automatique des connecteurs discursifs dans le corpus du Penn Discourse Treebank.
De fait, nous obtenons même des améliorations en termes de performance en utilisant des informations
UD prédites par rapport à l’utilisation d’information gold PTB. Ces dernières sont traditionnellement
utilisées pour cette tâche mais il existe aujourd’hui des corpus au schéma UD avec davantage de
langages que le format PTB. Nos résultats sont donc prometteurs pour de futurs travaux en analyse
discursive automatique multilingue ainsi que pour des applications dans un cadre réaliste où des
informations PTB gold ne sont pas disponibles.

ABSTRACT

Our work on the automatic detection of English discourse connectives in the Penn Discourse Treebank
(PDTB) shows that syntactic information from the Universal Dependencies (UD) framework is a
viable alternative to that from the Penn Treebank (PTB) framework. In fact, we found minor increases
when comparing between the use of gold standard PTB part-of-speech (POS) tag information and
automatically parsed UD information. The former has traditionally been used for the task but there are
now much more UD corpora and in many more languages than that available in the PTB framework.
As such, this finding is promising for areas in discourse parsing such as in multilingual as well as
under production settings, where gold standard PTB information may be scarce.

MOTS-CLÉS : analyse discursive automatique, Universal Dependencies, identification automatique
des connecteurs discursifs.

KEYWORDS: discourse parsing, Universal Dependencies, discourse connective identification.

1 Introduction

Discourse analysis is about identifying the semantico-pragmatic links between parts of a document in
order to reveal a structure that organizes a given document. This enables inferences to be made about
the content of the document. Within a document, each unit (termed a ‘discourse unit’) is a span of
text ; and its meaning depends on the meaning of its surrounding units, as well as the relation that
holds between them. The presence of different types of relations are frequently marked by a specific
set of wordforms (termed as ‘discourse connectives’). For instance, ‘because’ is one of the markers
for an expansion-reason relation, where one discourse unit serves to explain the cause for the other
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unit it is linked to. In natural language processing, discourse parsing corresponds to several tasks,
the very first one being the identification of such discourse connectives. Therefore errors in it will
cascade to later tasks and impact the overall performance of a discourse parser.

Identifying discourse connectives in a text is more complex than a simple search and find. This
is because a connective may be lexicalized by different wordforms 1, as well as could have a non-
discourse reading. Take the following sentences with the same wordform ‘when’ in each of them :

(1) a. I was happy when Michele told me she was on her way.
b. She said she would arrive, but she never told me when.

In sentence (1-a), ‘when’ is a conjunction between two verb phrases (VPs) and serves as a discourse
connective ; it marks a relation of temporal succession —from the second VP to the first VP. However,
in sentence (1-b), ‘when’ is not serving as a discourse connective. Syntactic information can be useful
to distinguish between such instances of discourse and non-discourse usage ; although ‘when’ has a
‘WHADVP’ syntactic category in both sentences, it is only in the first example that it links two VPs.

Our work focuses on detecting discourse connectives automatically, since improving and avoiding
errors at this step is crucial for a parser’s performance ; we leave for future work the study of the
other parts of the pipeline. This task is generally done on the Penn Discourse Treebank (PDTB)
(Prasad et al., 2008), the largest corpus annotated for discourse relations in English, and has typically
been solved by training a classifier using lexical, morpho-syntactic as well as syntactic information
(Pitler & Nenkova, 2009). In particular, part-of-speech (POS) tags and syntactic trees from the Penn
Treebank (PTB) (Marcus et al., 1993) have been used.

However, the recent release of the Universal Dependencies (UD, (Nivre et al., 2016)) framework is
seeing much more corpora and POS taggers made available for UD than there is available for the
PTB; they are also available in comparably many more languages in UD now. It is thus crucial to
understand whether the information captured within the UD framework is sufficient for the task of
automatically detecting connectives, as it would enable the development of discourse parsing systems
for new languages, especially those that are not currently served by PTB-styled corpora and tools.

In our work, we seek to establish the effects of using the POS tagset from UD for the task, instead of
those from the PTB. There are however, important differences between the UD and PTB frameworks.
Firstly, the UD POS tagset is coarser-grained compared to the one in the PTB —the PTB has 48
syntactic categories, compared to the 17 categories in UD —and could miss important distinctions
necessary for the task. Our first results, focused on English, suggest that coarser-grained syntactic
annotation is sufficient, and can in fact lead to performance improvements on the task. Future work
could include demonstrating the same on other languages such as French and Chinese, for which
moderate-sized PDTB-style corpora have been annotated (Danlos et al., 2015; Zhou & Xue, 2015).

1.1 Contribution

In the last three years, approaches to discourse parsing using manually engineered and selected
features like those in Pitler & Nenkova (2009) and Lin et al. (2014) have taken a backseat to neural
approaches using word embeddings. While our work draws upon these manually built features, we

1. For instance, the connective ‘afterward’, which denote a precedence relation between the units of text it joins, can be
found lexicalized as ‘afterwards’, ‘shortly afterward’, and ‘shortly afterwards’ within the PDTB corpora.
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believe it contributes towards the understanding of the role of syntactic information, specifically
varying levels of tagset granularity, in the task of automatic discourse connective identification. We
believe that this understanding can inform choices relating to the data processing pipeline and neural
network architecture for a discourse parser.

To this end, our contributions are three-fold. Firstly, we demonstrate that it is possible for coarser-
grained UD syntactic parses to perform as well as finer-grained PTB-style syntactic parses when used
on the task. Secondly, we provide near-complete (see Section 5) replications, from the bottom-up, of
the experiments conducted by Pitler & Nenkova (2009); Lin et al. (2014); Li et al. (2016) involving
the automatic detection of discourse connectives. Thirdly and finally, in the same vein as Johannsen
& Søgaard (2013); Lin et al. (2014); Braud et al. (2017) –who used both gold standard syntactic
information as well as automatically-parsed information in their experiments to demonstrate their
discourse parsers’ performance in ‘production’ settings - our experimental set-up covers both gold-
standard parses as well as predicted parses. This allows us to extend our analysis to discourse parsing
under realistic settings. Although, in the absence of gold UD parses for sentences in the PDTB, we
are only able to obtain approximations of such gold UD parses (see Section 4).

2 Related work

The PDTB consists of one million words contained in 40,600 articles obtained from the Wall Street
Journal (WSJ) (Prasad et al., 2008). The annotation approach in the PDTB focuses on identifying
the local elements making up a coherent text. It identifies relations between two adjacent discourse
units, which are linked by a relation that may be marked by a discourse connective. Approaches based
on the PDTB and similar corpora, which focus on identifying local units of coherence in a text are
referred to as shallow discourse parsing (SDP). This is in contrast with ‘deep’ approaches, using
corpora such as the Rhetorical Structure Theory (RST) Discourse Treebank (Carlson et al., 2001),
which seeks to identify relations between discourse units extending across an entire document as well
as hierarchically between groups of discourse units in the form of structured trees.

A hundred connective types and their lexicalization variants are annotated throughout the PDTB.
These connective types fall in three syntactic classes, namely : subordinating and coordinating
conjunctions such as because and when ; as well as and, as well as or respectively, and discourse
adverbials such as for example and instead. On top of these, the spans of each connective’s arguments,
as well as the relation between them are also annotated. The relations marked by connectives fall
within four broad classes (termed as ‘senses’) —Temporal, Contingency, Expansion, and Comparison,
which are further categorized into finer types and sub-types (Prasad et al., 2008). A PDTB parser
typically addresses the identification of connectives first and it is only after this that the classification
of the connectives’ relations, and the spans of text they cover, are sequentially handled. Such modular
approaches broadly adhere to the instructions in the annotation manual 2 used in the annotation
process for the PDTB version 2.0 (Polakova et al., 2017). Importantly, this is possible due to the local
coherence approach taken by the PDTB, which limits but does not preclude the direct application of
an automatic connective identification module on parsers for other corpora that focus on more global
levels of coherence 3.

2. https://www.seas.upenn.edu/~pdtb/PDTBAPI/pdtb-annotation-manual.pdf
3. for e.g. RST-based corpora, where until recently, it was not seen as necessary to annotate connectives within the RST

corpora. With the release of the RST Signaling Corpus (RST-SC) in 2015, the annotation of connectives and other information
that signal a coherence relation in a text were included and could be used by researchers in the parsing of the RST corpora.
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The task of connective identification attracted attention when the PDTB was first released. Pitler
& Nenkova (2009) proposed the use of simple lexical and morpho-syntactic 4 features in a binary
classifier. They showed that simply using the connective string already leads to high performance
(85.86% in accuracy), meaning that many forms are very often in discourse use. Adding morpho-
syntactic information leads to a very high accuracy of 96.26%. This led to assumptions that the task
was solved. However, later work, especially (Lin et al., 2014) and (Johannsen & Søgaard, 2013),
demonstrate that the task was in fact easy mainly for (1) a few connectives that occur highly frequent
and (2) within a fully gold setting ; when considering a realistic setting with predicted (PTB) syntactic
information, a performance drop of 4.5 percentage points in macro F1 was observed. They also
observed that connective classifiers typically struggle to predict accurately connective strings that
occur less frequently ; for instance, Lin et al. (2014)’s classifier could only reach a 43.2% F1 score for
the connective ‘ultimately’, which is in the fiftieth percentile amongst the 100 connectives in terms of
frequency (Johannsen & Søgaard, 2013).

Lin et al. (2014) noted that, accordingly, “high performance [in the identification of discourse
connectives] is crucial to mitigate the effect of cascaded errors downstream”. They found that
accumulated errors (i.e. without replacing predictions from the previous module with gold standard
information drawn from the corpora) in their PDTB parser pipeline led to a drop in the F1 score of
the pipeline’s last module, the attribute span labeler, from 79.68% to 72.27% (a 7.41 percentage point
drop). In addition, we note that although the PDTB is the largest-sized discourse corpora currently
available, it is comprised of texts drawn from the financial news domain, and connectives that are
infrequent in the PDTB could become frequent in another domain outside of the PDTB.

Pitler & Nenkova (2009)’s work was extended by Lin et al. (2014), who obtained improved results
by adding more lexical and syntactic features (such as the strings and POS tags of the connective’s
neighbours). They also included information about a sentence’s or clause’s structural properties 5. In
the most recent shared task focused on the PDTB, Li et al. (2016) reported obtaining higher F1 scores
compared to Lin et al. (2014) (see Table 2) and, to our knowledge, the highest published F1 scores
for the task of PDTB explicit discourse connective identification. They used a similar, but smaller, set
of features as Lin et al. (2014), which left out features relating to sentence/clause structure.

Other methods cast the connective identification task as a sequence labeling problem, making use
of methods such as conditional random field models ; although to our knowledge, the results have
not reached the level obtained with binary classification approaches and have not gained traction.
For instance, Stepanov & Riccardi (2016)’s CRF system only obtained an F1 score of 92.43% on
the PDTB test set ; compared to the 98.92% in Lin et al. (2014)’s binary classification system.
Additionally, neural network approaches, leveraging word vectors, have also taken hold in recent
years (Xue et al., 2015). With regards the latter, efforts have also been made to produce an end-to-end
approach to parsing the PDTB dataset (covering connective identification as well as ‘downstream’
discourse parsing tasks such as argument identification and sense labeling) (Weiss & Bajec, 2018).

4. The features used by Pitler & Nenkova (2009) are : (a) Self Category : the syntactic category of the highest node
on the parse tree that covers only the connective phrase ; (b) Parent Category : the parent node of the self category ; (c)
Left Sibling Category : the syntactic category immediately to the left of the self category ; (d) Right Sibling
Category : the syntactic category immediately to the right of the self category. (e) Right Sibling Contains a VP
(verb phrase) ; and (f) Right Sibling Contains a Trace, as well as the interaction between these features.

5. The features (Lin et al., 2014) added were : (a) the connective POS tag (CPOS) ; (b) the token before the connec-
tive string (Prev1) + the connective string (C-string) ; (c) the POS tag of Prev1 (Prev1POS) ; (d) Prev1POS +
CPOS ; (e) C-string + the token following C-string (Next1) ; (f) the POS tag of Next1 (Next1POS) ; (g) CPOS
+ next1POS ; (h) the path of the connective’s parent to the root ; (i) the compressed path of
the connective’s parent to the root. ‘+’ indicates interaction between features.
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Regarding studies of the impact of syntactic information in discourse parsing, Braud et al. (2017)
analyzed the role of syntax in the discourse parsing tasks. They found that using UD syntactic
information led to a loss in performance compared to when gold standard PTB syntactic information
is used ; albeit this was for a different task of sentence boundary identification on a different discourse
corpora, the RST Discourse Treebank (RST-DT). They observed that PTB POS tags including
‘WDT’ (wh-determiner) and ‘WP$’ (possessive wh-pronoun) collapse into one single POS tag, ‘DET’
(determiner) in UD, and the decreased granularity led to an ambiguous signal that is is a source of
increased error when using UD information for their task.

Finally, recent work on learning representations for sentences have found relevance in using explicit
discourse connectives identification as a task to guide the learning of such representations. Nie et al.
(2019) and Sileo et al. (2019) trained sentence encoders using large corpora of sentence pairs with
discourse markers between them and achieved state-of-the-art results on their approaches. The former
worked with a corpora containing 15 of the most frequently occurring discourse connectives, whereas
the latter relied on a heuristic to identify discourse connectives candidates, of which some of them
have not been annotated in any dataset such as the PDTB.

3 Approach

Pitler & Nenkova (2009) approached the automatic connective identification task by training a binary
classifier using a set of features that includes, and combines, lexical and syntactic information of
the connective candidate. They observed that discourse connectives occur in “specific syntactical
contexts” ; many connectives take a subordinate clause as one of its arguments (for example, in
the sentence “After I went to the store, I went home”) and the PTB POS tag ‘SBAR’ marks such
subordinate clauses. It was observed that such syntactic information are indicators of a connective
candidate being in discourse usage. However, a single POS tag alone may not be sufficient to
disambiguate between whether a connective candidate is in discourse or non-discourse usage 6, and
Pitler & Nenkova (2009) found that extending the set of features to include syntactic information
from a wider context around a connective candidate improves the performance of a classifier.

Their work have become seminal for the task and is cited by subsequent researchers working on
connective identification. To study whether UD information is sufficient for the task, we adopt their
general approach as the basis for our experiments. We also include the work of Lin et al. (2014)
whose added syntactic features (see Section 2) meaningfully improved on the performance of Pitler &
Nenkova (2009), as well as Li et al. (2016), who reported the highest F1 score on the task with the
PDTB test set during the CoNLL 2016 Shared Task (Xue et al., 2016).

In practical terms, we reproduced the pre-processing and feature engineering pipelines of these three
authors as well as obtained approximately gold-standard UD information for the PDTB, which is
not available. This allowed us to (1) validate our reconstruction of their connective identification
pipelines, (2) isolate the impact of differences in our classifier and hyperparameter settings with these
authors’, and (3) have a broad-based set of experimental set-ups to study the impact of using UD

6. For example, the two words ‘instead’ as well as ‘and’ are discourse connective candidates in the sentence “NASA won’t
attempt a rescue ; instead, it will try to predict whether any of the rubble will smash to the ground and where.” (Pitler &
Nenkova, 2009), though only the former is being used as a discourse connective. This is despite the syntactic category (the
POS tag immediately encapsulating a connective candidate) for ‘and’ being ‘SBAR’ too ; and is cited by them as demonstrating
that syntactic information from a wider context is necessary for connective disambiguation.
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instead of PTB information. We describe each part of our approach in the next sections.

3.1 Features and data representation

For our experiments, we sought to reproduce our settings to be as similar as those in (Pitler & Nenkova,
2009; Lin et al., 2014; Li et al., 2016), based on the information from their published papers as well
as code available online 7. We used the same data representation as these authors ; their experiments
utilized a feature-based one-hot encoded approach where each data point is represented by a vector
of a fixed size, which corresponds to the number of one-hot features obtained from the training set.
The presence of a particular feature in a data point is marked by a value of one in its position on the
vector, and zero otherwise. This results in a sparse representation of the data point. The numbers of
features present in each of the three experiments mentioned in this section are listed in Table 1.

To the extent possible, we also used the feature sets they used in their experiments (see footnote 4
and footnote 5 for the list of the features they used and a description of them). However, they did
use a number of PTB-related features for which there are no direct equivalents in UD. For instance,
one feature used by both of Pitler & Nenkova (2009) and Lin et al. (2014), is built from the syntactic
category that the connective string is constituent of 8. There is no corresponding category in the UD
dependency grammar approach. Similarly, Lin et al. (2014) include two other features built from the
collection of syntactic categories in the path between the connective and the root of the sentence 9.

As such, we conducted two groups of experiments (see Section 5) to be able to study in isolation the
impact of switching between PTB and UD information. One of the group (see Section 5.2) involves
the use of UD information and because there are no direct equivalents in UD of the PTB-style features
in Pitler & Nenkova (2009)’s and Lin et al. (2014)’s experiments, we did not include their feature sets
in our second group of experiments. Instead, we used Li et al. (2016)’s feature set there, although
with two sets of modifications. The first modification is to exclude the feature relating to the parent
constituent of the connective candidate 10. The second modification replaces the remaining features
with UD information.

In summary, after taking these into consideration, our second group of experiments were conducted
with the maximal set of features that are present in Li et al. (2016)’s PTB-style features as well as
where comparable information can be obtained from UD dependency-based parses. In addition, we
also conducted each group of experiments with gold and automatically parsed information alternately,
to study the effect of the connective classifier in ‘production’ settings.

3.2 PTB to UD conversion

UD (Nivre et al., 2016) is a syntactic framework introduced in 2016 11. The UD project seeks
to establish a framework that allows a consistent syntactic annotation approach across languages
around the world, while having the flexibility and capabilities to capture linguistic phenomena in
these languages. As of November 2019, there are 157 UD treebanks in 90 languages 12. Besides the

7. https://github.com/linziheng/pdtb-parser
8. ‘Parent Category’, see footnote 4
9. See points (h) and (i) in footnote 5

10. ‘Self Category’, see footnote 4
11. Although it traces its roots to the Stanford Dependencies framework that was released in 2008.
12. https://universaldependencies.org/
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Experiment Number of dimensions
PTB Gold1 PTB Auto1 PTB Gold21 PTB Auto21 UD Gold UD Auto

P & N C* 101 - - - - -
2009 CSynI** 1,787 554 - - - -

Lin et al 2014 66,975 51,584 - - - -
Li et al 2016 33,308 32,971 33,216 32,945 32,015 32,050

* Connective string only.
** Connective string, syntactic features and interaction between features.
1 This excludes the Self Category feature which relates to the parent constituent of the connective candidate.

TABLE 1 – Number of dimensions in the feature sets used for each of the experiments.

difference in granularity of their POS tagsets, the manner that UD and PTB frameworks capture
information about the syntactic relations between words is different ; the former adopts a dependency
grammar approach whereas the PTB hews to a constituency grammar approach. As a result, certain
features used in PTB-based approaches to the task may not be obtainable from UD information.

The WSJ articles that make up the PDTB are the same as those in the PTB. Accordingly, gold standard
PTB parses are available and we used these for the parts of our feature extraction processes with
PTB-based features. However, gold standard, manually-annotated, UD parses for the sentences in the
PDTB are not available and we had to approximate these. Although the organizers of the 2015 CoNLL
Shared Task on discourse parsing with the PDTB provided dependency grammar-style syntactic
parses, these are of the Stanford Dependencies framework and understood to be automatically parsed
(instead of manually annotated). Using these would mean that we would not be able to model current
use-in-production settings.

As such, to approximate gold standard UD parses, we used an earlier version of the Stanford CoreNLP
package with an option that is intended to convert PTB parses to UD 13. We obtained (1) gold UD
version 1.0 parses 14 using the gold PTB parses, as well as (2) separately, automatically generated
parses using the UniversalDependenciesConverter in the Stanford CoreNLP package.

We note that these UD parses obtained are ‘approximate’ as errors have been observed in conversions
from PTB to UD ; although the conversion of most POS tags in PTB to UD is “almost trivial” (Peng
& Zeldes, 2018), there are errors which mainly relate to the conversion of constituent categories to
dependencies relations. There are certain words with PTB POS tags that are not possible to map to
UD POS tags without additional UD dependency information. For instance, determiners are tagged
as a ‘DT’ in the PTB framework, but may be tagged as ‘DET’ or ‘PRON’ in UD depending on
whether the determiner word is used independently or not, and this requires dependency relation
information during the conversion process. Peng & Zeldes (2018) note that conversion from PTB to
UD dependency relations sees also errors increase on out-of-domain input, “in all genres, including
when using gold constituent trees, primarily due to underspecification of phrasal grammatical
functions” .

13. https://nlp.stanford.edu/software/stanford-dependencies.shtml
14. We were not able to obtain parses with more recent versions of UD (i.e. UD2.0 and later) as there are no converters

available currently to convert between PTB and UD 2.0 and later versions. However, the applicability of our experimental
set-up on UD 2.0 data is not affected ; our work isolates the impact of changing PTB POS tag for UD 1.0 POS tag, and the
changes in the POS tagset from UD 1.0 to UD 2.0 relates to four specific tags - AUX, PRON, DET and PART, which are not in
themselves signal for connectives. We also verified that none of our UD featuresets contain features with one of these four
POS tags affected by changes in UD 2.0.
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4 Settings

In this section we outline the settings of our experiments. Our experiments were conducted with
version 2.0 of the PDTB, which were made available by organisers of the CoNLL 2015 Shared Task 15.
We kept to the train-development-test split that were prescribed by the PDTB creators 16. Pitler &
Nenkova (2009); Lin et al. (2014) and Li et al. (2016) used implementations of MaxEnt classifiers in
two NLP machine learning packages 17. Both of these are Java-based machine learning packages with
specific requirements on the format of the training data. We chose instead to implement the feature
extraction and classification pipeline in Python, using a popular machine learning package scikit-learn
(Pedregosa et al., 2011). We used the latter’s LogisticRegressionCV classifier under a multinomial
setting which makes it equivalent to a MaxEnt classifier 18. To allow the results between each set
of experiments to be as directly comparable as possible, we did not implement any hyperparameter
optimization procedures.

5 Experiments

Our experiment is composed of two sub-groups. The first group is a complete reproduction of Pitler
& Nenkova (2009); Lin et al. (2014); Li et al. (2016)’s pre-processing and classifier pipelines with
the entire feature set that each of them used. We describe and discuss these in the following sections.

5.1 Replication experiments

This first group relates to our own reproduction of the experiments described in the works of Pitler
& Nenkova (2009), Lin et al. (2014), and Li et al. (2016). We do this so as to : (1) validate our data
pre-processing and feature extraction pipeline by checking that our subsequent results are within the
range of the established standards for the task ; and (2) produce results controlling for our use of a
different machine learning package and parameter settings (see Section 4).

The results we obtained (see Table 2) indicate that our reproduction of the pro-processing and feature
engineering pipelines are in line with the original authors’. In fact, we obtained almost across-the-
board better results compared to the original authors ; in one case, by 3.83 percentage points. We
believe that these improved results likely stem from minor variations between our experimental
set-up and theirs ; for example, it could be due to the : (1) choice of the MaxEntLogistic Regression
implementation, (2) hyperparameter settings such as the specification of class weights, and/or (3)
choice of the type of F1 score reported on.

However, Li et al. (2016) stated that their F1 result of 98.92% on the test set was “according to
official evaluation [by the shared task organizers]”, but our reproduction returned a lower F1 score of

15. https://www.cs.brandeis.edu/~clp/conll15st/index.html
16. Sections 2 to 21 are used for training, with sections 22 and 23 used for development and testing respectively
17. Pitler & Nenkova (2009) used the Mallet package http://mallet.cs.umass.edu/, whereas Lin et al. (2014)

and Li et al. (2016) used an implementation by OpenNLP https://opennlp.apache.org.
18. MaxEnt models learn parameters that, as their suggests, maximizes the entropy of the classes within the data. They have

been shown to be equivalent to multinomial logistic regression approaches (Manning & Klein, 2003). We also kept most of the
default values specified in scikit-learn for the rest of the settings. The settings that we changed from the default values include
specifying : (1) that ten-fold cross validation with the data, which the original authors also conducted during their training
steps ; and (2) the class weight, which is the distribution between the negative and positive examples in the training set.
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Data split Set-up Feature set
P & N 2009 Lin et al 2014 Li et al 2016

Train Author’s 94.19% 95.36% *
Ours 95.28% 99.19% 97.88%

Test Author’s * * 98.92%
Ours 95.10% 97.22% 92.52%

* Result not published.

TABLE 2 – F1 score reported by authors and obtained by our replication
of their experiments. Our scores are weighted F1. None of the authors
mentioned if their scores were computed as weighted, micro or macro F1.

92.52%. A summary article of the shared task by its organizers (Xue et al., 2016) lists their system
as having a performance of 94.71% F1 score on the test set. We were unable to identify any further
information regarding these differences, but note that our experimental set-up (see Section 3) allows
us to isolate the impact of such differences when studying the effect of using UD instead of PTB
information, as well as replacing gold-standard information with automatically parsed information.

5.2 UD vs PTB information

The second group in our experiment involves the set-up used in Li et al. (2016), which is the most
recent of the three works. Here, we removed one feature, ‘Self Category’ (see footnote 4) from the set-
up in order to ensure a comparability between features built with PTB and UD syntactic information.
In this group, we built Li et al. (2016)’s PTB-based features with UD instead. Additionally, we
conducted this set of experiment with features built from gold as well as automatically produced
parses for both the PTB and UD experiments.

We found that there was no performance loss in switching from the use of PTB to UD POS tags in
the task of discourse connective identification on the PDTB. In fact, we found a minor gain in F1
scores of 1.8% point on the PDTB test set when switching from gold PTB to gold UD information.
We found a very minor decrease (a 0.25 percentage point drop on the test set) in moving from gold to
automatically parsed UD information, which is expected.

Surprisingly, we found the move from gold PTB information to automatically parsed UD information
brought about a 1.55 percentage point improvement in the weighted F1 score on the test set. Nonethe-
less, we have reason to believe that these changes in results are statistically significant. We conducted
Wilcoxon signed rank-tests between the outputs of these models and they returned p-levels of below
0.05, which is sufficient to reject the null hypothesis that the outputs are similarly distributed. These
changes in the results, from using UD instead of PTB information, are presented in Table 3, whereas a
fuller report of the weighted F1, the accuracy as well as macro and micro F1 scores using the features
in Li et al. (2016) can be found in Table 4.

5.3 Discussion

Our findings shows that a logistic classifier does not require the fine level of granularity present in the
PTB in order to disambiguate whether a connective candidate is in discourse usage or not. In particular,
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Parameter Change in weighted F1 score, % points
Train Test

PTB Gold to UD Gold* 0.26% (97.85% to 98.11%) 1.8% | (92.21% to 94.01%)
p � 0.001 p � 0.001

UD Gold* to UD Auto -0.08% | (98.11% to 98.03%) -0.25% | (94.01% to 93.76%)
p < 0.001 p < 0.04

PTB Gold to UD Auto 0.18% | (97.85% to 98.03%) 1.55% | (92.21% to 93.76%)
p � 0.001 p � 0.001

TABLE 3 – Changes in weighted F1 scores, between syntactic framework choices, on the feature set
used in Li et al. (2016). The p-values reported in the table are results of Wilcoxon signed rank-tests
between the outputs of each model pair. *UD Gold above refers to the use of data approximated
automatically from PTB Gold data.

we note that the move to using UD resulted in a reduction of about 1,200 features. The number of
features fell from an initial 32,015 when using PTB syntactic information, to 33,216 features or about
a 3.5% reduction in the feature set size when moving to the use of UD syntactic information. The
granularity in the PTB POS tags set leads to an increased number of features compared to when UD
information is used. It appears to us that, this in turn led to a more complex decision boundary when
using PTB information, which the classifier found harder to learn.

To examine this further, we carried out a per-connective error analysis on our results on the test set.
Figure 1 shows the distribution of the wrongly classified connectives when predicted with gold PTB
parses compared with when gold UD parses are used. We observe that the classifier remains confused
by the same connectives in both cases, but that the 1.8 percentage point improvement in weighted
F1 score is due to an increase in correct predictions that are more or less evenly distributed across
the connectives 19. This lends support to our hypothesis that the reduction in features are helping the
classifier to better model the decision boundary for the connectives. Likewise, as shown in Figure 2,
we observe a similar distribution of prediction errors when comparing between the use of gold PTB
and automatically parsed UD information.

We note however, that these results were based on experiments conducted on the features used in Li
et al. (2016) which exclude certain PTB-style structural information (e.g. connective to root) used in
Lin et al. (2014). The effect of this is a loss of 5.41 % points in the F1 weighted score 20 when moving
from the training set to the test set. In comparison, for Lin et al. (2014), this loss is only 1.99 % points
(98.55% to 96.56%) when predicting on the test set. This suggests that the Lin et al. (2014)’s feature
set produces a more robust connective identifier that generalizes better for unseen data.

While a direct replacement of such structural information is not available in UD, we note that some
success have been observed in using syntactic structural information in UD (‘supertags’ which capture
information such as incoming and outgoing dependency relations for a word), for the task of sentence
segmentation in discourse parsing (Braud et al., 2017), and that this could be an area of future research
to extend our findings here.

19. The table shows that about half of the increase in correct predictions are for the word ’but’ ; however the reduction
remains proportional across all the connectives as ‘but’ is the most frequently present of the connective strings in the PDTB,
and of its occurrences, more than 70% are as a discourse connective (Johannsen & Søgaard, 2013).

20. From 97.88% on the training set to 92.52% the test set. This is using PTB gold parses. The same figures for PTB Auto
are : 97.83% (train) and 92.42% (test).
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Experiments Accuracy F1-macro F1-micro F1-weighted

PTB Gold train 98.87% 97.36% 97.87% 97.85%
test 92.37% 90.72% 92.37% 92.21%

PTB Auto train 97.84% 97.33% 97.84% 97.83%
test 92.54% 90.89% 92.54% 92.37%

UD Gold train 98.12% 97.69% 98.12% 98.11%
test 94.04% 92.94% 94.04% 94.01%

UD Auto train 98.04% 97.58% 98.04% 98.03%
test 93.81% 92.63% 93.81% 93.76%

TABLE 4 – Accuracy, F1 (macro, micro and weighted) scores with features from Li et al. (2016).

FIGURE 1 – Connective error count for PDTB test set, using gold PTB (yellow) and gold UD1
(blue) syntactic information and the feature set used in Li et al. (2016), without the ‘Self-Category’
feature.
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FIGURE 2 – Connective error count for PDTB test set, using gold PTB (yellow) and
automatically parsed UD1 (blue) syntactic information and the feature set used in Li et al.
(2016).

6 Conclusion

We reproduced the experiments of Pitler & Nenkova (2009), Lin et al. (2014) and Li et al. (2016)
in order to study the impact of using UD instead of PTB syntactic information. Our results, under a
binary classification setting using a logistic regression classifier, show that UD syntactic information
is a viable alternative to PTB information. Our analysis indicate that the improvement is likely because
it is easier for the classifier to model the decision boundary when using coarser-grained UD syntactic
information, as it leads to a reduction in the number of features needed to represent the data. Our
code for the connective classifier can be found at : https://gitlab.inria.fr/andiamo/
marta-v2.
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