
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 25–39
Virtual Meeting, July 9, 2020. c©2020 Association for Computational Linguistics

25

Integrating Graph-Based and Transition-Based Dependency Parsers
in the Deep Contextualized Era

Agnieszka Falenska1 and Anders Björkelund2 and Jonas Kuhn1

1 University of Stuttgart, Institute for Natural Language Processing
2 Lund University, Department of Astronomy and Theoretical Physics

{falenska,jonas}@ims.uni-stuttgart.de
anders.bjorkelund@thep.lu.se

Abstract

Graph-based and transition-based dependency
parsers used to have different strengths and
weaknesses. Therefore, combining the outputs
of parsers from both paradigms used to be the
standard approach to improve or analyze their
performance. However, with the recent adop-
tion of deep contextualized word representa-
tions, the chief weakness of graph-based mod-
els, i.e., their limited scope of features, has
been mitigated. Through two popular combi-
nation techniques – blending and stacking –
we demonstrate that the remaining diversity
in the parsing models is reduced below the
level of models trained with different random
seeds. Thus, an integration no longer leads
to increased accuracy. When both parsers
depend on BiLSTMs, the graph-based archi-
tecture has a consistent advantage. This ad-
vantage stems from globally-trained BiLSTM
representations, which capture more distant
look-ahead syntactic relations. Such repre-
sentations can be exploited through multi-task
learning, which improves the transition-based
parser, especially on treebanks with a high ra-
tio of right-headed dependencies.

1 Introduction

Dependency parsers can roughly be divided into
two classes: graph-based (Eisner, 1996; McDon-
ald et al., 2005) and transition-based (Yamada
and Matsumoto, 2003; Nivre, 2003). The two
paradigms differ in their approach to the trade-off
between access to contextual features in the out-
put dependency tree and exactness of search (Mc-
Donald and Nivre, 2007). The complementary
strengths of those paradigms have given grounds
to numerous diversity-based methods for integrat-
ing parsing models (Nivre and McDonald, 2008;
Sagae and Lavie, 2006, among others). To date,
the methods are commonly used for improving the

accuracy of single parsers1, achieving robust pre-
dictions for the silver-standard resource prepara-
tion (Schweitzer et al., 2018), or as analysis tools
(de Lhoneux et al., 2019).

One of the most significant recent developments
in dependency parsing is based on encoding rich
sentential context into word representations, such
as BiLSTM vectors (Hochreiter and Schmidhuber,
1997; Graves and Schmidhuber, 2005) and deep
contextualized word embeddings (Peters et al.,
2018; Devlin et al., 2019). Including these rep-
resentations as features has set a new state of
the art for both graph-based and transition-based
parsers (Kiperwasser and Goldberg, 2016; Che
et al., 2018). However, it also brought the two ar-
chitectures closer. Kulmizev et al. (2019) showed
that after including deep contextualized word em-
beddings, the average error profiles of graph- and
transition-based parsers converge, potentially re-
ducing gains from combining them. On the other
hand, the authors also noticed that the underly-
ing trade-off between the parsing paradigms is still
visible in their results. Thus, it is an open question
to what extent the differences between the parsing
paradigms could still be leveraged.

In this paper, we fill the gaps left in understand-
ing the behavior of transition- and graph-based
dependency parsers that employ today’s state-of-
the-art deep contextualized representations. We
start from the setting of Kulmizev et al. (2019),
i.e., Kiperwasser and Goldberg’s (2016) seminal
transition-based and graph-based parsers extended
with deep contextualized word embeddings. We
show that, on average, the differences between
BiLSTM-based graph-based and transition-based
models are reduced below the level of differ-
ent random seeds. Interestingly, the diversity
needed for a successful integration vanishes al-

1See results from the CoNLL 2018 shared task on depen-
dency parsing (Zeman et al., 2018)



26

x1 x2 ... xi ... xj xn

��
x1

��
x2

... ��
xi

... ��
xj

��
xn

scores: LAlbl RAlbl SH SW score arclbl[3] TB GB

[2]

[1]

s1 s0 b0 h d

Figure 1: Architectures of BiLSTM-based dependency
parsers employed in this work. Layers: [1] word repre-
sentations, [2] BiLSTMs, [3] multi-layer perceptron.

ready with BiLSTM feature representations and
does not change when deep contextualized embed-
dings are added.

We further consider treebank-specific differ-
ences between graph- and transition-based mod-
els. Through a set of carefully designed experi-
ments, we show that our graph-based parser has
an advantage when parsing treebanks with a high
ratio of right-headed dependencies. This advan-
tage comes from globally-trained BiLSTMs and
can be exploited by the locally-trained transition-
based parser through multi-task learning (Caru-
ana, 1993). This combination improves the per-
formance of the two parsing architectures and nar-
rows the gap between them without requiring ad-
ditional computational effort at parsing time.

2 Experimental Setup

2.1 Parsing Architecture

We re-implement the basic transition- and graph-
based architectures proposed by Kiperwasser and
Goldberg (2016) (denoted K&G) with a few
changes outlined below. We follow Kulmizev
et al. (2019) and intentionally abstain from ex-
tensions such as Dozat and Manning’s (2016) at-
tention layer to keep our experimental setup sim-
ple. This enables us to control for all relevant
methodological aspects of the architectures. Our
hypothesis is that adding more advanced mecha-
nisms would resemble adding contextualized word
embeddings, i.e., improve the overall performance
but not change the picture regarding parser combi-
nation. However, testing this hypothesis is orthog-
onal to this work.

All the described parsers are implemented with
the DyNet library (Neubig et al., 2017).2 We
provide details on used hyperparameters in Ap-
pendix A.

2The code is available for download on the first author’s
website.

Deep contextualized word representations.
The two most popular models of deep contex-
tualized representations are ELMo (Peters et al.,
2018) and BERT (Devlin et al., 2019). Both
models have been used with dependency parsers,
either for multi-lingual applications (Kondratyuk
and Straka, 2019; Schuster et al., 2019) or to im-
prove parsing accuracy (Che et al., 2018; Jawahar
et al., 2018; Lim et al., 2018). Recently, Kulmizev
et al. (2019) analyzed the influence of both of
the models on the K&G architecture and showed
that they give similar results, BERT being slightly
ahead. Since the scope of our experiments is to an-
alyze the influence of contextualized embeddings
on parser integration, and not to analyze differ-
ences between different embedding models, we
use ELMo, which is more accessible.

ELMo representations encode words within the
context of the entire sentence. The representations
are built from a linear combination of several lay-
ers of BiLSTMs pre-trained on a task of language
modeling:

ELMo(x1:n, i) = γ
L∑

j=1

sjBiLSTMj
LM (x1:n, i)

We use pre-trained ELMo models provided by
Che et al. (2018) and train task-specific parame-
ters sj and γ together with the parser. The final
representations are combinations of L = 3 layers
and have dimensionality 1024.

Word representations. In both transition- and
graph-based architectures input tokens are repre-
sented in the same way (see level [1] in Figure 1).
For a given sentence with words [w1, . . . , wn]
and part-of-speech (POS) tags [t1, . . . , tn] each
word representation xi is built from concatenat-
ing: embedding of the word, its POS tag, Bi-
LSTM character-based embedding, and word’s
ELMo representation:

xi = e(wi)◦e(ti)◦BiLSTMch(wi)◦ELMo(x1:n, i)

Word embeddings are initialized with the pre-
trained fastText vectors (Grave et al., 2018) and
trained together with the model. The represen-
tations xi are passed to the BiLSTM feature ex-
tractors (level [2]) and represented by a vector
��
xi = BiLSTM(x1:n, i).

Transition-based parser. The part of the ar-
chitecture that is specific to the transition-based



27

K&G parser is colored red in Figure 1. For ev-
ery configuration consisting of a stack, buffer, and
the current set of arcs, the parser builds a feature
set of three items: the two top-most items of the
stack and the first item on the buffer (denoted s0,
s1, and b0). Next, it concatenates their BiLSTM
vectors and passes on to a multi-layer perceptron
(MLP, level [3] in Figure 1). The MLP scores all
possible transitions, and the highest-scoring one is
applied to proceed to the next configuration.

Our implementation (denoted TB) uses the arc-
standard transition system extended with the SWAP

transition (Nivre, 2009) and can thus handle non-
projective trees.3 We use Nivre et al.’s (2009) lazy
SWAP oracle for training. Labels are predicted to-
gether with the transitions.

For analysis, we also use variants of TB trained
without BiLSTMs. In these cases, vectors xi
are passed directly to the MLP layer (similarly to
Chen and Manning (2014)), and the implicit con-
text encoded by the BiLSTMs is lost. We compen-
sate for it by using Kiperwasser and Goldberg’s
(2016) extended feature set, which adds the em-
bedding information of eight additional tokens in
the structural context of the parser state.

Graph-based parser. The specific parts of the
graph-based K&G parser are highlighted in blue
in Figure 1. At parsing time, every pair of to-
kens 〈xi, xj〉 yields a feature set {��

xi ,
��
xj}. The

BiLSTM representations are concatenated and
passed to an MLP to compute the score for an
arc xi

lbl−→ xj for every possible dependency
label lbl (unlike the original K&G implementa-
tion, we predict labels together with the arcs). To
find the highest-scoring tree, we apply the Chu-
Liu-Edmonds algorithm (Chu and Liu, 1965; Ed-
monds, 1967). We denote this architecture GB.

In experiments where GB is trained without Bi-
LSTMs, we extend the feature set with surface
features known from classic graph-based parsers,
such as distance between head and dependent, and
words at the distance of 1 and 2 from heads and
dependents (McDonald et al., 2005).

3We performed multiple experiments within the K&G ar-
chitecture by differentiating transition-systems (e.g., remov-
ing SWAP, using the arc-hybrid system (Kuhlmann et al.,
2011), and adding the dynamic oracle (Goldberg and Nivre,
2012, 2013)), graph-decoders (testing Eisner’s (1996) algo-
rithm), feature sets (also extended feature set from Kiper-
wasser and Goldberg (2016)), and word representations. In
all the tested scenarios, the general picture was essentially
the same. Therefore, we present results only for the best-
performing configurations.

sentence

n×tbm×gb

decode
treestbtreesgb

blendn
m

(a) Blending

sentence

gb

tb

treegb

stacktb
gb

(b) Stacking

sentence

tb+gb

mtlgbtb mtltbgb

(c) Multi-task
learning

Figure 2: Schematic illustration of the integration
methods used in this work.

2.2 Integration Methods
Parser combination approaches can be divided
into two categories: methods that integrate base
parsers at prediction time and training time. We
use one well-established representative from each
of the categories, i.e., blending and feature-based
stacking, respectively. Additionally, for analysis
purposes, we combine the two parsers through
multi-task learning.

Blending (see Figure 2a), also known as re-
parsing (Sagae and Lavie, 2006), is a parsing-time
integration method. It consists of running basic
models in separation and combining their outputs
into one graph. Weights in this graph depend on
how many basic models predicted a particular arc.
Finally, a graph-based decoder is used to find the
maximum spanning tree in the combined graph.

In our implementation, we use the Chu-Liu-
Edmonds algorithm to find the final tree. For ev-
ery resulting arc, we select the most frequent la-
bel across all the labels previously assigned to it.
Blending needs at least three basic models to apply
the voting scheme. Therefore, we follow Kuncoro
et al. (2016) and train multiple instances of models
with random seeds and denote BLENDn

m a combi-
nation of m×GB and n×TB parsers. For analysis,
we vary the ratio of TB and GB models while leav-
ing the total number of models constant at 6 for a
fair comparison.

Feature-based stacking (see Figure 2b) was in-
troduced by Nivre and McDonald (2008) and Mar-
tins et al. (2008). It involves running two parsers
in sequence so that the second (level-1) parser can
use the output of the first (level-0) parser as fea-
tures (denoted STACKlevel-1

level-0).
To generate training data for the level-1 parser,

we apply 10-fold cross-validation on the training
sets with the level-0 parser. Then, we follow
Ouchi et al. (2014) and extract stacking features
from the level-0 parser’s predictions in the form



28

of supertags. More precisely, for every word
wi, we build its supertag by filling the template
label/hdir+hasLdep hasRdep, where
label is the dependency relation, hdir denotes
relative head direction, and hasLdep/hasRdep
mark presence of left/right dependents. Such
supertags are then, similarly to POS tags, repre-
sented as embeddings and concatenated with other
representations to build xi. The dimensionality
and type of information encoded in the stacking
representations were determined in exploratory
experiments on the English development data and
left unchanged for other languages.

Multi-task learning (see Figure 2c) allows
combining the transition- and graph-based K&G
parsers by sharing their BiLSTM representations
(level [2] in Figure 1). We keep feature extraction
and MLP layers separate, and do not enforce any
agreement between the two decoders. Effectively
this means that training yields two parsers that can
be applied independently: one transition-based
(denoted MTLTB

GB) and one graph-based (MTLGB
TB).

We use a straightforward MTL training pro-
tocol: for every sentence, we calculate the Bi-
LSTM representations

��
xi and collect all local

losses from both tasks (TB and GB). Then, the
losses are summed and the model parameters are
updated through backpropagation. We note in
passing that this training protocol leaves many op-
tions for improvements, such as adding weights
to losses from different tasks (Shi et al., 2017b),
sharing representations on different levels of Bi-
LSTMs (Søgaard and Goldberg, 2016), or employ-
ing stack-propagation (Zhang and Weiss, 2016).
We abstain from such extensions as they are or-
thogonal to the central points of our analysis.

2.3 Data Sets and Preprocessing

We conduct experiments on a selection of
thirteen treebanks from Universal Dependen-
cies v2.4 (Nivre et al., 2019): Arabic (ar padt),
Basque (eu bdt), Chinese (zh gsd), English
(en ewt), Finnish (fi tdt), Hebrew (he htb), Hindi
(hi hdtb), Italian (it isdt), Japanese (ja gsd), Ko-
rean (ko gsd), Russian (ru syntagrus), Swedish
(sv talbanken), and Turkish (tr imst). This selec-
tion was proposed by Kulmizev et al. (2019) and
varies in terms of language family, domain, and
amount of non-projective arcs.

We use automatically predicted universal POS
tags in all the experiments. The tags are assigned

using a CRF tagger (Mueller et al., 2013). We an-
notate the training sets via 5-fold jackknifing.

2.4 Evaluation and Analysis
We evaluate the experiments using Labeled At-
tachment Score (LAS).4 We train models for 30
epochs and select the best model based on de-
velopment LAS. For the results on the test sets,
we follow Reimers and Gurevych’s (2018) recom-
mendation and report averages and standard devi-
ations from six models trained with different ran-
dom seeds. We test for significance using the
Wilcoxon rank-sum test with p-value < 0.05.

An analysis is carried out on the development
sets in order not to compromise the test sets. We
follow Kulmizev et al. (2019) and sample the same
number of sentences from every development set
(484 sentences since this is the size of the smallest
one). We then aggregate results from three mod-
els trained with different random seeds and present
the combined results.

3 Diversity-Based Integration

We start by evaluating the two integration meth-
ods (STACK and BLEND) and applying them to our
transition- and graph-based parsers (TB and GB).

Average results. The first column in Table 1
gives the average results. In the case of stacking,
the performance of combined models is almost the
same as that of the baseline models. Small im-
provements are noticeable for STACKTB

GB vs. TB,
but they are statistically significant only for one
treebank. Comparing STACKGB

TB vs. GB we even
notice a small average drop of 0.08 LAS. In the
case of blending, the method does provide big im-
provements over single baselines (BLEND6

0 vs. TB

and BLEND0
6 vs. GB). However, those improve-

ments are not coming from integrating different
paradigms since BLEND3

3 achieves the same aver-
age performance as BLEND0

6, which uses only GB.
There are two possible explanations for lack of

gains from integrating parsing paradigms: either
(1) in general, the neural models are simply not
capable of benefiting from such combination, or
(2) feature representations based on the BiLSTMs
and the deep contextualized representations bring
the architectures too close to each other for the in-
tegration to be beneficial. In Section 4, we inves-
tigate which of those two situations takes place.

4The percentage of tokens that received the correct head
and label.



29

avg. ar en eu fi he hi it ja ko ru sv tr zh

TB 84.60 82.59 86.61 79.96 86.75 85.57 91.00 90.61 93.47 82.17 90.30 86.52 63.94 80.27
STACKTB

GB 84.72 82.59 86.72 80.35 86.38† 85.94† 91.19 90.83 93.32 81.95 90.60 86.65 64.18 80.71

GB 85.40 82.95 86.97 82.21 87.16 86.55 91.58 91.18 93.34 82.99 90.90 87.09 66.19 81.11
STACKGB

TB 85.32 83.02 87.15 81.71 87.47 86.62 91.32† 91.22 93.39 82.62 90.83 86.97 66.03 80.80

BLEND6
0 86.06 83.66 87.85 82.19 88.25 86.87 91.79 91.56 93.92 84.02 91.34 88.10 66.90 82.31

BLEND0
6 86.63 84.09 87.95 83.98 88.35 87.68 92.16 91.93 93.97 84.41 91.80 88.49 68.52 82.83

BLEND3
3 86.63 84.08 88.11 83.70 88.61 87.41 92.05 91.95 94.05 84.31 91.85 88.67 68.34 83.01

Table 1: Average (from six runs) parsing results (LAS) on test sets. † marks statistical significance compared to
single model baselines (p-value< 0.05). Corresponding standard deviations are provided in Table 4 in Appendix A.
Since blending already involves multiple models, we run it only once and do not test the results for significance.

Treebank-specific results. Next, we take a
closer look at the treebank-specific accuracy.
Comparing single baselines (TB vs. GB), we note
that GB has a clear advantage over TB. It surpasses
TB on twelve out of thirteen treebanks (all im-
provements are significant). We reproduce anal-
ysis from Kulmizev et al. (2019) and confirm that
this advantage is consistent across arcs of differ-
ent lengths, distances to root, and sentences with
different sizes (we provide corresponding plots in
Appendix A). Interestingly, the dominance of GB

over TB significantly differs across treebanks and
is especially prominent for more challenging ones,
e.g., with small amounts of training data or a high
level of non-projectivity. For instance, the largest
difference of 2.25 LAS is visible for Basque,
which is the treebank with the largest number of
non-projective arcs, and Turkish, which has the
smallest training dataset. Moreover, those are the
treebanks where STACKTB

GB offers small improve-
ments (0.39 LAS and 0.24 LAS, respectively), but
both STACKGB

TB and BLEND3
3 cannot make use of

the diversity in predictions of the two models and
cause the accuracy to drop (comparing STACKGB

TB

vs. GB and BLEND3
3 vs. BLEND0

6). In the case
of non-neural parsers, a big gap between the per-
formance of a strong graph-based model and a
greedy transition-based model does not prevent
the former to learn from the latter (Faleńska et al.,
2015). Therefore, the questions arise where those
treebank-specific differences come from and why
integration methods cannot benefit from them. We
address these questions in Section 5.

4 Parsing Architectures and Diversity

In this section, we investigate which aspects of
the K&G architecture are responsible for no gains
from the integration. For this purpose, we run ab-
lation experiments and apply blending and stack-

ing on models trained with and without BiLSTMs
and with and without ELMo representations.

4.1 Feature-based Stacking

We perform stacking with different types of
level-0 information. Apart from the standard way,
in which TB is stacked on top of GB or vice versa
(denoted O; for other) we carry out two types of
control experiments: S (for self), where we stack
a model on itself, and G (for gold), where gold-
standard trees are used as level-0 predictions.

Oracle experiments. Figure 3a displays results
for stacking with different level-0 information. We
immediately see that scenario G, in which models
are stacked on gold-standard trees, exhibits almost
perfect performance. Regardless of the level-1
parser and employment of BiLSTMs and ELMo,
all models achieve accuracy higher than 95 LAS,
proving that they are capable of learning from the
stacking representations.

Influence of representations. Next, we con-
sider the models which were trained without Bi-
LSTMs and ELMo (left, lightest bars). Surpris-
ingly, for both TB (green) and GB (blue), small im-
provements can be noticed in the self-application
scenario S, which was not the case for non-neural
models (Martins et al., 2008; Faleńska et al.,
2015). One explanation for this is the diver-
sity of the models coming with random seeds,
which was less prominent in their non-neural ver-
sions (Reimers and Gurevych, 2017). However,
clearer improvements are visible in scenario O,
which combines models of different types. Both
STACKTB

GB and STACKGB
TB surpass both of the sin-

gle baselines, proving that integration is beneficial
when BiLSTMs and ELMo are not used.

Considering the case where BiLSTMs are in-
cluded (middle) changes the picture. Self-



30

s o g s o g s o g s o g s o g s o g
70

80

90

100
L

A
S

–BiLSTM –ELMo

stacktb
x

stackgb
x

(a) Stacking with different types of level-0 information:
S – self, O – other, G – gold.

6
0

5
1

4
2

3
3

2
4

1
5

0
6

6
0

5
1

4
2

3
3

2
4

1
5

0
6

6
0

5
1

4
2

3
3

2
4

1
5

0
6

70

80

90

100

L
A

S –BiLSTM

–ELMo

blendn×tb
m×gb

(b) Blending; top line – GB single model, bottom line – TB
single model.

Figure 3: Parsing accuracy (average LAS over thirteen treebanks on dev sets) for diversity-based integration meth-
ods when models are trained with or without BiLSTMs and with or without ELMo. Red lines mark the average
LAS of the single baseline models.

application behaves almost on par with stacking
the parsers on each other. The only modest im-
provement (amounting to 0.18 LAS on average)
occurs for STACKTB

GB, but it is not enough to sur-
pass a single GB baseline.

As expected, adding ELMo (right, darkest bars)
results in big improvements comparing to the
models without these representations. However,
those improvements do not impact stacking re-
sults, and the picture regarding the integration of
the architectures stays the same.

4.2 Blending

Figure 3b presents results for blending with dif-
ferent ratios of TB and GB. We start by analyz-
ing models trained without BiLSTMs and ELMo
(left). We can observe a pattern we would ex-
pect from diverse models: (1) blending always im-
proves over the baselines (signified by red lines);
(2) combining models only of one sort (BLEND0

6 or
BLEND6

0) yields lower scores than when we intro-
duce more diversity into the combination; (3) the
best result is obtained by BLEND3

3, where the same
number of TB and GB models is used.

For the models that use BiLSTMs (middle),
the gains coming from blending are smaller. For
example, BLEND6

0 improves TB by 1.84 LAS,
whereas the corresponding improvement when no
BiLSTMs are used is 3.67 LAS. Interestingly, the
models show a different pattern when it comes to
diversity within the combination. The accuracy of
the blend increases with the number of GB models.
Although BLEND2

4 achieves the highest accuracy,
it surpasses BLEND0

6 by only 0.05 LAS. This sug-
gests that TB models do not bring enough diversity
into the combination, and the accuracy of BLEND

is mostly influenced by GB models.

Finally, for models that use ELMo (right), im-
provements over baselines are slightly smaller –
BLEND0

6 improves GB by 1.34 LAS comparing to
1.59 LAS when no ELMo is used. However, the
picture regarding diversity is the same, and overall
performance depends on the number of GB models
and not the diversity among combined paradigms.

To conclude, we showed that the performance
of TB and GB models can be improved through
the traditional diversity-based approaches as long
as no BiLSTMs are used. Otherwise, the gains
from combination methods decrease considerably.
Adding ELMo representations improves the per-
formance of both of the models but has almost no
impact on the outcome of the integration.

5 Representations and Treebank-Specific
Diversity

In the previous section, we saw that BiLSTMs mit-
igate average benefits from integration methods.
One explanation might be that when both TB and
GB use the same feature representations, the diver-
sity between them is much smaller, thus reducing
the gains the models could draw from each other.
However, when comparing treebank-specific re-
sults in Table 1, we noticed that in specific cases
the two baselines differ considerably. We now in-
vestigate where do those differences come from
and if they could be beneficial.

5.1 Representation Analysis
First, we take a closer look at information encoded
in representations learned by the transition- and
graph-based models.

IMPACT metric. We follow Gaddy et al. (2018)
and use derivatives to estimate how sensitive a par-



31

−20 −10 0 10 20

Token position

0

5

10

15
A

ve
ra

ge
im

pa
c
t

(a) TB

−20 −10 0 10 20

Token position

0

5

10

15

(b) GB

−20 −10 0 10 20

Token position

0

5

10

15
other head

(c) MTL

Figure 4: The average IMPACT of tokens on BiLSTM vectors with respect to the token position and the structural
(gold-standard) relation between them (heads vs. non-heads of the analyzed vector).

ticular part of the architecture is with respect to
changes in input. Specifically, we use our metric
IMPACT from Falenska and Kuhn (2019) that mea-
sures how every BiLSTM representation

��
xi is in-

fluenced by every word representation xj from the
sentence. Intuitively, IMPACT can be thought of as
a percentage distributed over all words of the sen-
tence – the higher the percentage of xj the more it
influenced the representation of

��
xi .

For every sentence from the development set
and every vector

��
xi we calculate IMPACT values

of all words xj on
��
xi and bucket those values ac-

cording to the distance between j and i. Figure 4
shows the average impact of tokens at particular
positions. We see the same two general patterns as
Gaddy et al. (2018): (1) closer words have larger
effects on the representations, and (2) even words
15 or more positions away influence the vectors.

Transition-based parser. For representations
trained with TB (Figure 4a) the difference in sig-
nals coming from heads and other tokens is bigger
on the left side than on the right side (see, e.g.,
positions −15 and 15). de Lhoneux et al. (2019)
provided an explanation for this and showed that
for greedy locally-trained models, the forward
LSTMs could be interpreted as rich history-based
features while the backward LSTMs could be
thought of as look-ahead features. Since the in-
formation to the right mostly (i.e., except for the
buffer front) comes from backward LSTMs, it
contains, as in the case of standard look-ahead fea-
tures, less structural relations.

Graph-based parser. Representations trained
together with GB (Figure 4b) show a slightly dif-
ferent pattern. Compared to TB, the impact of
heads is smaller for tokens closeby, but it deterio-

rates slower. Since this model is globally-trained,
the influence of heads does not depend on the side
– the plot is almost symmetrical, suggesting that
representations encode as much information about
syntactic relations on the left as on the right.

5.2 BiLSTMs Integration

Next, we investigate whether the observed dif-
ferences in the information encoded in BiLSTM
representations can explain the advantage of GB

over TB. We train new models where we share
those intermediate representations between the
two parsers through multi-task learning (MTL).
We hypothesize that if the advantage of GB stems
from global training and the influence it has on the
representations, then MTL will re-balance the rep-
resentations and, as a result, narrow the gap be-
tween the two models. We note in passing that
MTL is typically carried out on different tasks,
often with different training sets. However, it
is perfectly possible to consider graph-based and
transition-based dependency parsing as two sepa-
rate tasks trained on the same training set.

IMPACT analysis. Figure 4c displays the IM-
PACT statistics for MTL models. The plot
shows that the BiLSTM representations draw
on the advantages from both locally trained TB

and globally-trained GB – the distribution has a
slightly stronger peak for closer words as in TB,
but flattens out more slowly as in GB. This effect
is particularly pronounced when comparing the far
right (look-ahead) of TB with the MTL distribution,
especially as heads become more influential.

Error analysis. To understand how the changes
in representations influence the parsing perfor-
mance, we break down the LAS by dependency



32

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8+
Head position

0

20k

40k

60k

80k

100k

B
in

si
ze

65

70

75

80

85

90

95

R
ec

al
l

gb

tb
mtltb

gb

(a) Recall

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8+
Head position

0

20k

40k

60k

80k

100k

B
in

si
ze

65

70

75

80

85

90

95

P
re

ci
si

on

gb

tb
mtltb

gb

(b) Precision

Figure 5: Dependency recall and precision relative to the head position on development sets.

length and head direction. Figure 5 shows the de-
pendency recall and precision of models with re-
spect to the positions of the heads.5

First, we compare TB (blue) with GB (green)
and observe that GB has a consistent advantage.
However, when comparing recall and precision,
we note an interesting difference. In terms of re-
call (Figure 5a), the plot is symmetrical and the
advantage of GB is roughly the same for heads on
the left and on the right side of the token. In terms
of precision (Figure 5b), both TB and GB behave
identically for heads on the left, but the perfor-
mance of TB drops faster for heads on positions
3 and more to the right.

Second, we analyze MTLTB
GB (red). We notice

that sharing representations with GB does not in-
fluence TB’s recall or precision on heads on the
left, while for right-headed dependencies preci-
sion improves. The model catches up with GB’s
performance and starts deteriorating much later,
for heads on positions 6 and more to the right.

Treebank-specific improvements. Finally, we
look at the treebank-specific accuracy of the MTL

models. The two bottom rows in Table 2 show the
effects of MTL on GB. Sharing representations
between the two architectures has a small influ-
ence on GB, and on average, improves its perfor-
mance by 0.18 LAS. Although for few treebanks
bigger improvements can be seen, e.g., Chinese
(0.39 LAS) or Swedish (0.35 LAS), none of them
is statistically significant. Therefore, it is not clear

5Dependency recall is defined as the percentage of correct
predictions among gold standard arcs with head position p.
Precision is the percentage of correct predictions among all
predicted arcs. The definitions slightly differ from McDonald
and Nivre (2007), who looked at absolute arc lengths.

if those improvements come from the actual com-
bination of different parsing paradigms, or MTL
in this case acts as additional regularization, ulti-
mately reducing overfitting during training.

In the case of TB, the average performance
is improved through MTL by 0.42 LAS, with
statistically significant differences for four tree-
banks. The biggest gains are visible for the tree-
banks, where the difference between TB and GB

is greatest, such as Basque (0.94 LAS). Interest-
ingly, among the treebanks with the biggest im-
provements, we can notice Turkish (1.28 LAS)
and Chinese (0.52 LAS), which are the two tree-
banks with the greatest ratio of right-headed arcs
(62.58% and 71.86%, respectively). This result is
in line with the results of de Lhoneux et al. (2019),
who demonstrated that backward LSTMs are es-
pecially important for head-final languages.

To conclude, we saw that the advantage of GB

over TB stems from global training. The training
increases the impact of tokens (far) to the right as
compared to a locally trained TB model and trans-
lates into an improved prediction of right-headed
dependencies. Thus, the distance between the
two models is treebank-related and can be reduced
through integration methods such as MTL, espe-
cially when parsing more challenging treebanks.

6 Related Work

Traditional integration of dependency parsers.
Classical integration methods were initially in-
troduced to take advantage of differences in the
strengths of the component parsers. Such differ-
ences were usually the result of different parsing
paradigms, as in the case of feature-based stack-



33

avg. ar en eu fi he hi it ja ko ru sv tr zh

TB 84.60 82.59 86.61 79.96 86.75 85.57 91.00 90.61 93.47 82.17 90.30 86.52 63.94 80.27
MTLTB

GB 85.02 82.55 86.97 80.90† 87.09 85.90 91.29† 90.97 93.45 82.36 90.58 87.16† 65.22† 80.79

GB 85.40 82.95 86.97 82.21 87.16 86.55 91.58 91.18 93.34 82.99 90.90 87.09 66.19 81.11
MTLGB

TB 85.58 82.99 87.24† 82.55 87.52 86.68 91.71 91.31 93.47 83.12 91.11 87.44 65.88 81.50

Table 2: Average (from six runs) parsing results (LAS) on test sets. † marks statistical significance compared to
single model baselines (p-value< 0.05). Corresponding standard deviations are provided in Table 5 in Appendix A.

ing, blending, or beam search-based transition-
based parsers with features strongly inspired by
graph-based models (Zhang and Clark, 2008;
Bohnet and Kuhn, 2012). However, combining
parsers that process input left-to-right and right-
to-left (Hall et al., 2007; Attardi and Dell’Orletta,
2009), or even parsers and sequence labelers
(Faleńska et al., 2015), was also proposed. Blend-
ing was usually applied to a mixture of graph-
based and transition-based left-to-right and right-
to-left parsers (Sagae and Lavie, 2006; Surdeanu
and Manning, 2010; Björkelund et al., 2017,
among others). Moreover, in the case of stacking,
integrating two parsers of the same type gives at
most minor improvements (Martins et al., 2008).

Neural-specific ensemble dependency parsers.
Since neural network training can be sensitive to
initialization (Reimers and Gurevych, 2017), re-
cent ensemble dependency parsers are rather com-
bining models trained with different random seeds
than different paradigms. For example, out of 24
teams participating in the CoNLL 2018 Shared
Task on dependency parsing (Zeman et al., 2018),
five employed ensemble techniques. However, all
of them took advantage of either diversity coming
from random seeds or different languages.

Neural parsers of the same type can be com-
bined by taking the sum of their MLP scores
(Che et al., 2017), averaging softmax scores (Che
et al., 2018), or through re-parsing (Kuncoro et al.,
2016). The last authors also showed that such an
ensemble could be distilled into a single graph-
based parser. Finally, Shi et al. (2017b) used MTL
in a similar way to ours. They shared BiLSTMs
between three parsers to speed up their training
time. However, all the models where globally-
trained and the authors did not evaluate if the com-
bination improved their performance.

7 Discussion and Conclusion

In this paper, we investigated the recent advances
in dependency parsing from the perspective of the

traditional integration methods. These methods
are known for exploiting diversity in the strengths
and weaknesses of transition- and graph-based
parsing paradigms. We found out that when mod-
els use BiLSTMs, such diversity is on the level
of different random seeds. Adding deep contex-
tualized representations on top of BiLSTMs im-
proves the performance of both parsers but does
not change the picture regarding the integration.

Rich-feature sets used to be the advantage of the
transition-based parsers. Now that the parsers do
not need structural features (Falenska and Kuhn,
2019), the graph-based parsers have an advantage
that the locally-trained transition-based parsers
cannot make up for. Therefore, improving parsers
through combination methods is not as straightfor-
ward as it used to be. Such a combination has to
take into consideration the specificity of the tree-
bank and depend on whether accuracy or parsing
time is the priority. The greatest gains in accu-
racy can be obtained by blending multiple graph-
based models. However, the method comes with
the cumbersome overhead of running multiple pre-
dictors at application time. When speed is essen-
tial and the accuracy can be sacrificed (Gómez-
Rodrı́guez et al., 2017) greedy transition-based
parsers or even sequence labelers are the prefer-
able choices (Strzyz et al., 2019). In such cases,
alternative integration approaches such as multi-
task learning can boost the performance of locally-
trained models without requiring additional com-
putational effort at parsing time.

Introduction of BiLSTMs into dependency
parsers had another consequence, i.e., it enabled
the use of exact search algorithms for transition-
based parsers (Shi et al., 2017a; Gómez-Rodrı́guez
et al., 2018). Therefore, it is an interesting ques-
tion if the error profiles of such parsers are even
less distinguishable from the graph-based outputs.
We leave this question for future work.



34

Acknowledgments

This work was in part supported by the Deutsche
Forschungsgemeinschaft (DFG) via the SFB 732,
project D8. Anders Björkelund was funded by
AIR Lund Chest pain (VR; grant no 2019-00198).
We would like to thank the anonymous reviewers
for their comments. We also thank our colleagues
Özlem Çetinoğlu and Xiang Yu for many conver-
sations and comments on this work.

References
Giuseppe Attardi and Felice Dell’Orletta. 2009. Re-

verse Revision and Linear Tree Combination for De-
pendency Parsing. In Proceedings of Human Lan-
guage Technologies: The 2009 Annual Conference
of the North American Chapter of the Association
for Computational Linguistics, Companion Volume:
Short Papers, pages 261–264, Boulder, Colorado.
Association for Computational Linguistics.

Anders Björkelund, Agnieszka Falenska, Xiang Yu,
and Jonas Kuhn. 2017. IMS at the CoNLL 2017
UD Shared Task: CRFs and Perceptrons Meet Neu-
ral Networks. In Proceedings of the CoNLL 2017
Shared Task: Multilingual Parsing from Raw Text to
Universal Dependencies, pages 40–51, Vancouver,
Canada. Association for Computational Linguistics.

Bernd Bohnet and Jonas Kuhn. 2012. The Best of
Both Worlds – A Graph-based Completion Model
for Transition-based Parsers. In Proceedings of the
13th Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 77–
87, Avignon, France. Association for Computational
Linguistics.

Richard Caruana. 1993. Multitask Learning: A
Knowledge-Based Source of Inductive Bias. In
Proceedings of the Tenth International Conference
on Machine Learning, pages 41–48. Morgan Kauf-
mann.

Wanxiang Che, Jiang Guo, Yuxuan Wang, Bo Zheng,
Huaipeng Zhao, Yang Liu, Dechuan Teng, and Ting
Liu. 2017. The HIT-SCIR System for End-to-End
Parsing of Universal Dependencies. In Proceedings
of the CoNLL 2017 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
52–62, Vancouver, Canada. Association for Compu-
tational Linguistics.

Wanxiang Che, Yijia Liu, Yuxuan Wang, Bo Zheng,
and Ting Liu. 2018. Towards Better UD Parsing:
Deep Contextualized Word Embeddings, Ensemble,
and Treebank Concatenation. In Proceedings of
the CoNLL 2018 Shared Task: Multilingual Pars-
ing from Raw Text to Universal Dependencies, pages
55–64, Brussels, Belgium. Association for Compu-
tational Linguistics.

Danqi Chen and Christopher Manning. 2014. A Fast
and Accurate Dependency Parser using Neural Net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750. Association for Compu-
tational Linguistics.

Yoeng-Jin Chu and Tseng-Hong Liu. 1965. On shortest
arborescence of a directed graph. Scientia Sinica,
14(10):1396–1400.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2016.
Deep Biaffine Attention for Neural Dependency
Parsing. CoRR, abs/1611.01734.

Jack Edmonds. 1967. Optimum branchings. Journal
of Research of the National Bureau of Standards B,
71(4):233–240.

Jason M. Eisner. 1996. Three New Probabilistic Mod-
els for Dependency Parsing: An Exploration. In
COLING 1996 Volume 1: The 16th International
Conference on Computational Linguistics.

Agnieszka Faleńska, Anders Björkelund, Özlem
Çetinoğlu, and Wolfgang Seeker. 2015. Stacking
or Supertagging for Dependency Parsing – What’s
the Difference? In Proceedings of the 14th Inter-
national Conference on Parsing Technologies, pages
118–129, Bilbao, Spain. Association for Computa-
tional Linguistics.

Agnieszka Falenska and Jonas Kuhn. 2019. The (Non-
)Utility of Structural Features in BiLSTM-based De-
pendency Parsers. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 117–128, Florence, Italy. Associ-
ation for Computational Linguistics.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s Going On in Neural Constituency Parsers?
An Analysis. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
999–1010. Association for Computational Linguis-
tics.

Yoav Goldberg and Joakim Nivre. 2012. A Dynamic
Oracle for Arc-Eager Dependency Parsing. In Pro-
ceedings of COLING 2012, pages 959–976, Mum-
bai, India. The COLING 2012 Organizing Commit-
tee.

https://www.aclweb.org/anthology/N09-2066
https://www.aclweb.org/anthology/N09-2066
https://www.aclweb.org/anthology/N09-2066
https://doi.org/10.18653/v1/K17-3004
https://doi.org/10.18653/v1/K17-3004
https://doi.org/10.18653/v1/K17-3004
https://www.aclweb.org/anthology/E12-1009
https://www.aclweb.org/anthology/E12-1009
https://www.aclweb.org/anthology/E12-1009
https://doi.org/10.18653/v1/K17-3005
https://doi.org/10.18653/v1/K17-3005
https://www.aclweb.org/anthology/K18-2005
https://www.aclweb.org/anthology/K18-2005
https://www.aclweb.org/anthology/K18-2005
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
http://aclweb.org/anthology/C96-1058
http://aclweb.org/anthology/C96-1058
https://doi.org/10.18653/v1/W15-2215
https://doi.org/10.18653/v1/W15-2215
https://doi.org/10.18653/v1/W15-2215
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/P19-1012
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://www.aclweb.org/anthology/C12-1059
https://www.aclweb.org/anthology/C12-1059


35

Yoav Goldberg and Joakim Nivre. 2013. Training De-
terministic Parsers with Non-Deterministic Oracles.
Transactions of the Association for Computational
Linguistics, 1:403–414.

Carlos Gómez-Rodrı́guez, Iago Alonso-Alonso, and
David Vilares. 2017. How Important is Syntac-
tic Parsing Accuracy? An Empirical Evaluation on
Rule-Based Sentiment Analysis. Artificial Intelli-
gence Review, pages 1–17.

Carlos Gómez-Rodrı́guez, Tianze Shi, and Lillian Lee.
2018. Global Transition-based Non-projective De-
pendency Parsing. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2664–
2675, Melbourne, Australia. Association for Com-
putational Linguistics.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
Word Vectors for 157 Languages. In Proceedings of
the Eleventh International Conference on Language
Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise Phoneme Classification with Bidirectional
LSTM and Other Neural Network Architectures.
Neural Networks, 18(5):602–610.

Johan Hall, Jens Nilsson, Joakim Nivre, Gülsen
Eryigit, Beáta Megyesi, Mattias Nilsson, and
Markus Saers. 2007. Single Malt or Blended?
A Study in Multilingual Parser Optimization. In
Proceedings of the CoNLL Shared Task Session
of EMNLP-C oNLL 2007, pages 933–939, Prague,
Czech Republic. Association for Computational
Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ganesh Jawahar, Benjamin Muller, Amal Fethi, Louis
Martin, Éric Villemonte de la Clergerie, Benoı̂t
Sagot, and Djamé Seddah. 2018. ELMoLex: Con-
necting ELMo and Lexicon Features for Depen-
dency Parsing. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 223–237, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and Accurate Dependency Parsing Using Bidi-
rectional LSTM Feature Representations. Transac-
tions of the Association for Computational Linguis-
tics, 4:313–327.

Dan Kondratyuk and Milan Straka. 2019. 75 Lan-
guages, 1 Model: Parsing Universal Dependencies
Universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language

Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779–2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Marco Kuhlmann, Carlos Gómez-Rodrı́guez, and Gior-
gio Satta. 2011. Dynamic programming algorithms
for transition-based dependency parsers. In Pro-
ceedings of the 49th Annual Meeting of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 673–682, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Artur Kulmizev, Miryam de Lhoneux, Johannes
Gontrum, Elena Fano, and Joakim Nivre.
2019. Deep Contextualized Word Embeddings
in Transition-Based and Graph-Based Dependency
Parsing - A Tale of Two Parsers Revisited. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pages
2755–2768, Hong Kong, China. Association for
Computational Linguistics.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Dis-
tilling an Ensemble of Greedy Dependency Parsers
into One MST Parser. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1744–1753, Austin, Texas.
Association for Computational Linguistics.

Miryam de Lhoneux, Miguel Ballesteros, and Joakim
Nivre. 2019. ”Recursive Subtree Composition in
LSTM-Based Dependency Parsing”. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1
(Long and Short Papers), pages 1566–1576, Min-
neapolis, Minnesota. Association for Computational
Linguistics.

KyungTae Lim, Cheoneum Park, Changki Lee, and
Thierry Poibeau. 2018. SEx BiST: A Multi-Source
Trainable Parser with Deep Contextualized Lexical
Representations. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 143–152, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

André Filipe Torres Martins, Dipanjan Das, Noah A.
Smith, and Eric P. Xing. 2008. Stacking Depen-
dency Parsers. In Proceedings of the 2008 Con-
ference on Empirical Methods in Natural Language
Processing, pages 157–166, Honolulu, Hawaii. As-
sociation for Computational Linguistics.

Ryan McDonald, Koby Crammer, and Fernando
Pereira. 2005. Online Large-Margin Training of De-
pendency Parsers. In Proceedings of the 43rd An-
nual Meeting of the Association for Computational
Linguistics (ACL’05), pages 91–98. Association for
Computational Linguistics.

https://doi.org/10.1162/tacl_a_00237
https://doi.org/10.1162/tacl_a_00237
https://www.aclweb.org/anthology/P18-1248
https://www.aclweb.org/anthology/P18-1248
https://www.aclweb.org/anthology/L18-1550
https://www.aclweb.org/anthology/L18-1550
https://www.aclweb.org/anthology/D07-1097
https://www.aclweb.org/anthology/D07-1097
https://doi.org/10.18653/v1/K18-2023
https://doi.org/10.18653/v1/K18-2023
https://doi.org/10.18653/v1/K18-2023
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/Q16-1023
http://aclweb.org/anthology/Q16-1023
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://www.aclweb.org/anthology/P11-1068
https://www.aclweb.org/anthology/P11-1068
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D19-1277
https://doi.org/10.18653/v1/D16-1180
https://doi.org/10.18653/v1/D16-1180
https://doi.org/10.18653/v1/D16-1180
https://doi.org/10.18653/v1/N19-1159
https://doi.org/10.18653/v1/N19-1159
https://doi.org/10.18653/v1/K18-2014
https://doi.org/10.18653/v1/K18-2014
https://doi.org/10.18653/v1/K18-2014
https://www.aclweb.org/anthology/D08-1017
https://www.aclweb.org/anthology/D08-1017
http://aclweb.org/anthology/P05-1012
http://aclweb.org/anthology/P05-1012


36

Ryan McDonald and Joakim Nivre. 2007. Character-
izing the Errors of Data-Driven Dependency Pars-
ing Models. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning (EMNLP-CoNLL), pages 122–131,
Prague, Czech Republic. Association for Computa-
tional Linguistics.

Thomas Mueller, Helmut Schmid, and Hinrich
Schütze. 2013. Efficient Higher-Order CRFs for
Morphological Tagging. In Proceedings of the 2013
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 322–332. Association for
Computational Linguistics.

Graham Neubig, Chris Dyer, Yoav Goldberg, Austin
Matthews, Waleed Ammar, Antonios Anastasopou-
los, Miguel Ballesteros, David Chiang, Daniel
Clothiaux, Trevor Cohn, Kevin Duh, Manaal
Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji,
Lingpeng Kong, Adhiguna Kuncoro, Gaurav Ku-
mar, Chaitanya Malaviya, Paul Michel, Yusuke
Oda, Matthew Richardson, Naomi Saphra, Swabha
Swayamdipta, and Pengcheng Yin. 2017. DyNet:
The Dynamic Neural Network Toolkit. CoRR,
abs/1701.03980.

Joakim Nivre. 2003. An Efficient Algorithm for Pro-
jective Dependency Parsing. In Proceedings of the
Eighth International Workshop on Parsing Tech-
nologies (IWPT, pages 149–160, Nancy, France.

Joakim Nivre. 2009. Non-Projective Dependency Pars-
ing in Expected Linear Time. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, pages
351–359. Association for Computational Linguis-
tics.

Joakim Nivre, Mitchell Abrams, Željko Agić, et al.
2019. Universal Dependencies 2.4. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009.
An Improved Oracle for Dependency Parsing with
Online Reordering. In Proceedings of the 11th
International Conference on Parsing Technologies
(IWPT’09), pages 73–76. Association for Computa-
tional Linguistics.

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing Graph-Based and Transition-Based Dependency
Parsers. In Proceedings of ACL-08: HLT, pages
950–958, Columbus, Ohio. Association for Compu-
tational Linguistics.

Hiroki Ouchi, Kevin Duh, and Yuji Matsumoto. 2014.
Improving Dependency Parsers with Supertags. In
Proceedings of the 14th Conference of the Euro-
pean Chapter of the Association for Computational

Linguistics, volume 2: Short Papers, pages 154–
158, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep Contextualized Word Rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237, New Orleans, Louisiana. Association
for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2017. Reporting
Score Distributions Makes a Difference: Perfor-
mance Study of LSTM-networks for Sequence Tag-
ging. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Process-
ing, pages 338–348, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2018. Why Com-
paring Single Performance Scores Does Not Allow
to Draw Conclusions About Machine Learning Ap-
proaches. CoRR, abs/1803.09578.

Kenji Sagae and Alon Lavie. 2006. Parser Combina-
tion by Reparsing. In Proceedings of the Human
Language Technology Conference of the NAACL,
Companion Volume: Short Papers, pages 129–132,
New York City, USA. Association for Computa-
tional Linguistics.

Tal Schuster, Ori Ram, Regina Barzilay, and Amir
Globerson. 2019. Cross-Lingual Alignment of Con-
textual Word Embeddings, with Applications to
Zero-shot Dependency Parsing. In Proceedings of
the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 1599–1613, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Katrin Schweitzer, Kerstin Eckart, Markus Gärtner,
Agnieszka Falenska, Arndt Riester, Ina Rösiger, An-
tje Schweitzer, Sabrina Stehwien, and Jonas Kuhn.
2018. German Radio Interviews: The GRAIN Re-
lease of the SFB732 Silver Standard Collection. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Tianze Shi, Liang Huang, and Lillian Lee. 2017a.
Fast(er) Exact Decoding and Global Training for
Transition-Based Dependency Parsing via a Mini-
mal Feature Set. In Proceedings of the 2017 Con-
ference on Empirical Methods in Natural Language
Processing, pages 12–23. Association for Computa-
tional Linguistics.

Tianze Shi, Felix G. Wu, Xilun Chen, and Yao Cheng.
2017b. Combining Global Models for Parsing Uni-
versal Dependencies. In Proceedings of the CoNLL

https://www.aclweb.org/anthology/D07-1013
https://www.aclweb.org/anthology/D07-1013
https://www.aclweb.org/anthology/D07-1013
http://aclweb.org/anthology/D13-1032
http://aclweb.org/anthology/D13-1032
http://arxiv.org/abs/1701.03980
http://arxiv.org/abs/1701.03980
https://www.aclweb.org/anthology/W03-3017
https://www.aclweb.org/anthology/W03-3017
http://aclweb.org/anthology/P09-1040
http://aclweb.org/anthology/P09-1040
http://hdl.handle.net/11234/1-2988
http://aclweb.org/anthology/W09-3811
http://aclweb.org/anthology/W09-3811
http://www.aclweb.org/anthology/P/P08/P08-1108
http://www.aclweb.org/anthology/P/P08/P08-1108
http://www.aclweb.org/anthology/P/P08/P08-1108
https://doi.org/10.3115/v1/E14-4030
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
https://doi.org/10.18653/v1/D17-1035
http://arxiv.org/abs/1803.09578
http://arxiv.org/abs/1803.09578
http://arxiv.org/abs/1803.09578
http://arxiv.org/abs/1803.09578
https://www.aclweb.org/anthology/N06-2033
https://www.aclweb.org/anthology/N06-2033
https://doi.org/10.18653/v1/N19-1162
https://doi.org/10.18653/v1/N19-1162
https://doi.org/10.18653/v1/N19-1162
https://www.aclweb.org/anthology/L18-1457
https://www.aclweb.org/anthology/L18-1457
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/D17-1002
https://doi.org/10.18653/v1/K17-3003
https://doi.org/10.18653/v1/K17-3003


37

2017 Shared Task: Multilingual Parsing from Raw
Text to Universal Dependencies, pages 31–39, Van-
couver, Canada. Association for Computational Lin-
guistics.

Anders Søgaard and Yoav Goldberg. 2016. Deep
multi-task learning with low level tasks supervised
at lower layers. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 231–
235, Berlin, Germany. Association for Computa-
tional Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodrı́guez. 2019. Viable Dependency Parsing as Se-
quence Labeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 717–723, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Mihai Surdeanu and Christopher D. Manning. 2010.
Ensemble Models for Dependency Parsing: Cheap
and Good? In Human Language Technologies:
The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 649–652, Los Angeles, Califor-
nia. Association for Computational Linguistics.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Sta-
tistical Dependency Analysis with Support Vector
Machines. In Proceedings of the Eighth Interna-
tional Conference on Parsing Technologies, pages
195–206, Nancy, France.

Daniel Zeman, Jan Hajič, Martin Popel, Martin Pot-
thast, Milan Straka, Filip Ginter, Joakim Nivre, and
Slav Petrov. 2018. CoNLL 2018 Shared Task: Mul-
tilingual Parsing from Raw Text to Universal Depen-
dencies. In Proceedings of the CoNLL 2018 Shared
Task: Multilingual Parsing from Raw Text to Univer-
sal Dependencies, pages 1–21, Brussels, Belgium.
Association for Computational Linguistics.

Yuan Zhang and David Weiss. 2016. Stack-
propagation: Improved Representation Learning for
Syntax. In Proceedings of the 54th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1557–1566, Berlin,
Germany. Association for Computational Linguis-
tics.

Yue Zhang and Stephen Clark. 2008. A Tale of Two
Parsers: Investigating and Combining Graph-based
and Transition-based Dependency Parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562–
571, Honolulu, Hawaii. Association for Computa-
tional Linguistics.

http://anthology.aclweb.org/P16-2038
http://anthology.aclweb.org/P16-2038
http://anthology.aclweb.org/P16-2038
https://doi.org/10.18653/v1/N19-1077
https://doi.org/10.18653/v1/N19-1077
https://www.aclweb.org/anthology/N10-1091
https://www.aclweb.org/anthology/N10-1091
https://www.aclweb.org/anthology/W03-3023
https://www.aclweb.org/anthology/W03-3023
https://www.aclweb.org/anthology/W03-3023
http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001
http://www.aclweb.org/anthology/K18-2001
https://doi.org/10.18653/v1/P16-1147
https://doi.org/10.18653/v1/P16-1147
https://doi.org/10.18653/v1/P16-1147
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/D08-1059


38

A Appendix

Word embedding dimension 300
POS tag embedding dimension 20
Character embedding dimension 24
Supertag embedding dimension 30
ELMo representation dimension 1024
Hidden units in MLP 100
BiLSTM layers 2
BiLSTM dimensions 125
BiLSTM dropout 0.33
Character-based BiLSTM dimensions 100
α for word dropout 0.25
Trainer Adam
Non-lin function tanh

Table 3: Hyperparameters for the parsers.

ar en eu fi he hi it ja ko ru sv tr zh

TB 0.089 0.184 0.297 0.162 0.250 0.169 0.201 0.213 0.432 0.116 0.153 0.571 0.495
STACKTB

GB 0.145 0.180 0.212 0.176 0.136 0.093 0.136 0.158 0.288 0.042 0.209 0.406 0.200

GB 0.159 0.166 0.314 0.216 0.226 0.130 0.159 0.108 0.414 0.064 0.174 0.280 0.261
STACKGB

TB 0.131 0.143 0.234 0.105 0.339 0.116 0.067 0.105 0.234 0.056 0.171 0.459 0.351

Table 4: Standard deviation for results in Table 1.

ar en eu fi he hi it ja ko ru sv tr zh

TB 0.089 0.184 0.297 0.162 0.250 0.169 0.201 0.213 0.432 0.116 0.153 0.571 0.495
MTLTB

GB 0.249 0.144 0.325 0.385 0.368 0.134 0.409 0.167 0.239 0.078 0.167 0.336 0.604

GB 0.159 0.166 0.314 0.216 0.226 0.130 0.159 0.108 0.414 0.064 0.174 0.280 0.261
MTLGB

TB 0.225 0.058 0.170 0.237 0.356 0.081 0.298 0.157 0.319 0.087 0.152 0.290 0.425

Table 5: Standard deviation for results in Table 2.



39

1-10 11-20 21-30 31-40 50+
Sentence length

0

1k

2k

3k

4k

5k

6k

7k

8k

9k

10k

B
in

si
ze

70

75

80

85

90

L
A

S

gb

tb

Figure 6: Average LAS relative to sentence length on development sets.

1 2 3 4 5 6 7 8+
Arc length

0

20k

40k

60k

80k

100k

120k

140k

160k

180k

B
in

si
ze

65

70

75

80

85

90

95

R
ec

al
l

gb

tb

(a) Recall

1 2 3 4 5 6 7 8+
Arc length

0

20k

40k

60k

80k

100k

120k

140k

160k

180k

B
in

si
ze

65

70

75

80

85

90

95

P
re

ci
si

on
gb

tb

(b) Precision

Figure 7: The dependency recall and precision relative to arc length on development sets.

1 2 3 4 5 6 7 8 9 10+
Distance to Root

0

20k

40k

60k

80k

100k

B
in

si
ze

65

70

75

80

85

90

95

R
ec

al
l

gb

tb

(a) Recall

1 2 3 4 5 6 7 8 9 10+
Distance to Root

0

20k

40k

60k

80k

100k

B
in

si
ze

65

70

75

80

85

90

95

P
re

ci
si

on

gb

tb

(b) Precision

Figure 8: The dependency recall and precision relative to the distance to root on development sets.


