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Abstract

We present in this report our submission
to IWSLT 2020 Open Domain Translation
Task(Ansari et al., 2020). We built a data pre-
processing pipeline to efficiently handle large
noisy web-crawled corpora, which boosts the
BLEU score of a widely used transformer
model in this translation task. To tackle
the open-domain nature of this task, back-
translation (Sennrich et al., 2016) is applied to
further improve the translation performance.

1 Introduction

Neural machine translation (NMT) is a well-
studied problem boosted in recent years by pow-
erful transformer models (Vaswani et al., 2017),
which find their ways to various sequence-to-
sequence tasks, such as automatic speech recog-
nition (ASR) (Dong et al., 2018), speech transla-
tion (Gangi et al., 2019), text-to-speech (Shin et al.,
2019), to name a few. Nevertheless, many chal-
lenges remain in training an efficient transformer
NMT model in practice, such as the following ones
raised in IWSLT 2020 Open Domain Translation
Task:

Handling noisy dataset Hassan et al. pointed
out that machine translation models are vulnerable
to noise even in small quantity. In practice, manual
correction of a massive corpora is prohibitive, thus
calling for an automatic data cleaning pipeline.

Leveraging monolingual data Compared to
parallel corpora, monolingual data can be acquired
at a much lower cost. Common ways of us-
ing monolingual data include language modeling
(Çaglar Gülçehre et al., 2015), back-translation
(Sennrich et al., 2016), and dual learning (He et al.,
2016), all exhibiting promising results; further-
more, they could be adopted in a complementary
way when carefully designed (Hassan et al., 2018).

Last but not least, massive pre-trained language
models like BERT perform strongly in NLP tasks
like question answering, reading comprehension
and text classification (Devlin et al., 2019), motivat-
ing our attempts to incorporate them in our NMT
system.

Domain mismatch NMT systems trained with
data from specific domains may translate poorly
in other domains (Freitag and Al-Onaizan, 2016).
Training the model with all available corpora,
and fine-tuning it on a specific domain generally
achieves best results in this domain (Chu et al.,
2017). In open domain cases, it’s impractical
to keep a dedicated model or to obtain enough
training data for every single domain. Hence Multi-
Domain NMT, where a single model generalizes
to multiple domains, is gaining interest in recent
research. For example, Tars and Fishel; Jiang
et al.; Zeng et al. injected domain information into
model input, leading to convincing and consistent
improvements, in which domain information may
be derived in both supervised and unsupervised
manners.

Our work consists of establishing an efficient
data pre-processing pipeline for large web-crawled
corpora to train a transformer model for NMT and
exploiting large amount of monolingual data with
back-translation and language modeling.

This report is organized as follows: Section 2
depicts the different techniques applied to improve
the official baseline model, whereas in Section 3
the experiments and results are described in greater
details. Finally, we conclude our work and suggest
a few future work directions in Section 4.
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2 System Overview

2.1 Noisy Data
According to Hassan et al., the common noises in
web-crawled corpora can be categorized into the
following groups:

• mis-aligned pairs,
• partially translated pairs,
• inaccurate or low-quality pairs,
• pairs in wrong languages, or as exact dupli-

cates.

Meanwhile, in the context of training Transformer
models with large-scale parallel data, Popel and
Bojar found out while clean and smaller datasets
help the model to converge faster, noisy and larger
datasets help in converging to a better result. Our
experiments indicate that with a pre-processing
pipeline, training larger datasets is of great help
in improving translation BLEU score.

2.2 NMT model
Our NMT model is identical to the baseline
of IWSLT 2020 Open Domain Translation Task
(Ansari et al., 2020), which is a common trans-
former architecture. The hyper-parameters of the
model are listed in Table 1.

Hyper-parameters
encoder layers 6
decoder layers 6
filter width 4096
attention width 1024
attention heads 16
token type BPE
source vocabulary size 30k
target vocabulary size 30k
Total Parameters 270M

Table 1: Hyper-parameters for our NMT model.

2.3 Language Modeling
Çaglar Gülçehre et al. proposed language model-
ing as a way of leveraging monolingual corpora
in the context of NMT. Given massive monolin-
gual data, language modeling helps in decoding
accuracy, thus ensuring improvements in iterative
back-translation training. Among various ways
of incorporating language models in an NMT sys-
tem, we conduct experiments on shallow fusion
and deep fusion, following the settings of Çaglar
Gülçehre et al..

A rescoring method put forward by Shin et al. is
also tested, where the translation candidates from
beam search are reranked using a weighed combi-
nation of original scores and scores calculated by a
pre-trained Japanese BERT model (Takeshi et al.,
2019).

2.4 Back-translation

Back-translation (Hoang et al., 2018) has been
proven to be an effective and highly applicable
way to achieve consistent improvements by in-
creasing both size and diversity of the training cor-
pora (Edunov et al., 2018); we follow their back-
translation setting in our experiments.

3 Experiments and Results

3.1 Data Acquisition and Pre-processing

All the datasets used in our experiments are listed in
Table 2. While larger datasets boost model perfor-
mance in general, we observe considerable amount
of noises in all the datasets in Table 2 apart from
the ”clean parallel” set. As mentioned in Section
2.1, these noises are of various nature, and show
negative impact in our primary experiments. To
deal with them, several pre-processing steps have
been applied as follows.

First, the noisy datasets turn out to contain a
lot of rare or meaningless characters. In order to
remove them, we define a valid Unicode range,
consisting of basic Latin, Greek alphabet, Japanese
alphabet and CJK symbols and punctuations. Then
we discard sentence pairs including more than 20%
of invalid characters, and delete the invalid symbols
in the remaining pairs.

Second, we normalize these sentences with ne-
ologdn1 to handle encoding issues and special punc-
tuations.

Third, a naive de-duplicate algorithm is applied
to get rid of redundancy in training data, which
also eliminates invalid text containing only error
messages.

Finally, the sentences in wrong languages in the
datasets are filtered by a pre-trained Fasttext lan-
guage classification model (Joulin et al., 2017),
where sentences with wrong language labels or low
confidence are removed.

The use of pre-processed noisy data results later
in a notable increase of BLEU score (see Table 4).

1https://github.com/ikegami-yukino/neologdn
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Dataset Size Source
training set
clean parallel 2M existing parallel
noisy parallel 17M pre-processed web crawled parallel filtered
monolingual(Ja) 10M unaligned documents
monolingual(Zh) 10M Large Scale Chinese Corpus for NLP (Xu, 2019)
validation set
basic expressions 5304 JEC Basic Sentence Data (Kurohashi-Kawahara Lab.)

Table 2: Datasets used in our experiments. The size is in number of sentence pairs for parallel datasets, and
number of sentences for monolingual ones.

3.2 Baseline Model

We train the transformer model in Section 2.2 on
clean data as baseline. We use Jieba2 and Mecab3

to tokenize the Chinese and Japanese text respec-
tively, and use subword-nmt4 to perform BPE en-
coding/decoding (Gage, 1994), with vocabulary
size approximately to 30k for each language. We
use Tensor2Tensor (Vaswani et al., 2018) imple-
mentation of Transformer, with 4 GPU and accumu-
lates gradient for 4 steps, resulting in an equivalent
batch-size of 32768.

3.3 Language Modeling

Here we attempt to acquire some improvements uti-
lizing unpaired data by means of language models
(LM). The methods tested are:

• shallow fusion with language model (Çaglar
Gülçehre et al., 2015)
• deep fusion with language model(Çaglar

Gülçehre et al., 2015)
• BERT rescoring (Shin et al., 2019)

As summarized in Table 3, none of the LM-based
methods leads to gain in BLEU score just yet, and
further research needs to be conducted to beat the
baseline with language models.

Methods Zh2Ja
baseline model 27.48
shallow fusion 26.79
deep fusion 21.84
BERT rescoring 24.80

Table 3: BLEU scores after incorporating with lan-
guage models.

2https://github.com/fxsjy/jieba
3https://taku910.github.io/mecab/
4https://github.com/rsennrich/subword-nmt

3.4 Back-translation
To generate a back-translation dataset, we first
augment clean target sentences using the exact
’beam + noise’ setting in (Edunov et al., 2018),
with p(deletion) = 0.1, p(substitution) = 0.1
for each token in the sentence; for substitution, we
randomly pick the ith token and draw a random
number n from uniform distribution of {-3, 2, -1,
1, 2, 3}, and replace this token with the (i+ n)th

token. We generate noisy source sentences using a
target-to-source NMT model trained from previous
steps, and construct a dataset using noisy source
sentences with their clean target counterparts. Dur-
ing training, parallel data and back-translated data
are sampled at 1:1 ratio.

3.5 Final Results
As is shown in previous sections, using large nor-
malized corpora and back-translation both improve
the baseline system in two translation directions.
The overall result on validation set is depicted in
Table 4. The final result on test dataset is depicted
in (Ansari et al., 2020).

To further confirm the effectiveness of our back-
translation approach acorss different domains, we
classify the validation set into 14 different topics
using a validated pre-trained bag-of-words model,
and compute the validation BLEU scores of each
topic before and after back-translation. In Figure 1,
an overall improvement is observed in all cate-
gories with a few exceptions, which is expected.

Methods Ja2Zh Zh2Ja
official baseline 20.28 26.57
clean parallel 20.37 27.48
+ noisy parallel 25.48 30.32
+ back-translation 27.79 35.87

Table 4: Overall BLEU Scores on Validation Set.
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Figure 1: BLEU score in different domains in the vali-
dation set

4 Conclusion and Future Work

In this paper we described our submission to
IWSLT 2020 open domain translation task. We
improved the baseline model with a large amount
of cleaned-up web-crawled data and the back-
translation technique. Our final system achieved
27.79 and 35.87 BLEU scores on Ja2Zh and Zh2Ja
tasks respectively, out running the official baseline
by about 35%.

For future work, we first plan to improve the
baseline model architecture, since it is left un-
changed in our current experiments (e.g. by follow-
ing (Sun et al., 2019)). Furthermore, loss masking
(Rusiecki, 2019) would also be appealing, which
ignores the samples of highest losses in each batch
during training. Proven to be effective for noisy-
label classification, loss masking may also be help-
ful to our NMT model trained with noisy sentence
pairs. Another possibility is to filter noisy data with
a learned representation in both languages (Hassan
et al., 2018), which can further eliminate incom-
plete or mismatched translation pairs and help with
model accuracy.

Initializing NMT decoder with a pre-trained
BERT model is also stated to be useful; this tech-
nique is named ’cold fusion’ in the context of
ASR(Sriram et al., 2017), and we expect to see
similar effects in the case of NMT. An alternative
way of incorporating pre-trained BERT into NMT
models is to merge hidden activations of these mod-
els together(Zhu et al., 2020). The results show that
such a fusion is an effective way to utilize mono-
lingual data as complementary to back-translation.

Finally, to tackle the multi-domain translation
scenario, specific loss functions and model struc-
tures exhibit promising results (Zeng et al., 2018;

Jiang et al., 2019); meanwhile, adding special do-
main tokens to source text may also achieve com-
parable results (Tars and Fishel, 2018).
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