
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 48–61
Virtual Meeting, July 9, 2020. c©2020 Association for Computational Linguistics

48

Memory-bounded Neural Incremental Parsing for Psycholinguistic
Prediction

Lifeng Jin and William Schuler
Department of Linguistics

The Ohio State University, Columbus, OH, USA
{jin, schuler}@ling.osu.edu

Abstract

Syntactic surprisal has been shown to have an
effect on human sentence processing, and can
be calculated from prefix probabilities of gen-
erative incremental parsers. Recent state-of-
the-art incremental generative neural parsers
are able to produce accurate parses and sur-
prisal values, but have unbounded stack mem-
ory, which may be used by the neural parser
to maintain explicit in-order representations of
all previously parsed words, inconsistent with
results of human memory experiments. In con-
trast, humans seem to have a bounded work-
ing memory, demonstrated by inhibited per-
formance on word recall in multi-clause sen-
tences (Bransford and Franks, 1971), and on
center-embedded sentences (Miller and Isard,
1964). Bounded statistical parsers exist, but
are less accurate than neural parsers in predict-
ing reading times. This paper describes a neu-
ral incremental generative parser that is able
to provide accurate surprisal estimates and can
be constrained to use a bounded stack. Results
show that accuracy gains of neural parsers
can be reliably extended to psycholinguistic
modeling without risk of distortion due to un-
bounded working memory.

1 Introduction

Syntactic surprisal has been shown to have an ef-
fect on human sentence processing, and can be cal-
culated from prefix probabilities of generative in-
cremental parsers (Hale, 2001; Levy, 2008), mak-
ing it a useful baseline predictor when looking for
effects of other factors, like limits of memory or
attention. Recent work in generative neural net-
work parsing (Dyer et al., 2016; Hale et al., 2018)
has shown that generative parsers based on neural
networks are more accurate than earlier statistical
generative parsers, and can be used for surprisal
calculation. Although a typical shift-reduce neural
network parser like that used by Hale et al. (2018)

and Crabbé et al. (2019) may be successful in pre-
dicting brain imaging data, the depth of its stack
memory, the model component where past pre-
dicted items are faithfully stored, can be as long as
the whole derivational history of the parse (Kun-
coro et al., 2018). This potentially sentence-length
stack may be used by the neural parser to main-
tain explicit in-order representations of all previ-
ously parsed words. In contrast, humans seem to
have a bounded working memory, demonstrated
by inhibited performance on word recall in multi-
clause sentences (Bransford and Franks, 1971),
and on center-embedded sentences (Miller and Is-
ard, 1964).1 Explicit storage of this long parsing
history may improve parsing accuracy, but it also
risks distorting the predictions of the model when
used as a statistical control in psycholinguistic ex-
periments.

Left-corner parsers (Rosenkrantz and Lewis,
1970; Johnson-Laird, 1983) have been argued to
provide human-like limits on working memory,
because the stack memory requirements of this
kind of parser do not grow unboundedly in lin-
guistically common cases of left- or right recur-
sion, only in linguistically rare cases of center re-
cursion. For example, a left corner parser would
require only one memory element to process the
right recursive sentence, ‘The dog chased the cat
that ate the rat that nibbled the malt,’ but would re-
quire three elements to process the center recursive

1Specifically, Bransford and Franks (1971) found that
subjects were not reliably able to recall word-order informa-
tion such as whether sentences were in passive or active voice
following exposure to sentence stimuli, and Miller and Isard
(1964) found that subjects were not able to understand sen-
tences with deeply nested center-embedded structures, such
as:

(i) The cart [RC the horse [RC the man bought] pulled] broke.

as easily as non-center-embedded control sentences, despite
being composed of familiar rules.

49

sentence, ‘The rat that the cat that the dog chased
ate nibbled the malt,’ consistent with findings that
humans have more difficulty understanding the lat-
ter sentence. Left-corner parsers also define a
fixed set of probabilistic decisions at each word,
which naturally paces the surprisal measures pro-
duced by the model. Unfortunately, existing left-
corner parsers (van Schijndel et al., 2013) are sta-
tistical rather than neural, and are therefore sub-
stantially less accurate than state-of-the-art neural
network parsers.

This paper therefore defines a neural-network
left-corner parser with bounded stack memory for
parsing and psycholinguistic prediction. Experi-
ments described in this paper show that this gener-
ative left-corner neural network parser is compet-
itive with incremental generative parsers that use
unbounded stack memory in a parsing task, and
outperforms statistical memory-bounded genera-
tive left-corner parsers both in parsing accuracy
and in fitting human behavioral data on two dif-
ferent datasets, consistent with the conclusion that
accuracy gains of neural parsers can be reliably ex-
tended to psycholinguistic modeling without risk
of distortion due to unbounded working memory.

2 Related work

Incremental generative constituent parsers are able
to process sentences in time order and provide psy-
cholinguistically predictive measures like syntac-
tic surprisal and entropy reduction (Levy, 2008;
Hale, 2001, 2006), which in turn are used in psy-
cholinguistic experiments for probing effects of
syntax on behavioral data (Demberg and Keller,
2008; Demberg et al., 2012; van Schijndel and
Schuler, 2015). Statistical incremental parsers
like ones proposed by Roark (2001) and van
Schijndel et al. (2013) are based on context-
free grammars. The Roark (2001) parser builds
syntactic structures top-down incrementally and
has been used in studies for calculating surprisal
(Demberg and Keller, 2008; Roark et al., 2009;
Frank, 2009). Left-corner parsers (Rosenkrantz
and Lewis, 1970; Johnson-Laird, 1983) are often
used to model limits on center embedding (Ab-
ney and Johnson, 1991; Gibson, 1991; Resnik,
1992; Stabler, 1994; Lewis and Vasishth, 2005).
van Schijndel et al. (2013) proposed an incremen-
tal parser that takes working memory constraints
into account, and is able to produce probabilis-
tic measures as well as predictions about working

memory operations (van Schijndel and Schuler,
2015). Demberg et al. (2013) propose a parser
which is also able to produce prefix probabilities
for tree-adjoining grammars. All of these statis-
tical parsers lag behind state-of-the-art parsers in
parsing accuracy, because of psycholinguistic con-
straints like incrementality and because they use
less expressive statistical models.

State-of-the-art constituency parsers generally
are neural network models (Choe and Charniak,
2016; Dyer et al., 2016; Kitaev and Klein, 2018).
Dyer et al. (2016) propose a generative neural
model for top-down incremental parsing but use
it only as a reranker for a discriminative parser.
Extensions to the Dyer et al. (2016) model allow
the parser to do in-order tree traversal (Liu and
Zhang, 2017; Kuncoro et al., 2018).2 However,
the in-order transition system has a bias towards
left children of constituents, which is not desir-
able when the model is used to calculate prefix
probabilities. This issue was addressed by using
word-synchronous beam search (Stern et al., 2017;
Hale et al., 2018) or variable sized beam search
(Crabbé et al., 2019) and successfully predict brain
imaging data. However, all of these parsers do
not limit the number of stack elements the parser
has direct access to at any timestep, which in
some cases can be equal to number of deriva-
tional decisions made up to the current timestep.
This behavior of unbounded stack does not match
what we know about human working memory
and is undesirable for calculating predictors like
probabilistically-weighted emdedding depth (Wu
et al., 2010). The model described in this paper
avoids these problems by using a left-corner tran-
sition system, which uses a bounded pushdown
store and a fixed set of probabilistic decisions per
word. The bounded stack memory not only more
closely implements human working memory lim-
its in a model designed to calculate cognitive pre-
dictors, other work (Jin et al., 2018) shows that
it also helps limit search space for unsupervised
grammar acquisition.

2Kuncoro et al. (2018) calls the in-order tree traversal a
left-corner traversal. In order to avoid confusion, we refer
to it as in-order tree traversal, and save the name left-corner
traversal for the Johnson-Laird (1983) formulation, which
traverses trees from left to right with a bounded stack.

50

the cart the horse pulled broke

NP

NP

NP

RC

S

t1

t2

t3

t4

t5

t6

, t3

Figure 1: Example of a parse tree for the sentence
the cart the horse pulled broke. Time step indices are
marked inside the derivation fragment built in that time
step. A and B nodes are the top and the rightmost node
of each derivation fragment. Note that t3 has two sep-
arate derivation fragments, which indicates that at t3
there are two sets of A and B nodes on the stack. At
each timestep, A and B nodes of the lowest derivation
fragment will be predicted. If they have already been
predicted or they do not exist, then the decision will be
null. POS tags for terminals are omitted.

3 Incremental left corner transition
system with bounded working memory

This paper introduces a neural left-corner tran-
sition system for incremental constituency pars-
ing with minimal working memory requirements.
This system defines a fixed set of parser decisions
at each time step. Following these parsing de-
cisions, the parser incrementally generates each
word in a sentence and the syntactic structures as-
sociated with that word, in time order. Because
the parser needs space on the stack only when
there is center-embedding in the sentence, this
transition system uses much less stack memory
than other shift-reduce transition systems (Kun-
coro et al., 2018), modeling the psycholinguis-
tic phenomenon that center-embedding is rare and
hard for humans to process.

3.1 Types of nodes in left-corner parsing

A left-corner parser maintains a pushdown store
of one or more derivation fragments A/B, each of
which consists of a top node of category A lack-
ing a bottom node of category B yet to come.
The parser generates each word in a sentence at
each time step, and then makes predictions about
the top nonterminal category of the current deriva-

Step Stack Decision

1
[] generate-the
[the] pja-NP
[NP/NP >] pjb-null

2
[NP/NP ⊥] generate′-cart
[NP] pja-NP
[NP/NP >] pjb-RC

3
[NP/RC] generate-the
[NP/RC the] pja-NP
[NP/RC NP/NP >] pjb-null

4
[NP/RC NP/NP ⊥] generate′-horse
[NP/RC NP] pja-null
[NP/RC >] pjb-null

5
[NP/RC ⊥] generate′-pulled
[NP] pja-S
[S/S >] pjb-null

6

[S/S ⊥] generate′-broke
[S] pja-null
[>] pjb-T
[]

Table 1: Parser decisions and stack states for the sen-
tence “the cart the horse pulled broke” shown in Fig-
ure 1 using the simple left-corner transition system. It
shows that the stack grows only when there is a new
center embedded clause within the clause being pro-
cessed.

tion fragment and the bottom rightmost unfinished
nonterminal category. This process uses stored
states only within center-embedded structures, re-
flecting the difficulty of center-embedding for hu-
mans. For example, in processing the sentence
The cart the horse pulled broke (see Figure 1), in
timestep t2 immediately after the word cart is gen-
erated, the derivation fragment is NP/RC, shown
in the figure with an orange-yellow striped plate.
The top nonterminal category, or the A category,
of this derivation fragment is NP and the bottom
rightmost unfinished nonterminal category, or the
B category, is RC. At t3 when a center-embedded
structure appears, a new derivation fragment is
created and stored in the stack memory, making t3
a timestep with two derivation fragments: NP/RC
and NP/NP.

3.2 Parser decisions

Figure 2 defines the set of parser decisions that the
parser must make at each time step. They consist
of the following:
generate: First a word must be generated given

the current state of the parser and pushed onto the
stack. There are two rules associated with gener-
ate decisions, and they have different stack config-
urations when the push operation happens. If the
stack has a derivation fragment X/Y at its head,

51

then the word is pushed onto the top of the stack
without further operation (generate-w). If the top
of the stack has a fragment followed by a ⊥ sign,
then the word is first merged with the bottom node
Y and then the merged Y node is merged with X.
In the end only the top node X remains (generate′-
w). The parser deterministically decides which
rule to use based on the state of the stack.
pja : Next a nonterminal top node must be

projected onto the head of the stack. The set of
possible top nodes include all the nonterminal cat-
egories in the training data X as well as a spe-
cial category null. The pja-x decision projects
a nonterminal top node X together with a place-
holding bottom node with the same category onto
the stack, and appends the stack with a> sign. pja-
null merges the final node Y on the stack, which
is often a terminal, with the closest bottom node,
and appends the > sign to the stack.
pjb : Finally a nonterminal bottom node must

be projected onto the head of the stack. The set of
possible bottom nodes includes all the nonterminal
categories in the training data X as well as a special
category null and discourse level category T. The
pjb-x decision merges the last bottom node Y to the
bottom node with the predicted category X. pja-
null changes the > sign to the ⊥ sign at the head
of stack.

Table 1 shows how the sentence in Figure 1 is
parsed with this left-corner transition system. The
state of the stack in the parser in the beginning
is implicitly [T/T], which represents the top-level
discourse structure which has a top node of T and
bottom node of T. We omit this initial fragment
in the table for brevity. After parsing the whole
sentence, the state of the parser will be [], again
omitting the top level discourse nodes.

The relationship between a parse tree and a se-
quence of decisions generated by the transition
system is bijective. Trees produced with this sys-
tem are all binary-branching.

3.3 Use of stack memory

Stack memory depth increases only when a left
nonterminal child of a right child is generated
(Schuler et al., 2010) as a center-embedded struc-
ture is generated. In the current transition system,
the pjb decision at the previous time step (pjbt−1)
and the pja decision at the current time step (pjat)
together decide how depth of a parse will change:

• if pjbt−1 = null and pjat = null, then the

Generate-W [σ · X/Y, i]
[σ · X/Y ·W, i + 1]

Generate′-W [σ · X/Y · ⊥, i]
[σ · X, i + 1]

PJA-X [σ · Y, i]
[σ · X/X · >, i]

PJA-null [σ · Y, i]
[σ · >, i]

PJB-X [σ · Z/Y · >, i]
[σ · Z/X, i]

PJB-null [σ · X/Y · >, i]
[σ · X/Y · ⊥, i]

Figure 2: The generative incremental left-corner tran-
sition system. Adding a buffer to the system yields a
discriminative transition system.

depth of the sentence will decrease by 1.

• if pjbt−1 , null and pjat , null, then the
depth of the sentence will increase by 1.

• in all other cases, the depth remains the same
as the previous time step.

The depth of the stack memory for a parse is
closely related to the well-formedness of a parse.
As Figure 1 shows, a valid parse starts at depth
0, stays at larger depths during parsing the sen-
tence, and returns to depth 0 at the end of the
sentence. The figure also shows that the depth
of the stack memory only increases when a cen-
ter embedding is being parsed at t3. The average
stack memory depth for the transition system in
these parsing experiments is 2, which means that
on average there are 4 tree nodes in stack memory,
much smaller than 12 which is the average num-
ber of items for the top-down system used in Hale
et al. (2018). This shows that the left-corner tran-
sition system makes much more parsimonious use
of stack memory than a typical shift-reduce sys-
tem. The left-corner model evaluated in the exper-
iments also applies bounding to the stack memory
and uses a relatively liberal maximum depth of 5
derivation fragments (10 tree nodes), reflecting the
fact that remembering more than 10 items faith-
fully at once is highly unlikely in sentence pro-
cessing due to working memory limits in humans.

There are two sets of constraints for different
use cases for the parser to prune parses on the
beam.3 The basic set only drops a parse when the

3Please see the supplemental materials for details.

52

parse reaches depth 0 before the end of the sen-
tence. This set is used by the parser when psy-
cholinguistic measures are needed. The extended
set provides information to the parser about the
length of the sentence currently parsing, guiding
the parser to drop parses with stack memory too
deep or too shallow while parsing. Because this
set provides some forward context, it is only used
when the parser is used to find best parses in lin-
guistic evaluation.

4 Parsing model

This section defines a memory-bounded neural in-
cremental generative parser as a generative proba-
bility model for surprisal calculation using the pro-
posed left-corner transition system. In the descrip-
tion below, all LSTMs are stack-LSTMs (Dyer
et al., 2016) with coupled input and forget gates
(Greff et al., 2017) and all FFs are feed-forward
neural networks.

Surprisal at a word wt is defined as the negative
log of the probability of that word given its preced-
ing words w1..t−1 under some model θ. This can be
computed by marginalizing over the final hidden
state of a sequence:

− log Pθ(wt |w1..t−1) = − log
∑

qt Pθ(qt w1..t)∑
qtwt Pθ(qt w1..t)

(1)
then decomposing the marginalized term into a
recurrence of marginalized transition-observation
probabilities:

Pθ(qt w1..t) =
∑
qt−1

Pθ(wt qt | qt−1) · Pθ(qt−1 w1..t−1)

(2)

using Pθ(q0 w0) = 1 for some start-of-sentence
word w0 and initial state q0.

The hidden states qt of the model described in
this paper consist of:

• cell and hidden vectors ct,ht ∈ R
n for a word

LSTM,
• a preterminal decision pt ∈ C over category

labels C,
• a top decision at ∈ C∪{⊥} over labels and

null results ⊥,
• a bottom decision bt ∈ C∪{⊥} over labels and

null results,
• a top vector ad

t ∈ R
n for each depth d ∈

{1..D},

• a bottom vector bd
t ∈ R

n for each depth d ∈
{1..D}, and
• cell and hidden vectors c′t ,h′t ∈ Rn for a deci-

sion LSTM.

Probabilities for observing a word and transition-
ing to a new hidden state at each time step t, given
a hidden state at the previous time step t−1, can
then be decomposed into terms for each individ-
ual decision and resulting vector:

P(wt ct ht pt at bt a1..D
t b1..D

t c′t h′t |ct−1 ht−1 a1..D
t−1 b1..D

t−1 c′t−1 h′t−1)

= P(wt |ct−1 ht−1 a1..D
t−1 b1..D

t−1 c′t−1 h′t−1)

· P(ct ht |ct−1 ht−1 a1..D
t−1 b1..D

t−1 c′t−1 h′t−1 wt)

· P(pt |ct−1 ht−1 a1..D
t−1 b1..D

t−1 c′t−1 h′t−1 wt ct ht)

· P(at |ct−1 ht−1 a1..D
t−1 b1..D

t−1 c′t−1 h′t−1 wt ct ht pt)

· P(bt |ct−1 ht−1 a1..D
t−1 b1..D

t−1 c′t−1 h′t−1 wt ct ht pt at)

· P(a1..D
t |ct−1 ht−1 a1..D

t−1 b1..D
t−1 c′t−1 h′t−1 wt ct ht pt at bt)

· P(b1..D
t |ct−1 ht−1 a1..D

t−1 b1..D
t−1 c′t−1 h′t−1 wt ct ht pt at bt a1..D

t)

· P(c′t h′t |ct−1 ht−1 a1..D
t−1 b1..D

t−1 c′t−1 h′t−1 wt ct ht pt at bt a1..D
t b1..D

t)

(3)

The probability of observing a word depends on
bounded representations of the store, the decision
sequence and the word sequence:

P(wt | a1..D
t−1 b1..D

t−1 c′t−1 h′t−1 ct−1 ht−1) =

δwt
>SoftMax(FFθW[qt−1,h′t−1,ht−1]) (4)

where δi is a Kronecker delta vector, consisting of
a one at element i and zeros elsewhere, and qt is a
summary of the current stack:

qt = LSTMθQ[a1
t ,b

1
t , . . . , a

D
t ,b

D
t]. (5)

This probability term defines a distribution over
generate decisions.

The probability of a cell and hidden vector of
the word LSTM is deterministic given the pre-
ceding operations, and is modeled as an indicator
equal to one when the vectors are as defined by the
corresponding LSTM model, zero otherwise:

P(ct ht | a1..D
t−1 b1..D

t−1 c′t−1 h′t−1 ct−1 ht−1 wt) =

Jct,ht = LSTMθH[ct−1,ht−1; wt]K, (6)

where:

wt=FFθW′ [et ,e′t ,E′ SoftMax(FFθW′′ [qt−1,ht−1,h′t−1,et ,e′t])] (7)

and et = E′′ δwt is a trained word embedding, and
e′t = E′′′ δwt is a pre-trained word embedding.

53

Similarly for the cell and hidden states of the de-
cision LSTM:

P(c′t h′t | a
1..D
t−1 b1..D

t−1 c′t−1 h′t−1 ct−1 ht−1 wt) =

Jc′t ,h
′
t = LSTMθM[c′t−1,h

′
t−1; mt−1]K, (8)

where mt−1 is a trainable embedding for the deci-
sion made at timestep t − 1. Note that there are
three timesteps for m corresponding to three de-
cisions, compared to one timestep for w. Figure
3 shows an illustration of how the model works
to predict the generate-the decision at timestep 3
in Table 1. In the illustration, the decision LSTM
takes all previous decisions m1,m2, . . . , and gen-
erates a hidden state h′2 which represent the deci-
sion history (Equation 8). The word LSTM takes
the words which have already been generated, and
produces a hidden state h2 which represents the
word history (Equation 6). The stack composer
composes all top and bottom categories on the
stack represented by the vectors, and produces the
representation of the stack (Equation 5). Finally,
all three representations of different kinds of infor-
mation are processed by the generate feedforward
network FFθW , which makes a prediction about
which word is next (Equation 4). Other decisions
are made in a similar fashion as shown below.

The probability of a preterminal category deci-
sion depends on a bounded representation of the
word sequence at the current time step, and a
bounded representation of the decision sequence
and the store at the previous time step, and the
trained and untrained pre-trained word embed-
dings:

P(pt | ct−1 ht−1 a1..D
t−1 b1..D

t−1 c′t−1 h′t−1 wt ct ht) =

δpt
>SoftMax(FFθP[ht,h′t−1,qt−1, et, e′t]) (9)

This term defines a distribution over preterminal
(part of speech) decisions.

The probability of a top category decision de-
pends on a bounded representation of the word se-
quence at the current time step and a bounded rep-
resentation of the decision sequence and the store
at the previous time step:

P(at | ct−1 ht−1 a1..D
t−1 b1..D

t−1 c′t−1 h′t−1 wt ct ht pt) =

δat
>SoftMax(FFθA[ht,h′t ,qt−1]) (10)

This term defines a distribution over pja decisions.
The probability of a bottom category decision

depends on a bounded representation of the word

d = 1

a3
1

NP RC

b3
1

q2

w1

the cart

w2

h2

m1

GENERATE-the

m2

h2
’

PJA-NP …

the

LSTM✓M

<latexit sha1_base64="rL5nvCuhnFFw1WJ/4YSUOAdWa3U=">AAACCHicbVC7SgNBFJ31GeNr1dLCxSBYhV0JqF3AxsJAxLwgG8Ls5CYZMvtg5q4Yli1t/BUbC0Vs/QQ7/8bZJIUmHrjcwzn3MnOPFwmu0La/jaXlldW19dxGfnNre2fX3NtvqDCWDOosFKFseVSB4AHUkaOAViSB+p6Apje6yvzmPUjFw6CG4wg6Ph0EvM8ZRS11zSMX4QGTm7taJe0mLg4BadYzsZKmadcs2EV7AmuRODNSIDNUu+aX2wtZ7EOATFCl2o4dYSehEjkTkObdWEFE2YgOoK1pQH1QnWRySGqdaKVn9UOpK0Brov7eSKiv1Nj39KRPcajmvUz8z2vH2L/oJDyIYoSATR/qx8LC0MpSsXpcAkMx1oQyyfVfLTakkjLU2eV1CM78yYukcVZ0SsXL21KhXJrFkSOH5JicEoeckzK5JlVSJ4w8kmfySt6MJ+PFeDc+pqNLxmzngPyB8fkDP4Oavg==</latexit>

Decision LSTM

Word LSTM

Stack composer

LSTM✓H

<latexit sha1_base64="MXtuUh0vriGc7UWPTAAUZw8mZwQ=">AAACCHicbVC7SgNBFJ31GeNr1dLCxSBYhV0JqF3AJoVCxLwgG8Ls5CYZMvtg5q4Yli1t/BUbC0Vs/QQ7/8bZJIUmHrjcwzn3MnOPFwmu0La/jaXlldW19dxGfnNre2fX3NtvqDCWDOosFKFseVSB4AHUkaOAViSB+p6Apje6yvzmPUjFw6CG4wg6Ph0EvM8ZRS11zSMX4QGT67vaTdpNXBwC0qxnYiVN065ZsIv2BNYicWakQGaods0vtxey2IcAmaBKtR07wk5CJXImIM27sYKIshEdQFvTgPqgOsnkkNQ60UrP6odSV4DWRP29kVBfqbHv6Umf4lDNe5n4n9eOsX/RSXgQxQgBmz7Uj4WFoZWlYvW4BIZirAllkuu/WmxIJWWos8vrEJz5kxdJ46zolIqXt6VCuTSLI0cOyTE5JQ45J2VSIVVSJ4w8kmfySt6MJ+PFeDc+pqNLxmzngPyB8fkDN+CauQ==</latexit>

LSTM✓Q

<latexit sha1_base64="CbGKEVi+bdKFMcxXrA2dYy4RqkE=">AAACCHicbVC7SgNBFJ31GeMramnhYhCswq4E1C5gY6GQYF6QhGV2cjcZMvtg5q4Yli1t/BUbC0Vs/QQ7/8bZJIUmHrjcwzn3MnOPGwmu0LK+jaXlldW19dxGfnNre2e3sLffVGEsGTRYKELZdqkCwQNoIEcB7UgC9V0BLXd0lfmte5CKh0EdxxH0fDoIuMcZRS05haMuwgMmN3f129RJujgEpFnPxFqapk6haJWsCcxFYs9IkcxQdQpf3X7IYh8CZIIq1bGtCHsJlciZgDTfjRVElI3oADqaBtQH1Usmh6TmiVb6phdKXQGaE/X3RkJ9pca+qyd9ikM172Xif14nRu+il/AgihECNn3Ii4WJoZmlYva5BIZirAllkuu/mmxIJWWos8vrEOz5kxdJ86xkl0uXtXKxUp7FkSOH5JicEpuckwq5JlXSIIw8kmfySt6MJ+PFeDc+pqNLxmzngPyB8fkDRZ+awg==</latexit>

FF✓W

<latexit sha1_base64="oyc+9AK+Rn6YK0NRBJHgLyOFDJ8=">AAACBnicbVDLSsNAFJ3UV62vqEsRgkVwVRIpqLuCUFxWsA9oQ5lMb9uhkwczN2IJWbnxV9y4UMSt3+DOv3HSZqGtBy73cM69zNzjRYIrtO1vo7Cyura+UdwsbW3v7O6Z+wctFcaSQZOFIpQdjyoQPIAmchTQiSRQ3xPQ9ibXmd++B6l4GNzhNALXp6OADzmjqKW+edxDeMCkXk/7SQ/HgDTrmdRO07Rvlu2KPYO1TJyclEmORt/86g1CFvsQIBNUqa5jR+gmVCJnAtJSL1YQUTahI+hqGlAflJvMzkitU60MrGEodQVozdTfGwn1lZr6np70KY7VopeJ/3ndGIeXbsKDKEYI2PyhYSwsDK0sE2vAJTAUU00ok1z/1WJjKilDnVxJh+AsnrxMWucVp1q5uq2Wa9U8jiI5IifkjDjkgtTIDWmQJmHkkTyTV/JmPBkvxrvxMR8tGPnOIfkD4/MH3c+aAA==</latexit>

Figure 3: The model makes the prediction for the gen-
erate-the decision at timestep 3 in Table 1.

sequence at the current time step and decision se-
quence including the current top decision and the
store at the previous time step:

P(bt | ct−1 ht−1 a1..D
t−1 b1..D

t−1 c′t−1 h′t−1 wt ct ht pt at) =

δbt
>SoftMax(FFθB[ht,h′t−.5,qt−1]) (11)

where c′t−.5,h
′
t−.5 = LSTMθH′ [c′t−1,h

′
t−1; δat] is the

result of adding the bottom decision to the deci-
sion LSTM. This term defines a distribution over
pjb decisions.

The probability of a top vector is deterministic
given the preceding operations, and is modeled as
an indicator function equal to one when the vec-
tors are as defined by a set of LSTMs over depen-
dent top and bottom store vectors, depending on
the previous bottom category and current top cat-
egory decisions:

P(a1..D
t |ct−1 ht−1 a1..D

t−1 b1..D
t−1 c′t−1 h′t−1 wt ct ht pt at bt)=

Jad̄−1
t =ad̄−1

t−1 K·φd̄−1 if bt−1=⊥,at=⊥

Jad̄
t =LSTMθQ′

[wt ,ad̄
t−1,E δat]K·φd̄ if bt−1=⊥,at,⊥

Jad̄
t =ad̄

t−1K·φd̄ if bt−1,⊥,at=⊥

Jad̄+1
t =LSTMθQ′

[wt ,E δat]K·φd̄+1 if bt−1,⊥,at,⊥

(12)

54

where d̄ = argmaxd{ad
t−1 , 0} is the previous store

depth, and φd = Ja1..d−1
t = a1..d−1

t−1 , ad+1..D
t = 0K is a

maintenance constraint on stores. These stack op-
erations related to the top category are illustrated
in Figure 5 in the appendix.

The probability of a bottom vector is also de-
terministic and modeled as an indicator function
equal to one when the vectors are as defined by
a set of LSTMs over dependent top and bottom
store vectors, depending on the previous bottom
category and current top category decisions:

P(b1..D
t |ct−1 ht−1 a1..D

t−1 b1..D
t−1 c′t−1 h′t−1 wt ct ht pt at bt a1..D

t)=

Jbd̄−1
t =LSTMθQ′

[wt ,ad̄
t−1,b

d̄−1
t−1 ,E δbt]K·ψd̄−1

if bt−1=⊥,at=⊥

Jbd̄
t =E δbt K·ψd̄ if bt−1=⊥,at,⊥

Jbd̄
t =LSTMθQ′

[wt ,bd̄
t−1,E δbt]K·ψd̄ if bt−1,⊥,at=⊥

Jbd̄+1
t =E δbt K·ψd̄+1 if bt−1,⊥,at,⊥

(13)

where d̄ = argmaxd{ad
t−1 , 0} is the previous store

depth, and ψd = Jb1..d−1
t = b1..d−1

t−1 ,bd+1..D
t = 0K is

a maintenance constraint on stores.
Finally, the probability of a cell and hidden vec-

tor of the decision LSTM is also deterministic and
modeled as an indicator equal to one when the vec-
tors are as defined by the corresponding LSTM
model, zero otherwise:

P(c′t h′t |ct−1 ht−1 a1..D
t−1 b1..D

t−1 c′t−1 h′t−1 wt ct ht pt at bt a1..D
t b1..D

t)=

Jc′t ,h′t=LSTMθH [c′t−1,h
′
t−1;δat ,δbt]K (14)

4.1 Training and Parsing
The proposed model here is a generative model
for sequence prediction with no forward context,
therefore ideally it should be trained with a struc-
tured training scheme (Weiss et al., 2015). How-
ever since it is expensive to search a wide beam
in training with a neural network, this model uses
a two-stage training scheme. The model is first
trained to minimize a cross-entropy loss objective
with an l2 regularization term, defined by:

Lθ(w1..T q1..T) = − log Pθ(w1..T q1..T) +
λ

2
||θ||2

(15)
where Pθ(w1..T q1..T) =

∏
t Pθ(wt qt | qt−1), and λ is

an l2 regularization strength hyper-parameter.
Training with the local cross-entropy objective

quickly leads to overfitting, because the left-corner
parsing decisions can be ambiguous at early parts
of the sentence, and the objective drives the model

to make such decisions perfectly by memoriz-
ing the training data. This model therefore stops
the cross-entropy training when parsing perfor-
mance starts to decrease on a development set,
and switches to use the REINFORCE algorithm
(Williams, 1992; Le and Fokkens, 2017) to fine-
tune the model with sequence level supervision.
The loss becomes:4

L′θ(w1..T q1..T) =
λ

2
||θ||2 − Eq′1..T∼Pθ(q′1..T |w1..T)

(F(q′1..T , q1..T) − b̂) log Pθ(q′1..T |w1..T) (16)

where Pθ(q′1..T |w1..T) =
Pθ(w1..T q′1..T)∑

q1..T Pθ(w1..T q1..T) , F is a
function from gold and hypothesized decision se-
quences to parsing F-scores, and b̂ is a global run-
ning average of F scores of all sampled trees.

After the model is trained, the parser uses beam
search to find the approximate best parse. A
large beam width is desirable because it provides
more accurate parses and straightforward ways to
calculate psycholinguistic measures like surprisal
which requires marginalization.

5 Experiments

A first set of experiments compare the linguistic
accuracy of the bounded neural parser to other
generative incremental parsers using bracketing
F1 scores on the Penn Treebank (Marcus et al.,
1994). A second set of experiments then compare
the psycholinguistic accuracy of the bounded neu-
ral parsing model against an equivalently bounded
non-neural parsing model by regressing syntac-
tic surprisal derived from each model to self-
paced reading times from the Natural Stories Cor-
pus (Futrell et al., 2018) and eye-tracking fixa-
tion durations of newspaper article reading from
the Dundee Eye-tracking Corpus (Kennedy et al.,
2003).

The neural parser used in all experiments is
trained on Sections 02 - 21 of the Wall Street Jour-
nal part of the Penn Treebank. Hyper-parameters
of the parser are tuned on the development set,
WSJ Section 22. The cross-entropy objective is
used for about 9 epochs before accuracy on the
development set starts to decrease, with stochas-
tic gradient descent (SGD) using initial learning
rate = 0.1 and gradually decreasing the learning

4This term does not include pt because preterminal (POS)
decisions are soft, and F scores provide no supervision to
POS tagging accuracy. To increase efficiency in sampling,
generate decisions are not sampled.

55

Baseline Baseline
+vS13

Baseline
+Neural

Baseline
+Both

102340

102330

102320

102310

102300

102290
Lo

gl
ik

el
ih

oo
d ns

Natural Stories

Baseline Baseline
+vS13

Baseline
+Neural

Baseline
+Both

Model

32332

32330

32328

32326

32324

32322

ns

**

Dundee: first-pass

Baseline Baseline
+vS13

Baseline
+Neural

Baseline
+Both

39724

39722

39720

39718

39716

ns

**

*

Dundee: go-past

Figure 4: Goodness of fit of the regression model with different surprisal values calculated by the incremental
left-corner parser in van Schijndel et al. (2013) and the incremental neural parser to human reading times and eye
tracking data. Likelihood ratio tests are conducted to obtain p values. ∗∗∗ : p < 1× 10−4, ∗∗ : p < 1× 10−3, ∗ : p <
1 × 10−2, ns: p > 0.05.

rate to be 0.001, and λ = 1 × 10−6. Training
then switches to the REINFORCE objective until
the parser reaches the maximum F1 score (about 3
epochs), with SGD using learning rate = 5 × 10−3

and λ = 1 × 10−5. Using REINFORCE adds 0.3
F1 points on the development set. The pretrained
English word embeddings are from Liu and Zhang
(2017). Dropout is applied to input to all layers.

Experiments first evaluate model performance
on Section 22 of WSJ as the development set and
Section 23 as the test set for linguistic accuracy
evaluation with a beam width of 2000. These ex-
periments use the extended set of constraints for
parsing WSJ for efficiency. This evaluation reports
EVALB F scores on both datasets. Trees in the
training set are binarized with left-branching con-
stituents and the unary nodes are removed from
gold trees following van Schijndel et al. (2013).

The trained model then is used to calculate sur-
prisal for sentences in the Natural Stories Corpus
and the Dundee Corpus for psycholinguistic accu-
racy evaluation. These experiments only use the
exploratory set of both corpora. Corpus cleaning
follows van Schijndel and Schuler (2013). The
parser uses the basic set of constraints to parse
the Natural Stories and Dundee corpora, only re-
jecting parses that would lead to premature termi-
nation of the parsing process while doing beam
search, with width 2000.

5.1 Linguistic accuracy evaluation

A linguistic accuracy evaluation compares the per-
formance of the bounded neural parser with the
published results of generative incremental parsers
that are able to calculate psycholinguistic pre-
dictors. These experiments first compare pars-
ing scores of the current parser on the develop-

Model F1

dev test

memory-bounded parsers
Demberg et al. (2013) - 78.7
Roark (2001) - 85.7
van Schijndel et al. (2013) - 87.8
this work 90.1 89.5

memory-unbounded parsers
Hale et al. (2018) 91.3 -

Table 2: Parsing results (%) on development data,
WSJ section 22 and test data, WSJ section 23 for
memory-bounded and unbounded generative incre-
mental parsers.

ment set of WSJ with results reported in Hale
et al. (2018) in Table 2. Results show that there
is a 1.2 point difference between this parser and
the parser used in Hale et al. (2018). This de-
crease may be attributable to the bounded stack
losing information about past parsing decisions.
Table 2 also shows labeled bracketing F1 scores
of the current parser compared with other genera-
tive incremental parsers widely used for calculat-
ing surprisal predictors, especially van Schijndel
et al. (2013) which is the previous state-of-the-art
memory-bounded generative incremental parser,
on the test set. The neural parser is more accurate
than all of the published results of the memory-
bounded parsers.

5.2 Psycholinguistic accuracy evaluation

The psycholinguistic accuracy of the parser is
evaluated by comparing surprisal predictors cal-
culated by the neural left-corner model against

56

surprisal predictors from the statistical left-corner
parser of van Schijndel et al. (2013), which is the
memory-bounded generative incremental parser
with current state-of-the-art linguistic accuracy.
This evaluation uses linear mixed effects models
in lme45 to regress to both reading time (how long
a word is read) data in the Natural Stories Cor-
pus and first-pass (how long a word is first fixated)
and go-past (how long before a subsequent word
is fixated) fixation durations in the Dundee Cor-
pus, with all four combinations of the neural psy-
cholinguistic (referred to as Neural) and van Schi-
jndel et al. (2013) (referred to below as vS13) sur-
prisal predictors in a diamond ANOVA.6 All the
models also have random intercepts for subject-
sentence interaction and word, and random by-
subject slopes for all fixed effects. Since this eval-
uation uses ablative testing to determine whether
a fixed effect significantly improves the fit of a
model compared to that model without that fixed
effect, all models also include random slopes for
all fixed effects, even if that particular fixed effect
is not used in that model.

Psycholinguistic evaluation results are shown
in Figure 4 in terms of model fit to human be-
havioral data. Results show that surprisal val-
ues derived from the bounded neural parser ex-
plain behavioral data better than the bounded sta-
tistical parser. First, the results show that the
neural parser produces more human-like surprisal
values than the vS13 parser in all three exper-
iments. This is shown by the fact that adding
vS13 to a model which already has Neural (Base-
line+Both vs. Baseline+Neural) yields no signif-
icant improvement in model fit. The other com-
parison in which Neural surprisal values are added
on top of vS13 surprisal values (Baseline+Both
vs. Baseline+vS13) also shows this effect, because
significant improvement in model fit is observed.
Second, both surprisals derived from memory-
bounded generative incremental parsers signifi-
cantly increase model fit, showing that surprisal
is a reliable predictor of both reading times and
fixation durations, but in all three experiments, the
results show that Baseline+Neural achieves much
better model fit to the data than Baseline+vS13
with larger loglikelihood improvements compared
to Baseline.

5https://cran.r-project.org/web/packages/lme4/index.html
6Please see the supplemental materials for detailed inde-

pendent variable description and lmer formulae.

6 Conclusion

This paper proposes a new incremental left-corner
transition system that can calculate surprisal and
other psycholinguistic predictors, and a new neu-
ral generative incremental parser to use this tran-
sition system to do memory-bounded incremental
generative parsing. Experiments described in this
paper show that this generative left-corner neu-
ral network parser is competitive with incremental
generative parsers that use unbounded stack mem-
ory in a parsing task, and outperforms statistical
memory-bounded generative left-corner parsers
both in parsing accuracy and in fitting human be-
havioral data on two different datasets, showing
that accuracy gains of neural parsers can be reli-
ably extended to psycholinguistic modeling with-
out risk of distortion due to unbounded working
memory.

References
Steven P Abney and Mark Johnson. 1991. Memory Re-

quirements and Local Ambiguities of Parsing Strate-
gies. J. Psycholinguistic Research, 20(3):233–250.

J D Bransford and J J Franks. 1971. The Abstraction of
Linguistic Ideas. Cognitive Psychology, 2:331–350.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as Language Modeling. In Proceedings of the Con-
ference on Empirical Methods in Natural Language
Processing.

Benoit Crabbé, Murielle Fabre, and Christophe Pallier.
2019. Variable beam search for generative neural
parsing and its relevance for the analysis of neuro-
imaging signal. In EMNLP-IJCNLP, pages 1150–
1160. Association for Computational Linguistics.

Vera Demberg and Frank Keller. 2008. Data from eye-
tracking corpora as evidence for theories of syntactic
processing complexity. Cognition, 109(2):193–210.

Vera Demberg, Frank Keller, and Alexander Koller.
2013. Incremental, Predictive Parsing with Psy-
cholinguistically Motivated Tree-Adjoining Gram-
mar. Computational Linguistics, 39(4):1025–1066.

Vera Demberg, Asad B Sayeed, Philip J Gorinski, and
Nikolaos Engonopoulos. 2012. Syntactic surprisal
affects spoken word duration in conversational con-
texts. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language
Processing and Computational Natural Language
Learning, pages 356–367.

Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros,
and Noah A. Smith. 2016. Recurrent Neural Net-
work Grammars. Proceedings of the 54th Annual

https://doi.org/10.18653/v1/d19-1106
https://doi.org/10.18653/v1/d19-1106
https://doi.org/10.18653/v1/d19-1106
https://doi.org/10.1162/COLI
https://doi.org/10.1162/COLI
https://doi.org/10.1162/COLI
https://doi.org/10.18653/v1/N16-1024
https://doi.org/10.18653/v1/N16-1024

57

Meeting of the Association for Computational Lin-
guistics, 3(2013).

Stefan Frank. 2009. Surprisal-based comparison be-
tween a symbolic and a connectionist model of sen-
tence processing. Proceedings of the 31st annual
conference of the cognitive science society, pages
1139–1144.

Richard Futrell, Edward Gibson, Harry J . Tily, Idan
Blank, Anastasia Vishnevetsky, Steven Piantadosi,
and Evelina Fedorenko. 2018. The Natural Stories
Corpus. In Proceedings of the 11th International
Conference on Language Resources and Evaluation,
Paris, France.

Edward Gibson. 1991. A computational theory of hu-
man linguistic processing: Memory limitations and
processing breakdown. Ph.D. thesis, Carnegie Mel-
lon.

Klaus Greff, Rupesh K Srivastava, Jan Koutnik,
Bas R Steunebrink, and Jurgen Schmidhuber. 2017.
LSTM: A Search Space Odyssey. IEEE Transac-
tions on Neural Networks and Learning Systems,
28(10):2222–2232.

John Hale. 2001. A probabilistic earley parser as a psy-
cholinguistic model. In Proceedings of the Second
meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics on Language
technologies, pages 1–8.

John Hale. 2006. Uncertainty about the rest of the sen-
tence. Cognitive Science, 30(4):643–672.

John Hale, Chris Dyer, Adhiguna Kuncoro, and
Jonathan R. Brennan. 2018. Finding Syntax in Hu-
man Encephalography with Beam Search. In Pro-
ceedings of the 56st Annual Meeting of the Associa-
tion for Computational Linguistics.

Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H
Clark, and Philipp Koehn. 2013. Scalable modi-
fied Kneser-Ney language model estimation. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics, pages 690–696,
Sofia, Bulgaria.

Lifeng Jin, William Schuler, Finale Doshi-Velez, Tim-
othy A Miller, and Lane Schwartz. 2018. Unsu-
pervised Grammar Induction with Depth-bounded
PCFG. Transactions of the Association for Compu-
tational Linguistics (TACL).

Philip N Johnson-Laird. 1983. Mental models: To-
wards a cognitive science of language, inference,
and consciousness. Harvard University Press, Cam-
bridge, MA, USA.

Alan Kennedy, James Pynte, and Robin Hill. 2003.
The Dundee Corpus. In Proceedings of the 12th Eu-
ropean conference on eye movement.

Nikita Kitaev and Dan Klein. 2018. Constituency Pars-
ing with a Self-Attentive Encoder. In Proceedings of
the 56st Annual Meeting of the Association for Com-
putational Linguistics.

Adhiguna Kuncoro, Chris Dyer, John Hale, Dani Yo-
gatama, Stephen Clark, and Phil Blunsom. 2018.
LSTMs Can Learn Syntax-Sensitive Dependencies
Well, But Modeling Structure Makes Them Better.
In Proceedings of the 56st Annual Meeting of the
Association for Computational Linguistics, pages 1–
11.

Minh Le and Antske Fokkens. 2017. Tackling Er-
ror Propagation through Reinforcement Learning: A
Case of Greedy Dependency Parsing. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
volume 1, pages 677–687.

Roger Levy. 2008. Expectation-based syntactic com-
prehension. Cognition, 106(3):1126–1177.

Richard L Lewis and Shravan Vasishth. 2005. An
activation-based model of sentence processing as
skilled memory retrieval. Cognitive Science,
29(3):375–419.

Jiangming Liu and Yue Zhang. 2017. In-Order
Transition-based Constituent Parsing. Transactions
of the Association for Computational Linguistics.

Mitchell Marcus, Grace Kim, Mary Ann
Marcinkiewicz, Robert MacIntyreand Ann Bies,
Mark Ferguson, Karen Katz, and Britta Schasberger.
1994. The Penn Treebank: Annotating predicate
argument structure. In Proceedings of the ARPA
Human Language Technology Workshop.

George A. Miller and Stephen Isard. 1964. Free re-
call of self-embedded english sentences. Informa-
tion and Control, 7(3):292–303.

Philip Resnik. 1992. Probabilistic tree-adjoining gram-
mar as a framework for statistical natural language
processing. In Proceedings of the Fourteenth Inter-
national Conference on Computational Linguistics,
pages 418–424, Nantes, France.

Brian Roark. 2001. Probabilistic top-down parsing
and language modeling. Computational Linguistics,
27(2):249–276.

Brian Roark, Asaf Bachrach, Carlos Cardenas, and
Christophe Pallier. 2009. Deriving lexical and
syntactic expectation-based measures for psycholin-
guistic modeling via incremental top-down parsing.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Langauge Processing, pages
324–333.

D J Rosenkrantz and P M Lewis. 1970. Deterministic
left corner parsing. In 11th Annual Symposium on
Switching and Automata Theory (swat 1970), pages
139–152.

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.412.7397&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.412.7397&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.412.7397&rep=rep1&type=pdf
https://doi.org/10.1109/TNNLS.2016.2582924
https://doi.org/10.3115/1073336.1073357
https://doi.org/10.3115/1073336.1073357
https://doi.org/10.1207/s15516709cog0000{_}64
https://doi.org/10.1207/s15516709cog0000{_}64
http://arxiv.org/abs/1806.04127
http://arxiv.org/abs/1806.04127
https://arxiv.org/abs/1802.08545
https://arxiv.org/abs/1802.08545
https://arxiv.org/abs/1802.08545
https://arxiv.org/pdf/1805.01052.pdf
https://arxiv.org/pdf/1805.01052.pdf
http://aclweb.org/anthology/P18-1132
http://aclweb.org/anthology/P18-1132
http://www.aclweb.org/anthology/E17-1064 http://arxiv.org/abs/1702.06794
http://www.aclweb.org/anthology/E17-1064 http://arxiv.org/abs/1702.06794
http://www.aclweb.org/anthology/E17-1064 http://arxiv.org/abs/1702.06794
http://leoncrashcode.github.io/Documents/TACL2017-2.pdf http://arxiv.org/abs/1707.05000 https://arxiv.org/pdf/1707.05000.pdf
http://leoncrashcode.github.io/Documents/TACL2017-2.pdf http://arxiv.org/abs/1707.05000 https://arxiv.org/pdf/1707.05000.pdf
https://doi.org/10.1016/S0019-9958(64)90310-9
https://doi.org/10.1016/S0019-9958(64)90310-9
https://doi.org/10.3115/992133.992135
https://doi.org/10.3115/992133.992135
https://doi.org/10.3115/992133.992135
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1162/089120101750300526
https://doi.org/10.1109/SWAT.1970.5
https://doi.org/10.1109/SWAT.1970.5

58

Marten van Schijndel, Andy Exley, and William
Schuler. 2013. A Model of Language Processing as
Hierarchic Sequential Prediction. Topics in Cogni-
tive Science, 5(3):522–540.

Marten van Schijndel and William Schuler. 2013. An
Analysis of Memory-based Processing Costs using
Incremental Deep Syntactic Dependency Parsing. In
Proceedings of the Workshop on Cognitive Modeling
and Computational Linguistics, pages 37–46.

Marten van Schijndel and William Schuler. 2015. Hi-
erarchic syntax improves reading time prediction.
In Proceedings of Human Language Technologies:
The 2015 Annual Conference of the North American
Chapter of the ACL, pages 1597–1605. Association
for Linguistics.

William Schuler, Samir AbdelRahman, Tim Miller, and
Lane Schwartz. 2010. Broad-coverage parsing using
human-Like memory constraints. Computational
Linguistics, 36(1):1–30.

Edward Stabler. 1994. The finite connectivity of lin-
guistic structure. In Perspectives on Sentence Pro-
cessing, pages 303–336. Lawrence Erlbaum.

Mitchell Stern, Daniel Fried, and Dan Klein. 2017. Ef-
fective Inference for Generative Neural Parsing. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Langauge Processing.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured Training for Neural Net-
work Transition-Based Parsing. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing,
pages 323–333.

Ronald J Williams. 1992. Simple Statistical Gradient-
Following Algorithms for Connectionist Reinforce-
ment Learning. Machine Learning, 8(3-4):229–256.

Stephen Wu, Asaf Bachrach, Carlos Cardenas, and
William Schuler. 2010. Complexity Metrics in an
Incremental Right-corner Parser. In Proceedings of
the 48th Annual Meeting of the Association for Com-
putational Linguistics, pages 1189–1198.

A Illustration for the stack operations
for the top category

Figure 5 shows the four kinds of stack manipu-
lations for the top category described in Equation
12. The stack manipulations for the bottom cate-
gory are similar to those illustrated here. At each
depth of the stack, there are top and bottom cate-
gories, as well as vectors representing them. Fig-
ure 5 only shows stack depths with non-empty ele-
ments, as well as the stack depth the parser is cur-
rently at. Because Equation 12 only deals with the
top category, only top categories are shown in the

illustration. For all operations, the current work-
ing depth is 2. When both the bottom decision at
the previous timestep bt−1 and the top decision at
the current time step at are null, the parser returns
to the stack depth above, copying the top category
a1

t−1 and its vector a1
t−1 from the stack at the pre-

vious timestep to the new stack, shown in Figure
5.1. If the bottom category is null, but the top cat-
egory at the current timestep is predicted to be a
real category, the parser copies the categories from
the stack depths above and generates a new vector
a2

t for the newly predicted top category at using the
top category from the depth above a2

t−1, the cur-
rent word wt and the embedding of the predicted
top category at as input to LSTMθQ′ , shown in Fig-
ure 5.2. If the bottom category from the previous
timestep is not null, but the current top category
is null, the parser copies top categories from all
depths into the new stack, shown in Figure 5.3. Fi-
nally, if the bottom category and the top category
are not null, the parser first copies all top cate-
gories and vectors, and then generates a new em-
bedding a3

t using the current word wt and the cat-
egory embedding of the new top category for the
top category at in the stack depth below the cur-
rent depth, creating a new derivational fragment,
shown in Figure 5.4.

https://doi.org/10.1111/tops.12034
https://doi.org/10.1111/tops.12034
http://aclweb.org/anthology//W/W13/W13-2605.pdf
http://aclweb.org/anthology//W/W13/W13-2605.pdf
http://aclweb.org/anthology//W/W13/W13-2605.pdf
http://www.aclweb.org/anthology/N15-1183
http://www.aclweb.org/anthology/N15-1183
https://doi.org/10.1162/coli.2010.36.1.36100
https://doi.org/10.1162/coli.2010.36.1.36100
https://arxiv.org/abs/1707.08976 http://arxiv.org/abs/1707.08976
https://arxiv.org/abs/1707.08976 http://arxiv.org/abs/1707.08976
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.3115/v1/P15-1032
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.2545&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.2545&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.31.2545&rep=rep1&type=pdf

59

d = 1

at-1
1

at-1
1

1. if bt-1 = ⊥ and at = ⊥

d = 1

at
1

at
1

d = 2 d = 2

d̄

<latexit sha1_base64="VFIaBqBN3EJE9y9gsuBwmHIBdNE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWsB/QhrLZbNqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSqFQdf9dkobm1vbO+Xdyt7+weFR9fikY5JMM95miUx0L6CGS6F4GwVK3ks1p3EgeTeY3M397hPXRiTqEacp92M6UiISjKKVuoOA6jycDas1t+4uQNaJV5AaFGgNq1+DMGFZzBUySY3pe26Kfk41Cib5rDLIDE8pm9AR71uqaMyNny/OnZELq4QkSrQthWSh/p7IaWzMNA5sZ0xxbFa9ufif188wuvFzodIMuWLLRVEmCSZk/jsJheYM5dQSyrSwtxI2ppoytAlVbAje6svrpHNV9xr124dGrdko4ijDGZzDJXhwDU24hxa0gcEEnuEV3pzUeXHenY9la8kpZk7hD5zPH4U+j6s=</latexit>

d = 1

at-1
1

at-1
1

2. if bt-1 = ⊥ and at ≠ ⊥

d = 1

at
1

at
1

d = 2

at-1
2

d = 2

at
2d̄

<latexit sha1_base64="VFIaBqBN3EJE9y9gsuBwmHIBdNE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWsB/QhrLZbNqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSqFQdf9dkobm1vbO+Xdyt7+weFR9fikY5JMM95miUx0L6CGS6F4GwVK3ks1p3EgeTeY3M397hPXRiTqEacp92M6UiISjKKVuoOA6jycDas1t+4uQNaJV5AaFGgNq1+DMGFZzBUySY3pe26Kfk41Cib5rDLIDE8pm9AR71uqaMyNny/OnZELq4QkSrQthWSh/p7IaWzMNA5sZ0xxbFa9ufif188wuvFzodIMuWLLRVEmCSZk/jsJheYM5dQSyrSwtxI2ppoytAlVbAje6svrpHNV9xr124dGrdko4ijDGZzDJXhwDU24hxa0gcEEnuEV3pzUeXHenY9la8kpZk7hD5zPH4U+j6s=</latexit>

at
2

wt

at
2

Eδat

d = 1

at-1
1

at-1
1

3. if bt-1 ≠ ⊥ and at = ⊥

d = 1

at
1

at
1

d = 2

at-1
2

d = 2

at
2

d̄

<latexit sha1_base64="VFIaBqBN3EJE9y9gsuBwmHIBdNE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWsB/QhrLZbNqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSqFQdf9dkobm1vbO+Xdyt7+weFR9fikY5JMM95miUx0L6CGS6F4GwVK3ks1p3EgeTeY3M397hPXRiTqEacp92M6UiISjKKVuoOA6jycDas1t+4uQNaJV5AaFGgNq1+DMGFZzBUySY3pe26Kfk41Cib5rDLIDE8pm9AR71uqaMyNny/OnZELq4QkSrQthWSh/p7IaWzMNA5sZ0xxbFa9ufif188wuvFzodIMuWLLRVEmCSZk/jsJheYM5dQSyrSwtxI2ppoytAlVbAje6svrpHNV9xr124dGrdko4ijDGZzDJXhwDU24hxa0gcEEnuEV3pzUeXHenY9la8kpZk7hD5zPH4U+j6s=</latexit>

d = 1

at-1
1

at-1
1

4. if bt-1 ≠ ⊥ and at ≠ ⊥

d = 1

at
1

at
1

d = 2

at
2

d̄

<latexit sha1_base64="VFIaBqBN3EJE9y9gsuBwmHIBdNE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoN4KXjxWsB/QhrLZbNqlm03YnQgl9Ed48aCIV3+PN/+N2zYHbX0w8Hhvhpl5QSqFQdf9dkobm1vbO+Xdyt7+weFR9fikY5JMM95miUx0L6CGS6F4GwVK3ks1p3EgeTeY3M397hPXRiTqEacp92M6UiISjKKVuoOA6jycDas1t+4uQNaJV5AaFGgNq1+DMGFZzBUySY3pe26Kfk41Cib5rDLIDE8pm9AR71uqaMyNny/OnZELq4QkSrQthWSh/p7IaWzMNA5sZ0xxbFa9ufif188wuvFzodIMuWLLRVEmCSZk/jsJheYM5dQSyrSwtxI2ppoytAlVbAje6svrpHNV9xr124dGrdko4ijDGZzDJXhwDU24hxa0gcEEnuEV3pzUeXHenY9la8kpZk7hD5zPH4U+j6s=</latexit>

at
2

wt

at
3

Eδa3

at
2at-1

2

d = 2

at-1
2

at-1
2

d = 3

at
3

at
3

d = 3

stack at t-1 stack at t-1

stack at t-1

stack at t-1

stack at t stack at t

stack at t

stack at t

LSTM✓Q0

<latexit sha1_base64="VYnRv2kHAZXi+blvTe65niXLGas=">AAACD3icbVC7SgNBFJ2NrxhfUUubxaBYhV0JqF3AxkIhwbwgG8Ps5CYZMvtg5q4Ylv0DG3/FxkIRW1s7/8bZJIUmHrjcwzn3MnOPGwqu0LK+jczS8srqWnY9t7G5tb2T391rqCCSDOosEIFsuVSB4D7UkaOAViiBeq6Apju6TP3mPUjFA7+G4xA6Hh34vM8ZRS1188cOwgPG17e1m6QbOzgEpGlPxWpy54SSe5Ak3XzBKloTmIvEnpECmaHSzX85vYBFHvjIBFWqbVshdmIqkTMBSc6JFISUjegA2pr61APViSf3JOaRVnpmP5C6fDQn6u+NmHpKjT1XT3oUh2reS8X/vHaE/fNOzP0wQvDZ9KF+JEwMzDQcs8clMBRjTSiTXP/VZEMqKUMdYU6HYM+fvEgap0W7VLyolgrl0iyOLDkgh+SE2OSMlMkVqZA6YeSRPJNX8mY8GS/Gu/ExHc0Ys5198gfG5w/6C53f</latexit>

LSTM✓Q0

<latexit sha1_base64="VYnRv2kHAZXi+blvTe65niXLGas=">AAACD3icbVC7SgNBFJ2NrxhfUUubxaBYhV0JqF3AxkIhwbwgG8Ps5CYZMvtg5q4Ylv0DG3/FxkIRW1s7/8bZJIUmHrjcwzn3MnOPGwqu0LK+jczS8srqWnY9t7G5tb2T391rqCCSDOosEIFsuVSB4D7UkaOAViiBeq6Apju6TP3mPUjFA7+G4xA6Hh34vM8ZRS1188cOwgPG17e1m6QbOzgEpGlPxWpy54SSe5Ak3XzBKloTmIvEnpECmaHSzX85vYBFHvjIBFWqbVshdmIqkTMBSc6JFISUjegA2pr61APViSf3JOaRVnpmP5C6fDQn6u+NmHpKjT1XT3oUh2reS8X/vHaE/fNOzP0wQvDZ9KF+JEwMzDQcs8clMBRjTSiTXP/VZEMqKUMdYU6HYM+fvEgap0W7VLyolgrl0iyOLDkgh+SE2OSMlMkVqZA6YeSRPJNX8mY8GS/Gu/ExHc0Ys5198gfG5w/6C53f</latexit>

Figure 5: The stack operations for the top categories described in Equation 12.

60

B Constraint sets for parsing

There are two sets of constraints for different use
cases for the parser to prune parses on the beam.

Basic set is the set of constraints used when
psycholinguistic measures are needed. It includes
two constraints: the first pja must not be null, and
all parses with d = 0 are removed from the beam
while parsing.

Extended set is the set of constraints used
when searching for a best parse. It guarantees that
all parses on the beam to be valid parses. Let n
be the length of the sentence, d the depth at the
current time step and o be the offset of the current
word at i to the end of the sentence, we can use
the following constraints to ensure well-formed
parses:

1. if d = o − 1, then both pjat and pjbt must be
null.

2. if d = 1 and o > 1, then pjat and pjbt cannot
be null at the same time.

3. if d = o − 2, if constraint 2 is also true, then
pjat and pjbt cannot be both null and both x,
otherwise pjat and pjbt cannot be both x.

The parser with the extended set can be seen as
the parser with the basic set and a wider beam if it
is used for getting the best parse. If a parse is at
the top of the beam with the extended set, then it
will be also at the top of beam with the basic set
provided that it is not lost in beam search and a
better one is not found due to using a wider beam.

Hyper-parameter Value
LSTM layer 2
Word embedding dim 80
English pretrained word embedding dim 100
POS tag embedding dim 48
Decision embedding dim 50
Stack-LSTM input dim 256
Stack-LSTM hidden dim 256
Dropout 0.3
Feed-forward layer 2

Table 3: Hyper-parameters of the model used in the
evaluations.

C Hyperparameters

Table 3 shows the hyperparameters the model use
for all experiments. These values are tuned on the
development set.

D lmer formulae for psycholinguistic
experiments

The following sections record the lmer formulae
for all psycholinguistic experiments mentioned in
the paper. The independent variables included in
all models are: word length (wlen), unigram prob-
ability (unigram) and 5-gram forward probability
of the current word given the preceding context
(fwprob5surp). All independent variables are cen-
tered and scaled before being added to each model.
The 5-gram probabilities are interpolated 5-grams
computed over the Gigaword corpus using KenLM
(Heafield et al., 2013). Regressions to eye track-
ing data also include word position (wdelta) as
well as whether the previous word was fixated
on (prevwasfix). For regressing to go-past dura-
tions, one-position spillover measures for unigram
(unigramS1) and 5-gram forward probability (fw-
prob5surpS1) are also added.

D.1 Natural stories

The lmer formula for regression to reading times
in the Natural Stories Corpus is:

log(reading times) ∼ z.(wlen) + z.(unigram) +

z.(fwprob5surp) + z.(neuralsurp) + z.(vssurp) +

(1 + z.(wlen) + z.(unigram) + z.(fwprob5surp) +

z.(neuralsurp) + z.(vssurp) | subject) + (1 | word)
+ (1 | sentid:subject).

The difference between four evaluated models
is whether each surprisal variable is used as a fixed
effect or not. This is true for all the experiments.

D.2 Dundee: first pass

The lmer formula for regression to first pass fixa-
tion durations in the Dundee Corpus is:

log(first pass fixation duration) ∼ z.(sentpos)
+ z.(wlen) + z.(wdelta) + z.(prevwasfix) +

z.(fwprob5surp) + z.(cumfwprob5surp) +

z.(totsurp) + z.(cumtotsurp) + z.(totsurpNeural)
+ (1 + z.(sentid) + z.(sentpos) + z.(wlen) +

z.(wdelta) + z.(prevwasfix) + z.(fwprob5surp)
+ z.(cumfwprob5surp) + z.(vssurp) +

z.(cumtotsurp) + z.(neuralsurp) | subject) +

(1 | word) + (1 | sentid).

61

D.3 Dundee: go past
The lmer formula for regression to go past fixation
durations in the Dundee Corpus is:

log(go past fixation duration) ∼ z.(wlen)
+ z.(wdelta) + z.(prevwasfix) + z.(unigram)
+ z.(unigramS1) + z.(cumfwprob5surp) +

z.(cumfwprob5surpS1) + z.(totsurpNeural) +

z.(totsurp) + (1 + z.(wlen) + z.(wdelta) +

z.(prevwasfix) + z.(unigram) + z.(unigramS1) +

z.(cumfwprob5surp) + z.(cumfwprob5surpS1) +

z.(neuralsurp) + z.(vssurp) | subject) + (1 | word)
+ (1 | sentid:subject)

