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Abstract

This paper describes the CASIA’s system

for the IWSLT 2020 open domain transla-

tion task. This year we participate in both

Chinese→Japanese and Japanese→Chinese

translation tasks. Our system is neural ma-

chine translation system based on Transformer

model. We augment the training data with

knowledge distillation and back translation to

improve the translation performance. Domain

data classification and weighted domain model

ensemble are introduced to generate the final

translation result. We compare and analyze the

performance on development data with differ-

ent model settings and different data process-

ing techniques.

1 Introduction

Neural machine translation(NMT) has been in-

troduced and made great success during the past

few years (Sutskever et al., 2014; Bahdanau et al.,

2015; Luong et al., 2015; Wu et al., 2016; Gehring

et al., 2017; Zhou et al., 2017; Vaswani et al.,

2017). Among those different neural network ar-

chitectures, the Transformer, which is based on

self-attention mechanism, has further improved the

translation quality due to the ability of feature ex-

traction and word sense disambiguation (Tang et al.,

2018a,b). In this paper, we describe our Trans-

former based neural machine translation system

submitted to the IWSLT 2020 Chinese→Japanese

and Japanese→Chinese open domain translation

task (Ansari et al., 2020).

Our system is built upon Transformer neural ma-

chine translation architecture. We also adopt Rel-

ative Position (Shaw et al., 2018) and Dynamic

Convolutions (Wu et al., 2019) to investigate the

performances of advanced model variations. For

the implementation, we extend the latest release of

Fairseq1 (Ott et al., 2019).

1https://github.com/pytorch/fairseq

For data pre-processing, we use byte-pair encod-

ing(BPE) segmentation (Sennrich et al., 2016b) for

the source side and character level segmentation for

the target side to improve the model performance

on rare words. We also investigate the influence

of different segmentation methods including word,

BPE and character segmentation for both sides.

To further improve the translation quality, we

utilize data augmentation techniques of back-

translation with a sub-selected monolingual corpus

to build additional pseudo parallel training data.

Sentence level knowledge distillation is used to

strengthen the performance of student model from

multi-policy teacher models including left→right,

right→left, source→target and target→source.

We also investigate the domain information of

the large training data by using a Bert based do-

main classifier, which is a masked language model

and has been shown effective in large scale text

classification tasks (Devlin et al., 2019). With the

in-domain data, we transfer the model of general

domain to each specific domain, and use weighted

domain model ensemble as decoding strategy.

2 System Description

Figure 1 depicts the whole process of our submis-

sion system, in which we pre-process the provided

data and train our advanced Transformer models on

the bilingual data together with synthetic corpora

from back-translation and knowledge distillation.

With domain classification and fine tuning tech-

niques, we obtain multiple models for ensemble

strategy and post-processing. In this section, we

will introduce each process step in detail.

2.1 NMT Baseline

In this work, we build our model based on the

powerful Transformer (Vaswani et al., 2017). The

Transformer is a sequence-to-sequence neural
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Figure 1: System process of our submissions.
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Figure 2: The Transformer model.

model that consists of two components: the en-

coder and the decoder, as shown in Figure 2. The

encoder network transforms an input sequence of

symbols into a sequence of continues representa-

tions. The decoder, on the other hand, produces

the target word sequence by predicting the words

using a combination of the previously predicted

word and relevant parts of the input sequence rep-

resentations. Particularly, relying entirely on the

multi-head attention mechanism, the Transformer

with beam search algorithm achieves the state-of-

the-art results for machine translation.

Multi-Head Attention We use the multi-head

attention with h heads, which allow the model to

jointly attend to information from different rep-

resentation subspaces at different positions. For-

mally, multi-head attention first obtains h different
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Figure 3: (left) Scaled Dot-Product Attention. (right)

Multi-Head Attention.

representations of (Qi,Ki, Vi). Specifically, for

each attention head i, we project the hidden state

matrix into distinct query, key and value represen-

tations Qi=QW
Q
i , Ki=KWK

i , Vi=VW V
i respec-

tively. Then we perform scaled dot-product at-

tention for each representation, concatenate the

results, and project the concatenation with a feed-

forward layer.

MultiHead(Q,K, V ) = Concati(headi)W
O

headi = Attention(QW
Q
i ,KWK

i , V W V
i )

(1)

where W
Q
i , WK

i , W V
i and WO are parameter ma-

trices .

Scaled Dot-Product Attention An attention

function can be described as a mapping from a

query and a set of key-value pairs to an output.

Specifically, we can multiply query Qi by key Ki

to obtain an attention weight matrix, which is then

multiplied by value Vi for each token to obtain the

self-attention token representation. As shown in

Figure 3, we compute the matrix of outputs as:

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (2)

where dk is the dimension of the key. For the sake

of brevity, we refer the reader to Vaswani et al.

(2017) for more details.
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2.2 Back-Translation

Back-translation is an effective and commonly used

data augmentation technique to incorporate mono-

lingual data into a translation system (Sennrich

et al., 2016a; Zhang and Zong, 2016). Especially

for low-resource language tasks, it is indispensable

to augment the training data by mixing the pseudo

corpus with the parallel part. Back-translation first

trains an intermediate target-to-source system that

is used to translate monolingual target data into

additional synthetic parallel data. This data is used

in conjunction with human translated bitext data to

train the desired source-to-target system.

How to select the appropriate sentences from

the abundant monolingual data is a crucial issue

due to the limitation of equipment and huge over-

head time. We trained a n-gram based language

model on the target side of bilingual data to score

the monolingual sentences for each translation di-

rection.

Recent work (Edunov et al., 2018) has shown

that different methods of generating pseudo corpus

made discrepant influence on translation perfor-

mance. Edunov et al. (2018) indicated that sam-

pling or noisy synthetic data gives a much stronger

training signal than data generated by beam search

or greedy search. We adopt the back-translation

script from fairseq2 and generate back-translated

data with sampling for both translation directions.

2.3 Knowledge Distillation

The goal of knowledge distillation is to deliver

a student model that matches the accuracy of a

teacher model (Kim and Rush, 2016). Prior work

(Yang et al., 2018) demonstrates that student model

can surpass the accuracy of the teacher model. In

our experiments, we adopt sequence-level knowl-

edge distillation method and investigate four differ-

ent teacher models to boost the translation quality

of student model.

S2T+L2R Teacher Model: We translate the

source sentences of the parallel data into target

language using our source-to-target (briefly, S2T)

system described in Section 2.1 with left-to-right

(briefly, L2R) manner.

S2T+R2L Teacher Model: We translate the

source sentences of the parallel data into target

language using our S2T system with right-to-left

(briefly, R2L) manner.

2https://github.com/pytorch/fairseq/

tree/master/examples/backtranslation

T2S+L2R Teacher Model: We translate the tar-

get sentences of the parallel data into source lan-

guage using our target-to-source (briefly, T2S) sys-

tem with L2R manner.

T2S+R2L Teacher Model: We translate the tar-

get sentences of the parallel data into source lan-

guage using our T2S system with R2L manner.

In the final stage, we use the combination of the

translated pseudo corpus to improve the student

model. It is worth noting that we also mix the orig-

inal bilingual sentences into these pseudo training

corpus.

2.4 Model Ensemble and Reranking

Model ensemble is a method to integrate the proba-

bility distributions of multiple models before pre-

dicting next target word (Liu et al., 2018). We

average the last 20 checkpoints for single model

to avoid overfitting. One checkpoint is saved per

1000 steps. For model ensemble, we train six sep-

arate models. To achieve this, we fine-tune our

student model described in Section 2.3 and back

translation model described in Section 2.2 using

corpus from three different domains (Spoken do-

main, Wiki domain and News domain). We use

weighted ensemble to generate the translation re-

sult, in which the weights for each domain model is

calculated from a Bert based domain classifier. The

domain specific data for training the domain clas-

sifier and fine tuning the student translation model

will be described in detail in Section 3.4.

For reranking, we rescore 50-best lists output

from the ensemble model using a rescoring model,

which includes the models we trained with different

model sizes, different corpus portions and different

token granularities.

3 Data Preparation

This section introduces the methods we em-

ploy to prepare the provided parallel data

(18.9M web crawled corpus and 1.9M exist-

ing parallel sources) and monolingual sentences

(unaligned web crawled data). We also describe

how to prepare domain specific data to facilitate

translation.

The provided parallel corpus existing parallel

for the two translation directions consists of around

1.9M sentence pairs with around 33.5M characters

(Chinese side) in total. Furthermore, a large, noisy

set of Japanese-Chinese segment pairs built from

web data web crawled is also provided, which con-
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sists of around 18.9M sentence pairs with around

493.9M characters (Chinese side) in total. We use

the provided development dataset as the validation

set during training, which consists of 5,304 sen-

tence pairs. The average length and length ratio

of the provided parallel corpus and development

dataset is shown as in Table 1.

3.1 Pre-processing and Post-processing

In the open domain translation task both on

Chinese→Japanese and Japanese→Chinese trans-

lation directions, we first implement pre-processing

on training corpus and then filter it.

Before pre-processing, We remove illegal sen-

tences in the provided Japanese-Chinese parallel

corpus which include duplicate sentences and sen-

tences in different languages other than source or

target (filtered by our language detector tools).

Pre-processing steps include escape character

transformation, text normalization, language fil-

tering and word segmentation. There are lots

of escape characters in the existing parallel and

web crawled which do not occur in development

set. As a result, we transform all these escape

characters into corresponding marks with a well

designed rule-based method to make it consistent

between the training and evaluation.

Text normalization step mainly focuses on nor-

malization of numbers and punctuation. Based

on analysis on development set, we found that in

Chinese, most of the punctuation are double byte

characters (DBC), while most of the numbers are

single byte characters (SBC). However, most of

the numbers and punctuation in Japanese are dou-

ble byte characters (DBC). Hence we normalize

the numbers and punctuation format to make it the

same as development set.

In word segmentation step, we apply Jieba3 as

our Chinese word segmentation tool for segmenting

Chinese parallel data and monolingual data. For

Japanese text, word segmentation is used Mecab

(Toshinori Sato and Okumura, 2017). After pre-

processing, we filter the training corpus as men-

tioned in section 3.2.

Finally, we apply Byte Pair Encoding (BPE)

(Sennrich et al., 2016b) on both Chinese and

Japanese text. Separate BPE models are trained for

Chinese and Japanese respectively. Based on the

comparison of BPE operations from 30k, 35k, 40k,

45k, 50k, we determine to use 40k BPE operations

3https://github.com/fxsjy/jieba

Length Statistic
Train Dev

Ja Zh Ja Zh

avg. length 17.56 14.52 10.12 7.82

avg. ratio 1.35 1.34

Table 1: The average length and length ratio (Ja/Zh) of

the provided parallel corpus and development dataset.

Filtering Methods # of sentences

original 20,929,833

remove illegal 18,073,574

filter by length and ratio 15,708,757

filter by alignment 15,679,247

Table 2: The number of the remaining sentence pairs

after each filtering operation.

in source language since it has the best performance

on preliminary machine translation experiments.

For target side, we determine to use character gran-

ular because character level decoder could perform

better in our preliminary experiments.

Post-processing steps are similar to pre-

processing without filtering. We apply escape char-

acter transformation, text normalization and un-

known words (UNK) processing steps on machine

translation results. The same methods are used to

implement escape character transformation and text

normalization as pre-processing. For UNK process-

ing, we find some of the numbers can not be well

translated by model and we replace these UNKs

with the numbers in source sentence. Otherwise,

we remove the UNK symbols.

3.2 Parallel Data Filtering

The following methods are applied to further filter

the parallel sentence pairs.

We remove sentences longer than 50 and se-

lect the parallel sentences where the length ratio

(Ja/Zh) is between 0.53 and 2.90. We then calcu-

late word alignment of each sentence pair by using

fast align4(Dyer et al., 2013). The percentage of

aligned words and alignment perplexities are used

as the metric where the thresholds are set as 0.4
and −30 respectively. Through the above filtering

procedure, the number of the remaining data is re-

duced from 20.9M to 15.7M, as shown in Table 2.

3.3 Monolingual Data Filtering

It is proven that back-translation is a simple but ef-

fective approach to enhance the translation quality

4https://github.com/clab/fast_align
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Figure 4: The domain data processing steps, including the NMT model trained on general domain data, the NMT

models fine tuned on specific domain, the domain classification and weighted ensemble in the decoding stage.

Filtering Methods Ja Zh

original 941,297,925 928,670,666

remove illegal 10,078,827 32,644,917

filter by length 8,175,157 30,415,964

filter by LM 6,128,443 16,374,195

Table 3: The number of the remaining monolingual sen-

tences for Japanese and Chinese after each filtering op-

eration.

as described in Section 2.2. To achieve that, we ex-

tract the high-quality monolingual sentences from

the provided unaligned web crawled data. After re-

moving illegal sentences from web crawled corpus,

we limit the maximum sentence length as 50 and

remove dirty data by a language model. Specially,

we use KenLM5 toolkit to train two language mod-

els with Japanese and Chinese monolingual data

extracted from the provided parallel corpus exist-

ing parallel. We then rank the sentences based

on the perplexities calculated by the trained lan-

guage models and filter by perplexity threshold of

4 for Chinese and 3 for Japanese. Note that the

perplexities are normalized by sentence lengths.

obtain 6.1M and 16.4M monolingual sentences for

Japanese and Chinese separately. The filtering re-

sults are presented in Table 3.

The obtained monolingual sentences are fed to

the trained model to generate pseudo parallel sen-

tence pairs, which are employed to boost the per-

formance of the model.

3.4 Domain Data Processing

Although the amount of provided training data is

large enough, it is a noise set of web data built

from multiple domain sources. Koehn and Knowles

(2017) have demonstrated that the NMT model per-

forms poorly when the test domain does not match

5https://github.com/kpu/kenlm

Domain Existing Web

Wiki 558,531 4,006,232

Spoken 1,290,796 9,534,754

News 21,661 2,444,884

Table 4: Statistics of domain data. Existing indicates

existing parallel which is used to train the domain clas-

sifier, while Web means web crawled parallel in which

the domain labels are predicted by the classifier.

the training data. Only the same or similar corpora

are typically able to improve translation perfor-

mance. Therefore, we apply domain adaptation

methods in this task.

Adaptation methods for neural machine transla-

tion have attracted much attention in the research

community (Britz et al., 2017; Wang et al., 2017;

Chu and Wang, 2018; Zhang and Xiong, 2018;

Wang et al., 2020). They can be roughly classi-

fied into two categories, namely data selection and

model adaptation. The former focuses on selecting

the similar training data from out-of-domain paral-

lel corpora, while the latter focuses on the internal

model to improve model performance. Following

these two categories, our domain data processing

takes the following steps, as shown in Figure 4.

Domain Label In this task, there are two kinds

of domain labels provided: domains in exist-

ing parallel and domains in web crawled parallel.

Since the later is mainly source document index

for each sentence pair, the former is more mean-

ingful for domain classification. We categorize the

domain label of existing parallel data into three

commonly used classes, namely Wiki, Spoken, and

News. The domain Wiki includes wiki facebook,

wiki zh ja tallip2015 and wiktionary. The label

Spoken includes ted and opensubtitles. The label

News includes global-voices, newscommentary and

tatoeba.
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Domain classification Data selection can be

conduct in supervised or unsupervised manners

(Dou et al., 2019). Since there is a provided data

source descriptive file in the existing parallel data

which can be regarded as domain labels, we choose

the supervised way here. We use two BERT models

pretrained on Chinese6 and Japanese7 data, respec-

tively. Then the BERT models are fine tuned as

a text classification task, based on the source and

target side of existing parallel with three domain

label we defined. Since the domain data is un-

even, we also adopt oversampling and use extra

data to enlarge News domain For the remaining

data in web crawled parallel, we use the classifica-

tion model to classify the total data into the three

different domains. The statistics of domain data we

used is shown in Table 4.

Decoding Stage Considering the test set is also

composed of a mixed-genre data, we first classify

the domain of each sentence in the test set and ob-

tain the probabilities corresponding to each domain.

Then we apply a weighted ensemble method to inte-

grate NMT models. Specifically, when computing

the output probability of the next word, we multi-

ply the output probability in each domain specific

translation model with the corresponding domain

probability of each sentence.

3.5 Other Data Resource

The task description says that the test data is a

mixture of genres but the provided development

set is mainly from spoken domain. Furthermore,

we find that the domain distribution of the training

data is severely unbalanced (as shown in Table

4). Especially, the data of News domain is quite

limited. Due to above two reasons, we decided to

crawl some data from other domains.

It is easy to find that hujiangjp 8 which is a web-

site helping people to study foreign languages con-

tains some parallel Chinese-Japanese sentences.

Accordingly, we crawled all the available data

in this website before test data release. The to-

tal amount of extra data consists of 12, 665 par-

allel sentences. We randomly select 4, 877 sen-

tence pairs to build an extra development set.

When training each domain model, all the ex-

tra data are used as part of News domain. We

6https://github.com/ymcui/

Chinese-BERT-wwm
7https://github.com/cl-tohoku/

bert-japanese
8https://https://jp.hjenglish.com/new/

find that 383 Chinese→Japanese pairs and 421
Japanese→Chinese pairs in the crawled data are

overlapped with the final test set. We just used the

originally trained model to decode the test set and

decided not to retrain our model since it will take

much time and the organizers remind that models

cannot be changed after the test set is released. Any-

way, we also suggest to test the translation quality

on the remaining test set excluding the overlapped

sentences.

4 Experiment Settings and Results

4.1 Experiment Setup

Our implementation of Transformer model is

based on the latest release of Fairseq. We use

Transformer-Big as basic setting, which contains

layers of N = 6 for both encoder and decoder.

Each layer consists of a multi-head attention sub-

layer with heads h = 16 and a feed-forward sub-

layer with inner dimension dff = 4096. The word

embedding dimensions for source and target and

the hidden state dimensions dmodel are set to 1024.

In the training phase, the dropout rate Pdrop is set

to 0.1. In the fine tuning phase, the dropout rate is

changed to 0.3 to prevent over-fitting.

We use cross entropy as loss function and apply

label smoothing of value ǫls = 0.1. For the opti-

mizer, we use Adam (Kingma and Ba, 2015) with

β1 = 0.9, β2 = 0.98 and ǫ = 10−8. The initial

learning rate is set to 10−4 for training and 10−5

for fine tuning.

The models with complete training data are

trained on 4 GPUs for 100,000 steps. For

the dataset with knowledge distillation or back-

translation, the models are trained for 150,000

steps. We validate the model every 1,000 mini-

batches on the development data and perform early

stop when the best loss is stable on validation set

for 10,000 steps. At the end of training phase, we

average last 20 checkpoints for each single model

of general domain. In fine tuning phase, we use the

averaged model of general domain as starting point

for initializing the domain model, and continue

training on 1 GPU with domain data for 50,000

steps without early stop. The batch sizes in training

and fine tuning are set to 32768 and 8192 respec-

tively.

4.2 Result

Table 5 shows the result on development

data of both Chinese→Japanese (ZH→JA) and
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Settings ZH→JA JA→ZH

Single System

Baseline 28.07 22.19

Complete Parallel Data 27.38 27.41

+Parallel data Filtering 33.46 27.69

+Back Translation 34.42 28.08

+Knowledge Distillation 34.00 29.50

+Domain Classification 34.96 30.14

System Combination

Ensemble Baseline 34.79 30.32

+ Weighted Ensemble 35.41 30.55

+ Reranking 34.92 30.41

Table 5: The BLEU scores of both directions on devel-

opment data.

Japanese→Chinese (JA→ZH) translation direc-

tions. We report the character BLEU score calcu-

lated with multi-bleu-detok.perl script. As shown

in the result, filtering with complete parallel data

plays an important role in our system. Techniques

of back translation and knowledge distillation con-

sistently improve the BLEU score. When applying

domain classification, we classify each sentence

using the Bert-based domain classifier and decode

each sentence with corresponding domain model.

As for combination methods, we build six sepa-

rate models with three domain (Wiki, Spoken and

News) fine tuned on two large synthetic data (back

translation and knowledge distillation). In ensem-

ble baseline, all of these models share the same

weight in predicting word distributions. Weighted

ensemble indicates we apply different weights for

the ensemble models, in which the weights are

obtained by the domain classifier. With weighted

domain ensemble, our system achieves the best per-

formance on development data in terms of BLEU,

and surpass the single baseline systems by 7.34
BLEU for Chinese→Japanese and 8.36 BLEU for

Japanese→Chinese.

We also find a performance drop with reranking.

The reason may be that we train the reranking mod-

els on the complete parallel data, which is from

general domain and may assign lower score for

domain specific translations. As a result, our sub-

mission is based on the weighted ensemble system,

which performs best in our experiments.

4.3 Analysis

We compare the performance of different

model variations and token granularities on

Model Architecture BLEU

Dynamic Convolutions (Big) 27.13

Transformer (Base) 27.16

Relative Position (Big) 27.41

Transformer (Big) 27.89

Table 6: The BLEU scores of Chinese→Japanese on

development data with different model settings and

variations.

Token Granularities BLEU

Word→Word 25.45

Character→Character 26.92

BPE→BPE 27.89

BPE→Character 28.07

Table 7: The BLEU scores of Chinese→Japanese on

development data with different token granularities.

Chinese→Japanese development data. The data

we used to train the models is existing parallel

data, which consists of 1.9M parallel sentences.

For the model variations, we compare Relative

Position (Shaw et al., 2018), Dynamic Convolu-

tions (Wu et al., 2019) and Transformer Base and

Big settings (Vaswani et al., 2017). As shown in

Table 6, The best result is produced by Transformer

Big setting, which is used as default when training

on large datasets.

For the token granularities, we report

the result with four tokenization methods:

Word→Word, Character→Character, BPE→BPE

and BPE→Character. As shown in table 7, adopt-

ing BPE in source side and Character in target

side performs better than other token granularities,

which is used in our submission systems.

We notice that there exits a large divergence be-

tween the two translation directions when using

complete parallel data and process with parallel

data filtering. We have verified the result and the

parallel data in depth. We find that the quality

of Japanese data is lower. For example, there are

sentences consist of punctuations only, which may

harm the target side language model learned by the

decoder. After parallel data filtering, the invalid

sentences are removed and thus the translation qual-

ity of ZH-JA is improved.

We also find that the provided development data

is mainly from spoken domain, and thus we use our

collected data as extra development set from other

domain to investigate the general performance of

single model. The result is shown in table 8. We
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Development data ZH→JA JA→ZH

Provided 34.00 29.50

Our collected 32.78 30.95

Table 8: The BLEU scores of best single model (with

knowlegde distillation) on provided development data

and our development data.

find there exists a small gap between provided de-

velopment data and our collected data, which in-

dicates that the domain information may further

improve the translation quality, and thus leads us

to utilize domain transfer and ensemble techniques.

Note that the extra development set is only used in

single models. When it comes to system combina-

tion, these data are added into News domain since

the size of News domain data in parallel dataset

is extremely smaller than other domains (Section

3.4).

5 Conclusion

We present the CASIA’s neural machine

translation system submitted to IWSLT 2020

Chinese→Japanese and Japanese→Chinese open

domain translation task. Our system is built with

Transformer architecture and incorporating the

following techniques:

• Deliberate data pre-processing and filtering

• Back-translation of selected monolingual cor-

pus

• Knowledge distillation from multi polity

teacher models

• Domain classification and weighted domain

model ensemble

As a result, our final system achieves substantial

improvements over baseline system.
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