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Abstract

In simultaneous machine translation, the objec-
tive is to determine when to produce a partial
translation given a continuous stream of source
words, with a trade-off between latency and
quality. We propose a neural machine trans-
lation (NMT) model that makes dynamic deci-
sions when to continue feeding on input or gen-
erate output words. The model is composed
of two main components: one to dynamically
decide on ending a source chunk, and another
that translates the consumed chunk. We train
the components jointly and in a manner consis-
tent with the inference conditions. To generate
chunked training data, we propose a method
that utilizes word alignment while also pre-
serving enough context. We compare models
with bidirectional and unidirectional encoders
of different depths, both on real speech and
text input. Our results on the IWSLT1 2020
English-to-German task outperform a wait-k
baseline by 2.6 to 3.7% BLEU absolute.

1 Introduction

Simultaneous machine translation is the task of
generating partial translations before observing the
entire source sentence. The task fits scenarios such
as live captioning and speech-to-speech transla-
tion, where the user expects a translation before
the speaker finishes the sentence. Simultaneous
MT has to balance between latency and translation
quality. If more input is consumed before transla-
tion, quality is likely to improve due to increased
context, but latency also increases. On the other
hand, consuming limited input decreases latency,
but degrades quality.

There have been several approaches to solve si-
multaneous machine translation. In (Dalvi et al.,
2018; Ma et al., 2019), a fixed policy is introduced

1The International Conference on Spoken Language Trans-
lation, http://iwslt.org.

to delay translation by a fixed number of words.
Alternatively, Satija and Pineau (2016); Gu et al.
(2017); Alinejad et al. (2018) use reinforcement
learning to learn a dynamic policy to determine
whether to read or output words. Cho and Esipova
(2016) adapt the decoding algorithm without re-
lying on additional components. However, these
methods do not modify the training of the under-
lying NMT model. Instead, it is trained on full
sentences. Arivazhagan et al. (2019) introduce a
holistic framework that relaxes the hard notion of
read/write decisions at training time, allowing it to
be trained jointly with the rest of the NMT model.

In this paper, we integrate a source chunk bound-
ary detection component into a bidirectional recur-
rent NMT model. This component corresponds to
segmentation or read/write decisions in the litera-
ture. It is however trained jointly with the rest of the
NMT model. We propose an algorithm to chunk
the training data based on automatically learned
word alignment. The chunk boundaries are used
as a training signal along with the parallel corpus.
The main contributions of this work are as follows:

• We introduce a source chunk boundary detec-
tion component and train it jointly with the
NMT model. Unlike in (Arivazhagan et al.,
2019), our component is trained using hard
decisions, which is consistent with inference.

• We propose a method based on word align-
ment to generate the source and target chunk
boundaries, which are needed for training.

• We study the use of bidirectional vs uni-
directional encoder layers for simultaneous
machine translation. Previous work focuses
mostly on the use of unidirectional encoders.

• We provide results using text and speech input.
This is in contrast to previous work that only
simulates simultaneous NMT on text input.
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2 Related Work

Oda et al. (2014) formulate segmentation as an op-
timization problem solved using dynamic program-
ming to optimize translation quality. The approach
is applied to phrase-based machine translation. Our
chunking approach is conceptually simpler, and
we explore its use with neural machine translation.
Cho and Esipova (2016) devise a greedy decoding
algorithm for simultaneous neural machine trans-
lation. They use a model that is trained on full
sentences. In contrast, we train our models on
chunked sentences to be consistent with the decod-
ing condition. Satija and Pineau (2016), Alinejad
et al. (2018), and Gu et al. (2017) follow a rein-
forcement learning approach to make decisions as
to when to read source words or to write target
words. Zheng et al. (2019) propose the simpler
approach to use the position of the reference tar-
get word in the beam of an existing MT system
to generate training examples of read/write deci-
sions. We extract such decisions from statistical
word alignment instead.

In Ma et al. (2019); Dalvi et al. (2018), a wait-k
policy is proposed to delay the first target word
until k source words are read. The model alternates
between generating s target words and reading s
source words, until the source words are exhausted.
Afterwards, the rest of the target words are gener-
ated. In addition, Dalvi et al. (2018) convert the
training data into chunks of predetermined fixed
size. In contrast, we train models that learn to pro-
duce dynamic context-dependent chunk lengths.

The idea of exploiting word alignments to de-
cide for necessary translation context can be found
in several recent papers. Arthur et al. (2020) train
an agent to imitate read/write decisions derived
from word alignments. In our architecture such a
separate agent model is replaced by a simple addi-
tional output of the encoder. Xiong et al. (2019) use
word alignments to tune a pretrained language rep-
resentation model to perform word sequence chunk-
ing. In contrast, our approach integrates alignment-
based chunking into the translation model itself,
avoiding the overhead of having a separate compo-
nent and the need for a pretrained model. More-
over, in this work we improve on pure alignment-
based chunks using language models (Section 6.3)
to avoid leaving relevant future source words out of
the chunk. Press and Smith (2018) insert ε-tokens
into the target using word alignments to develop
an NMT model without an attention mechanism.

Those tokens fulfill a similar purpose to wait deci-
sions in simultaneous MT policies.

Arivazhagan et al. (2019) propose an attention-
based model that integrates an additional mono-
tonic attention component. While the motivation
is to use hard attention to select the encoder state
at the end of the source chunk, they avoid using
discrete attention to keep the model differentiable,
and use soft probabilities instead. The hard mode
is only used during decoding. We do not have to
work around discrete decisions in this work, since
the chunk boundaries are computed offline before
training, resulting in a simpler model architecture.

3 Simultaneous Machine Translation

The problem of offline machine translation is fo-
cused on finding the target sequence eI1 = e1...eI
of length I given the source sequence fJ1 of length
J . In contrast, simultaneous MT does not nec-
essarily require the full source input to generate
the target output. In this work, we formulate the
problem by assuming latent monotonic chunking
underlying the source and target sequences.

Formally, let sK1 = s1...sk...sK denote the
chunking sequence of K chunks, such that sk =
(ik, jk), where ik denotes the target position of last
target word in the k-th chunk, and jk denotes the
source position of the last source word in the chunk.
Since the source and target chunks are monotonic,
the beginnings of the source and target chunks do
not have to be defined explicitly. The chunk posi-
tions are subject to the following constraints:

i0 = j0 = 0, iK = I, jK = J,

ik−1 < ik, jk−1 < jk. (1)

We use ẽk = eik−1+1...eik to denote the k-th
target chunk, and f̃k = fjk−1+1...fjk to denote its
corresponding source chunk. The target sequence
eI1 can be rewritten as ẽK1 , similarly, the source
sequence can be rewritten as fJ1 = f̃K1 .

We introduce the chunk sequence sK1 as a latent
variable as follows:

p(eI1|fJ1 ) =
∑
K,sK1

p(eI1, s
K
1 |fJ1 ) (2)

=
∑
K,sK1

p(ẽK1 , s
K
1 |f̃K1 ) (3)

=
∑
K,sK1

K∏
k=1

p(ẽk, sk|ẽk−1
1 , sk−1

1 , f̃K1 ) (4)
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=
∑
K,sK1

K∏
k=1

p(ik|ẽk1, sk−1
1 , jk, f̃

K
1 )

· p(ẽk|ẽk−1
1 , sk−1

1 , jk, f̃
K
1 )

· p(jk|ẽk−1
1 , sk−1

1 , f̃K1 ), (5)

where Equation 2 introduces the latent sequence
sK1 with a marginalization sum over all possi-
ble chunk sequences and all possible number
of chunks K. In Equation 3 we rewrite the
source and target sequences using the chunk no-
tation, and we apply the chain rule of probabil-
ity in Equation 4. We use the chain rule again
in Equation 5 to decompose the probability fur-
ther into a target chunk boundary probability
p(ik|ẽk1, s

k−1
1 , jk, f̃

K
1 ), a target chunk translation

probability p(ẽk|ẽk−1
1 , sk−1

1 , jk, f̃
K
1 ), and a source

chunk boundary probability p(jk|ẽk−1
1 , sk−1

1 , f̃K1 ).
This creates a generative story, where the source
chunk boundary is determined first, followed by the
translation of the chunk, and finally by the target
chunk boundary. The translation probability can be
further decomposed to reach the word level:

p(ẽk, |ẽk−1
1 , sk−1

1 , jk, f̃
K
1 )

=

ik∏
i=ik−1+1

p(ei| ei−1
ik−1+1, ẽ

k−1
1︸ ︷︷ ︸

=ei−1
1

, sk−1
1 , jk, f̃

K
1 )

≈
ik∏

i=ik−1+1

p(ei|ei−1
1 , f jk1 , k). (6)

In this work, we drop the marginalization sum
over chunk sequences and use fixed chunks during
training. The chunk sequences are generated as
described in Section 6.

4 Model

4.1 Source Chunk Boundary Detection
We simplify the chunk boundary probability, drop-
ping the dependence on the target sequence and
previous target boundary decisions

p(jk|ẽk−1
1 , sk−1

1 , f̃K1 ) ≈ p(jk|f jk1 , j
k−1
1 ), (7)

where the distribution is conditioned on the source
sequence up to the last word of the k-th chunk. It is
also conditioned on the previous source boundary
decisions j1...jk−1. Instead of computing a distri-
bution over the source positions, we introduce a
binary random variable bj such that for each source

position we estimate the probability of a chunk
boundary:

bj,k =

{
1 if j ∈ {j1, j2...jk}
0 otherwise.

(8)

For this, we use a forward stacked RNN encoder.
The l-th forward encoder layer is given by

−→
h

(l)
j,k =

LSTM
(
[f̂j ; b̂j−1,k],

−→
h

(l)
j−1,k

)
l = 1

LSTM
(−→
h

(l−1)
j,k ,

−→
h

(l)
j−1,k

)
1 < l < Lenc,

(9)
where f̂j is the word embedding of the word

fj , which is concatenated to the embedding of the
boundary decision at the previous source position
b̂j−1,k. Lenc is the number of encoder layers. On
top of the last layer a softmax estimates p(bj,k):

p(bj,k) = softmax
(
g([
−→
h

(Lenc)
j,k ; f̂j ; b̂j−1,k])

)
, (10)

where g(·) denotes a non-linear function.

4.2 Translation Model
We use an RNN attention model based on (Bah-
danau et al., 2015) for p(ei|ei−1

1 , f jk1 ). The model
shares the forward encoder with the chunk bound-
ary detection model. In addition, we extend the
encoder with a stacked backward RNN encoder.
The l-th backward layer is given by

←−
h

(l)
j,k =


0 j > jk,∀l

LSTM
(
[f̂j ; bj,k],

←−
h

(l)
j+1,k

)
l = 1

LSTM
(←−
h

(l−1)
j,k ,

←−
h

(l)
j+1,k

)
1 < l < Lenc,

(11)
where the backward layer is computed within a
chunk starting at the last position of the chunk
j = jk. 0 indicates a vector of zeros for posi-
tions beyond the current chunk. The source repre-
sentation is given by the concatenation of the last
forward and backward layer

hj,k = [
−→
h

(Lenc)
j,k ;

←−
h

(Lenc)
j,k ]. (12)

We also stack Ldec LSTM layers in the decoder

u
(l)
i,k =

LSTM
(
u
(l−1)
i,k , u

(l)

i−1,k̂

)
1 < l < Ldec

LSTM
(
[êi; di,k], u

(l)

i−1,k̂

)
l = 1,

(13)
where êi is the target word embedding of the word
ei, k̂ = k unless the previous decoder state belongs
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to the previous chunk, then k̂ = k − 1. The vector
di,k is the context vector computed over source
positions up to the last source position jk in the
k-th chunk

di,k =

jk∑
j=1

αi,j,khj,k (14)

αi,j,k =softmax(ri,1,k...ri,jk,k)|j (15)

ri,j,k =f(hj,k, u
(Ldec)

i−1,k̂
), (16)

where αi,j,k is the attention weight normalized over
the source positions 1 ≤ j ≤ jk, and ri,j,k is the
energy computed via the function f which uses
tanh of the previous top-most decoder layer and
the source representation at position j. Note the
difference to the attention component used in of-
fline MT, where the attention weights are computed
considering the complete source sentence fJ1 . The
output distribution is computed using a softmax
function of energies from the top-most decoder
layer u(Ldec)

i−1,k , the target embedding of the previous
word êi−1, and the context vector di−1,k

p(ei|ei−1
1 , f jk1 , k) =

softmax
(
g([u

(Ldec)
i−1,k ; êi−1; di−1,k])

)
. (17)

4.3 Target Chunk Boundary Factor

Traditionally, the translation model is trained to pro-
duce a sentence end token to know when to stop the
decoding process. In our approach, this decision
has to be made for each chunk (see next section).
Hence, we have to train the model to predict the
end positions of the chunks on the target side. For
this, we use a target factor (Garcı́a-Martı́nez et al.,
2016; Wilken and Matusov, 2019), i.e. a second
output of the decoder in each step:

p(bi|ei1, f
jk
1 , k) =

softmax(g(u(Ldec)
i−1,k , êi, êi−1, di−1,k)) (18)

where bi is a binary random variable representing
target chunk boundaries analogous to bj on the
source side. This probability corresponds to the
first term in Equation 5, making the same model
assumptions as for the translation probability. Note
however, that we make the boundary decision de-
pendent on the embedding êi of the target word
produced in the current decoding step.

5 Search

Decoding in simultaneous MT can be seen as an
asynchronous process that takes a stream of source
words as input and produces a stream of target
words as output. In our approach, we segment the
incoming source stream into chunks and output a
translation for each chunk individually, however
always keeping the full source and target context.

Algorithm 1: Simultaneous Decoding
lists in bold, [] is the empty list, += appends to a list

input : source word stream fJ1
output : target word stream eI1

f̂k = [],
−→
h = [],

←−
h = []

for fj in fJ1 do
f̂j = Embedding(fj)−→
h j , p(bj) = runForwardEncoder(f̂j)
f̂k += f̂j−→
h +=

−→
h j

if p(bi) > tb or j = J then
←−
h k = runBackwardEncoder(f̂k)
←−
h +=

←−
h k

ẽk = runDecoder(
−→
h ,
←−
h )

eI1 += ẽk

f̂k = []

Algorithm 1 explains the simultaneous decoding
process. One source word fj (i.e. its embedding
f̂j) is read at a time. We calculate the next step of
the shared forward encoder (Equation 9), includ-
ing source boundary detection (Equation 10). If
the boundary probability p(bj) is below a certain
threshold tb, we continue reading the next source
word fj+1. If, however, a chunk boundary is de-
tected, we first feed all word embeddings f̂k of the
current chunk into the backward encoder (Equation
11), resulting in representations

←−
h k for each of the

words in the current chunk. After that, the decoder
is run according to Equations 12–18. Note, that it
attends to representations

−→
h and

←−
h of all source

words read so far, not only the current chunk. Here,
we perform beam search such that in each decoding
step those combinations of target words and target
chunk boundary decisions are kept that have the
highest joint probability. A hypothesis is consid-
ered final as soon as it reaches a position i where
a chunk boundary bi = 1 is predicted. Note that
the length of a chunk translation is not restricted
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and hypotheses of different lengths compete. When
all hypotheses in the beam are final, the first-best
hypothesis is declared as the translation ẽk of the
current chunk and all its words are flushed into the
output stream at once.

During search, the internal states of the forward
encoder and the decoder are saved between consec-
utive different calls while the backward decoder is
initialized with a zero state for each chunk.

6 Alignment-Based Chunking

6.1 Baseline Approach

We aimed at a meaningful segmentation of sentence
pairs into bilingual chunks which could then be
translated in monotonic sequence and each chunk
is – in terms of aligned words – translatable without
consuming source words from succeeding chunks.
We extract such a segmentation from unsupervised
word alignments in source-to-target and target-to-
source directions that we trained using the Eflo-
mal toolkit (Östling and Tiedemann, 2016) and
combined using the grow-diag-final-and heuris-
tic (Koehn et al., 2003). Then, for each training
sentence pair, we extract a sequence of “minimal-
length” monotonic phrase pairs, i.e. a sequence of
the smallest possible bilingual chunks which do not
violate the alignment constraints2 and at the same
time are conform with the segmentation constraints
in Equation 1. By this we allow word reordering
between the two languages to happen only within
the chunk boundaries. The method roughly fol-
lows the approach of (Mariño et al., 2005), who
extracted similar chunks as units for n-gram based
statistical MT.

For fully monotonic word alignments, only
chunks of length 1 either on the source or the target
side are extracted (corresponding to 1-to-1, 1-to-
M, M-to-1 alignments). For non-monotonic align-
ments larger chunks are obtained, in the extreme
case the whole sentence pair is one chunk. Any
unaligned source or target words are attached to
the chunk directly preceding them, also any non-
aligned words that may start the source/target sen-
tence are attached to the first chunk. We perform
the word alignment and chunk boundary extrac-
tion on the word level, and then convert words to
subword units for the subsequent use in NMT.

2This means that all source words within a bilingual chunk
are aligned only to the target words within this chunk and vice
versa.

6.2 Delayed Source Chunk Boundaries

We observed that the accuracy of source bound-
ary detection can be improved significantly by
including the words immediately following the
source chunk boundary into the context. Take
e. g. the source word sequence I have seen
it. It can be translated into German as soon as the
word it was read: Ich habe es gesehen.
Therefore the model is likely to predict a chunk
boundary after it. However, if the next read
source word is coming, it becomes clear that
we should have waited because the correct Ger-
man translation is now Ich habe es kommen
gesehen. There is a reordering which invalidates
the previous partial translation.

To be able to resolve such cases, we shift
the source chunks by a constant delay D such
that j1, ..., jk, ..., jK becomes j1 + D, ..., jk +
D, ..., jK + D.3 Note that the target chunks re-
main unchanged, thus the extra source words also
provide an expanded context for translation. In pre-
liminary experiments we saw large improvements
in translation quality when using a delay of 2 or
more words, therefore we use it in all further exper-
iments.

6.3 Improved Chunks for More Context

The baseline chunking method (Section 6.1) con-
siders word reordering to determine necessary con-
text for translation. However, future context is of-
ten necessary for correct translation. Consider the
translation The beautiful woman → Die
schöne Frau. Here, despite of the monotonic
alignment, we need the context of the third English
word woman to translate the first two words as we
have to decide on the gender and number of the
German article Die and adjective schöne.

In part, this problem is already addressed by
adding future source words into the context as
described in Section 6.2. However, this method
causes a general increase in latency by D source
positions and yet covers only short-range depen-
dencies. A better approach is to remove any chunk
boundary for which the words following it are
important for a correct translation of the words
preceding it. To this end, we introduce a heuris-
tic that uses two bigram target language models
(LMs). The first language model yields the proba-
bility p(eik |eik−1) for the last word eik of chunk sk,

3If jK + D > J , we shift the boundary to J , allowing
empty source chunks at sentence end.
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EN: And | along came | a | brilliant | inventor, | a | scientist, |
who | came up with a partial cure for that disease

DE: Dann | kam | ein | brillanter | Erfinder des Wegs, | ein | Wissenschaftler, |
der | eine teilweise Heilung für diese Krankheit fand

EN: And | along came | a brilliant inventor, | a scientist, |
who | came up with a partial cure for that disease

DE: Dann | kam | ein brillanter Erfinder des Wegs, | ein Wissenschaftler, |
der | eine teilweise Heilung für diese Krankheit fand

Figure 1: Examples of the baseline and the improved approach of extracting chunk boundaries. Note how in
the improved approach noun phrases were merged into single bigger chunks. Also note the long last chunk that
corresponds to the non-monotonic alignment of the English and German subordinate clause.

whereas the second one computes the probability
p(eik |eik+1) for the last word in the chunk given
the first word eik+1 of the next chunk sk+1 that
follows the word eik . The chunk boundary after eik
is removed if the probability of the latter reverse bi-
gram LM is higher than the probability of the first
one by a factor l =

√
ik − ik−1, i.e. dependent

on the length of the current chunk. The motiva-
tion for this factor is that shorter chunks should
be merged with the context to the right more often
than chunks which are already long, provided that
the right context word has been frequently observed
in training to follow the last word of such a chunk
candidate. The two bigram LMs are estimated on
the target side of the bilingual data, with the second
one trained on sentences printed in reverse order.

Examples of the chunks extracted with the base-
line and the improved approach for a given training
sentence pair are shown in Figure 1.

7 Streaming Speech Recognition

To translate directly from speech signal, we use
a cascaded approach. The proposed simultaneous
NMT system consumes words from a streaming
automatic speech recognition (ASR) system. This
system is based on a hybrid LSTM/HMM acoustic
model (Bourlard and Wellekens, 1989; Hochreiter
and Schmidhuber, 1997), trained on a total of ap-
prox. 2300 hours of transcribed English speech
from the corpora allowed by IWSLT 2020 evalu-
ation, including MUST-C, TED-LIUM, and Lib-
riSpeech. The acoustic model takes 80-dim. MFCC
features as input and estimates state posterior prob-
abilities for 5000 tied triphone states. It consists
of 4 bidirectional layers with 512 LSTM units for
each direction. Frame-level alignment and state
tying were bootstrapped with a Gaussian mixtures
acoustic model. The LM of the streaming recog-
nizer is a 4-gram count model trained with Kneser-

Ney smoothing on English text data (approx. 2.8B
running words) allowed by the IWSLT 2020 evalu-
ation. The vocabulary consists of 152K words and
the out-of-vocabulary rate is below 1%. Acoustic
training and the HMM decoding were performed
with the RWTH ASR toolkit (Wiesler et al., 2014).

The streaming recognizer implements a version
of chunked processing (Chen and Huo, 2016; Zeyer
et al., 2016) which allows for the same BLSTM-
based acoustic model to be used in both offline
and online applications. By default, the recognizer
updates the current first-best hypothesis by Viterbi
decoding starting from the most recent frame and
returns the resulting word sequence to the client.
This makes the first-best hypothesis “unstable”,
i.e. past words can change depending on the newly
received evidence due to the global optimization
of the Viterbi decoding. To make the output more
stable, we made the decoder delay the recogni-
tion results until all active word sequences share a
common prefix. This prefix is then guaranteed to
remain unchanged independent of the rest of the
utterance and thus can be sent out to the MT model.

8 Experiments

We conduct experiments on the IWSLT simultane-
ous translation task for speech translation of TED
talks from English to German.

8.1 Setup
For training the baseline NMT system, we utilize
the parallel data allowed for the IWSLT 2020 eval-
uation. We divide it into 3 parts: in-domain, clean,
and out-of-domain. We consider data from the
TED and MUST-C corpora (Di Gangi et al., 2019)
as in-domain and use it for subsequent fine-tuning
experiments, as well as the “ground truth” for fil-
tering the out-of-domain data based on sentence
embedding similarity with the in-domain data; de-
tails are given in (Bahar et al., 2020). As “clean”
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we consider the News-Commentary, Europarl, and
WikiTitles corpora and use their full versions in
training. As out-of-domain data, we consider Open-
Subtitles, ParaCrawl, CommonCrawl, and rapid
corpora, which we reduce to 40% of their total
size, or to 23.2M parallel lines, with similarity-
based filtering. Thus, in total, we use almost 26M
lines of parallel data to train our systems, which
amounts to ca. 327M running words on the English
side. Furthermore, we added 7.9M sentence pairs
or ca. 145M running words of similarity-filtered
back-translated4 German monolingual data allowed
by the IWSLT 2020 evaluation.

In training, the in-domain and clean parallel data
had a weight of 5. All models were implemented
and trained with the RETURNN toolkit (Zeyer
et al., 2018). We used an embedding size of 620
and LSTM state sizes of 1000.

As heldout tuning set, we use a combination
of IWSLT dev2010, tst2014, and MUST-C-dev
corpora. To obtain bilingual chunks as described
in Section 6, we word-align all of the filtered
parallel/back-translated and tuning data in portions
of up to 1M sentence pairs, each of them combined
with all of the in-domain and clean parallel data.
As heldout evaluation sets, we use IWSLT tst2015,
as well as MUST-C HE and COMMON test data.

For the text input condition, we applied almost
no preprocessing, tokenization was handled as part
of the subword segmentation with the sentence-
piece toolkit (Kudo and Richardson, 2018). The
vocabularies for both the source and the target sub-
word models had a size of 30K. For the speech
input condition, the additional preprocessing ap-
plied to the English side of the parallel data had
the goal to make it look like speech transcripts.
We lowercased the text, removed all punctuation
marks, expanded common abbreviations, especially
for measurement units, and converted numbers,
dates, and other entities expressed with digits into
their spoken form. For the cases of multiple read-
ings of a given number (e.g. one oh one, one
hundred and one), we selected one randomly,
so that the system could learn to convert alternative
readings in English to the same number expressed
with digits in German. Because of this preprocess-
ing, our system for the speech condition learned to
insert punctuation marks, restore word case, and

4The German-to-English system that we used to translate
these data into English is an off-line system trained using the
Transformer Base architecture (Vaswani et al., 2017) on the
in-domain and clean parallel data.

convert spoken number and entity forms to digits
as part of the translation process.

The proposed chunking method (Section 6) is
applied to the training corpus as a data preparation
step. We measured average chunk lengths of 2.9
source words and 2.7 target words. 40% of both the
source and target chunks consist of a single word,
about 20% are longer than 3 words.

We compute case-sensitive BLEU (Papineni
et al., 2002) and TER (Snover et al., 2006) scores
as well as the average lagging (AL) metric (Ma
et al., 2019).

8.2 Results

Table 1 shows results for the proposed simultane-
ous MT system. For reference, we first provide
the translation quality of an offline system that is
trained on full sentences. It is a transformer “base”
model (Vaswani et al., 2017) that we trained on
the same data as the online systems. Row 1 shows
BLEU and TER scores for translation of the hu-
man reference transcription of the speech input
(converted to lower-case, punctuation removed),
whereas row 2 uses the automatic transcription gen-
erated by our streaming ASR system (Section 7).
The ASR system has a word error rate (WER) of
8.7 to 11.2% on the three test sets, causing a drop
of 4-6% BLEU absolute.

All following systems are cascaded streaming
ASR + MT online systems that produce translations
from audio input in real-time. Those systems have
an overall AL of 4.1 to 4.5 seconds, depending on
D. We compare between two categories of models:
unidirectional and bidirectional. For the unidirec-
tional models the backwards decoder (Equation 11)
was removed from the architecture. We show re-
sults for different values of source boundary delay
D (see Section 6.2). For the number of layers we
choose Lenc = 6 and Ldec = 2 for the unidirec-
tional models, and Lenc = 4 (both directions) and
Ldec = 1 for the bidirectional models, such that
the number of parameters is comparable. Contra-
dicting our initial assumption, bidirectional mod-
els do not outperform unidirectional models. This
might indicate be due to the fact that the majority
of chunks are too short to benefit from a backwards
encoding. Also, the model is not sensitive to the
delay D. This confirms our assumption that the ad-
ditional context of future source words is primarily
useful for making the source boundary decision,
and for this a context of 2 following (sub-)words
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System Delay tst2015 must-c-HE must-c-COMMON
BLEU TER BLEU TER BLEU TER

Offline baseline, Transformer
using reference transcript n/a 32.7 50.9 30.1 54.3 32.6 48.9
using streaming ASR n/a 28.6 56.3 26.0 59.2 26.4 57.3

Proposed simultaneous NMT 2 24.8 60.2 21.7 63.0 21.9 60.2
unidirectional, 3 24.6 60.2 22.6 62.7 21.8 60.8
(6 enc. 2 dec.) 4 24.6 61.1 22.8 62.8 21.7 61.5

Proposed simultaneous NMT 2 24.6 60.0 21.4 62.8 21.9 60.6
bidirectional, 3 24.4 60.5 22.0 62.7 21.7 61.1
(2x4 enc. 1 dec.) 4 24.6 61.0 21.8 63.1 21.9 61.4

Table 1: Experimental results (in %) for simultaneous NMT of speech, IWSLT 2020 English→German.
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Figure 2: BLEU vs. AL for bidirectional systems from
Table 2, generated using a delay D of 2, 3, and 4.

is sufficient. For translation, the model does not
depend on this “extra” context but instead is able
to make sufficiently good chunking decisions.

Table 2 shows results for the case of streamed
text input (cased and with punctuation marks). We
compare our results to a 4-layer unidirectional sys-
tem that was trained using the wait-k policy (Ma
et al., 2019). For this, we chunk the training data
into single words, except for a first chunk of size
k = 9 on the source side, and set the delay to
D = 0. All of our systems outperform this wait-k
system by large margins. We conclude that the
alignment-based chunking proposed in Section 6
is able to provide better source context than a fixed
policy and that the source boundary detection com-
ponent described in Section 4.1 successfully learns
to reproduce this chunking at inference time. Also
for the text condition, we do not observe large dif-
ferences between uni- and bidirectional models and
between different delays.

For all systems, we report AL scores averaged
over all test sets. Figure 2 breaks down the scores to
the individual test sets for the bidirectional models.
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Figure 3: BLEU vs. the length normalization factor (α)
on the tuning set (dev2010 + tst2014 + MUST-C-dev).

For a source boundary delay D = 2 we observe an
AL of 4.6 to 4.7 words. When increasing D, we
increase the average lagging score by roughly the
same amount, which is expected, since the addi-
tional source context for the boundary decision is
not translated in the same step where it is added.
As discussed before, translation quality does not
consistently improve from increasing D.

We found tuning of length normalization to
be important, as the average decoding length for
chunks is much shorter than in offline translation.
For optimal results, we divided the model scores by
Iα, I being the target length, and tuned the param-
eter α. Figure 3 shows that α = 0.9 works best in
our experiments, independent of the source bound-
ary delay D. This value is used in all experiments.

Furthermore, we found the model to be very
sensitive to a source boundary probability threshold
tb different than 0.5 regarding translation quality.
This means the “translating” part of the network
strongly adapts to the chunking component.
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System Delay Avg. tst2015 must-c-HE must-c-COMMON
AL BLEU TER BLEU TER BLEU TER

Baseline wait-k (k=9) - 27.4 55.8 25.1 59.5 27.4 54.2
Proposed simultaneous MT 2 4.72 30.2 52.6 28.8 55.0 30.0 50.8

unidirectional 3 5.26 30.3 53.2 28.8 55.2 29.7 50.8
(6 enc. 2 dec.) 4 6.17 29.9 53.1 28.6 55.1 29.6 50.8

Proposed simultaneous MT 2 4.65 29.3 53.4 28.1 55.4 29.7 50.9
bidirectional 3 5.46 29.6 53.7 29.0 54.8 29.7 51.6
(2x4 enc. 1 dec.) 4 6.15 29.2 54.0 28.3 55.3 29.7 51.5

Table 2: Experimental results (in %) for simultaneous NMT of text input, IWSLT 2020 English→German.

9 Conclusion

We proposed a novel neural model architecture for
simultaneous MT that incorporates a component
for splitting the incoming source stream into trans-
latable chunks. We presented how we generate
training examples for such chunks from statistical
word alignment and how those can be improved
via language models. Experiments on the IWSLT
2020 English-to-German task proved that the pro-
posed learned source chunking outperforms a fixed
wait-k strategy by a large margin. We also investi-
gated the value of backwards source encoding in
the context of simultaneous MT by comparing uni-
and bidirectional versions of our architecture.
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Robert Östling and Jörg Tiedemann. 2016. Effi-
cient word alignment with Markov Chain Monte
Carlo. Prague Bulletin of Mathematical Linguistics,
106:125–146.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceed-
ings of the 41st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 311–318,
Philadelphia, Pennsylvania, USA.

Ofir Press and Noah A Smith. 2018. You may not need
attention. arXiv preprint arXiv:1810.13409.

Harsh Satija and Joelle Pineau. 2016. Simultaneous
machine translation using deep reinforcement learn-
ing. In ICML 2016 Workshop on Abstraction in Re-
inforcement Learning.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A Study of
Translation Edit Rate with Targeted Human Annota-
tion. In Proceedings of the 7th Conference of the As-
sociation for Machine Translation in the Americas,
pages 223–231, Cambridge, Massachusetts, USA.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Simon Wiesler, Alexander Richard, Pavel Golik, Ralf
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