
Proceedings of the 16th International Conference on Parsing Technologies and the IWPT 2020 Shared Task, pages 245–252
Virtual Meeting, July 9, 2020. c©2020 Association for Computational Linguistics

245

RobertNLP at the IWPT 2020 Shared Task:
Surprisingly Simple Enhanced UD Parsing for English

Stefan Grünewald1,2 Annemarie Friedrich2

1Institut für Maschinelle Sprachverarbeitung, University of Stuttgart
2Bosch Center for Artificial Intelligence, Renningen, Germany

stefan.gruenewald|annemarie.friedrich@de.bosch.com

Abstract

This paper presents our system at the IWPT
2020 Shared Task on Parsing into Enhanced
Universal Dependencies. Using a biaffine
classifier architecture (Dozat and Manning,
2017) which operates directly on fine-tuned
RoBERTa embeddings, our parser generates
enhanced UD graphs by predicting the best de-
pendency label (or absence of a dependency)
for each pair of tokens in the sentence. We ad-
dress label sparsity issues by replacing lexical
items in relations with placeholders at predic-
tion time, later retrieving them from the parse
in a rule-based fashion. In addition, we ensure
structural graph constraints using a simple set
of heuristics. On the English blind test data,
our system achieves a very high parsing accu-
racy, ranking 1st out of 10 with an ELAS F1
score of 88.94 %.

1 Introduction

Enhanced Universal Dependencies are an exten-
sion of the widely used Universal Dependencies
(UD) framework for syntactic dependency anno-
tation (de Marneffe et al., 2014). Designed with
shallow natural language understanding tasks in
mind, enhanced UD extends basic UD trees by
including a number of additional dependencies be-
tween tokens in order to make relations between
content words more explicit, especially in the pres-
ence of linguistic phenomena such as coordination,
raising/control, and relative clauses (Schuster and
Manning, 2016). While there is evidence for the
utility of enhanced dependencies in downstream ap-
plications (Schuster et al., 2017), adding these rela-
tions means that dependency structures are not gen-
erally constrained to trees any more, which makes
parsing them a different problem with its own set
of challenges.

Research on UD parsing has so far mostly fo-
cused on producing syntax trees according to the

basic UD specification (e.g., in the CoNLL 2017
and 2018 Shared Tasks). Prior work on inducing
enhanced UD graphs (Nyblom et al., 2013; Simi
and Montemagni, 2018; Nivre et al., 2018) infers
enhanced UD representations by first parsing text
into basic UD trees and then adding enhanced rela-
tions by applying rule-based or machine-learning
modules. This approach has the disadvantage of
propagating errors in the basic layer to the en-
hanced parse. For our submission to the IWPT
2020 Shared Task (Bouma et al., 2020), we follow
an alternative approach. We do not distinguish be-
tween the basic UD tree and the enhanced part of
the graph, instead treating all types of dependencies
equally and extracting them jointly.

Following the approach of Dozat and Manning
(2018), we use a biaffine classifier architecture in
which we predict the most likely dependency label
(or absence of a dependency) for each pair of to-
kens in the sentence, forming a dependency graph
from the union of these predictions. Similar to Kon-
dratyuk and Straka (2019), we extract the inputs
for the biaffine classifier directly from fine-tuned
contextualized word embeddings, RoBERTa (Liu
et al., 2019b) in our case, using a scalar mixture
of hidden layers (Liu et al., 2019a). We overcome
the problem of sparsity issues caused by enhanced
UD’s large lexicalized label set by replacing lexi-
cal items with placeholders at prediction time and
later retrieving them from the full parse via a set
of rules. Surprisingly, this simple approach, com-
bined with a straightforward heuristic ensuring that
each node receives a head, results in valid enhanced
UD graphs for 99% of all sentences in the English
blind test data.

Despite being conceptually simple and easy to
implement, our system sets a new state of the art
for enhanced UD parsing for English, scoring first
out of ten submissions on the blind test data accord-
ing to the official ELAS evaluation metric. While



246

our system is currently available only for English,
adapting it to most other languages should be feasi-
ble with relatively little effort.

2 Our Model

This section describes the components of our parser
as submitted to the Shared Task.

2.1 Pre-processing
For tokenization and sentence segmentation, we
employ the StanfordNLP system (Qi et al., 2018),
which achieved state-of-the-art results for these
tasks on the English treebanks in the CoNLL 2018
Shared Task.

2.2 Input Token Representation
We use RoBERTa (Liu et al., 2019b) to gen-
erate contextualized word embeddings for the
tokens of the input sentence, fine-tuning the
model while training our parser. We create the
wordpiece-tokenized input for RoBERTa by feed-
ing each token as identified by StanfordNLP into
the RoBERTa tokenizer. In addition, we prepend a
special [root] token to each sentence, which serves
as an artificial head of the root relation, which must
be present in every sentence. This token receives
a fixed, learned embedding instead of a contextu-
alized RoBERTa embedding, but with the same
number of dimensions.

Following Kondratyuk and Straka (2019), our
model produces an embedding ri for the original
token at position i by forming a weighted sum of
the hidden layers’ embeddings at the positions cor-
responding to the first wordpiece token of the origi-
nal token. Weights for this scalar mixture of layers
are learned during training. Layers are randomly
dropped during training to prevent the model from
focusing on only a single layer.

We also experimented with using BERT (Devlin
et al., 2019) instead of RoBERTa, but found that
this yielded lower parsing accuracy (see Sec. 3).

2.3 Dependency Classification
Figure 1 shows an overview of our neural-network
based dependency classifier, which simulatenously
predicts relation labels or absence of a relation
between pairs of tokens.

Classifier architecture. Our dependency classi-
fier follows the architecture proposed by Dozat and
Manning (2018), which is capable of producing
general (bi-lexical) dependency graph structures.

Label scores

insteadcinnamon

... ... ...

UseInput tokens

RoBERTa

hihead, hidep

Embeddings ri

objPredicted label

(Scalar mixture
of layers)        

Biaff.

Figure 1: Architecture of neural network predicting de-
pendency relations between pairs of tokens.

The approach works by creating, for each input
token embedding ri, a head representation hhead

i

and a dependent representation hdep
i via two single-

layer feedforward networks:

hhead
i = FNNhead(ri) (1)

hdep
i = FNNdep(ri) (2)

For each ordered pair (i, j) of tokens in the sen-
tence, their respective head and dependent repre-
sentations are then fed to a biaffine classifier (Eq.
3, Dozat and Manning, 2017), which outputs logits
si,j over the possible dependency labels.1 We en-
code the absence of a dependency relation between
two tokens as simply another label (∅). This unfac-
torized approach is in contrast to recent approaches
that first predict presence or absence of relations
and then use a second classifier to predict labels. It
has already been proposed by Dozat and Manning
(2018), who found that it performed on par with
the factorized approach.

Finally, the most likely label yi,j can then be
extracted from these logits:

Biaff(x1,x2) = x>
1 Ux2 +W (x1 ⊕ x2) + b (3)

si,j = Biaff
(
hhead
i ,hdep

j

)
(4)

P (yi,j) = softmax(si,j) (5)

U, W and b in (3) are learned parameters; ⊕
denotes the concatenation operation. The model is

1Note that this means that each pair of tokens is fed to the
classifier twice as an ordered pair, once with i as the potential
head and j as the potential dependent, and once the other way
around.



247

trained to minimize cross entropy loss w. r. t. the
true dependency label between each pair of tokens.

De-lexicalizing dependency labels. Because en-
hanced UD adds lexical information to certain
dependencies (e.g. obl:instead_of ), the number
of dependency labels is huge; the EWT corpus
contains 399 unique labels. To avoid sparsity is-
sues, we strip lexical information from labels dur-
ing training, instead replacing them with place-
holders (e.g. obl:[case]) indicating where in the
dependency graph the lexical information is ex-
pected to be found (see Sec. 2.4 for a detailed
description of the reconstruction process). This
way, we can remove all lexicalized relations from
the label vocabulary, instead adding only five
new placeholder labels: nmod:[case], obl:[case],
acl:[mark], advcl:[mark], and conj:[cc]. We keep
all other, non-lexicalized subtyped labels (such as
nmod:poss). This brings the total label count down
to 56 (including ∅).

2.4 Post-processing

The outputs provided by the dependency classifier
can be regarded as a 3-dimensional tensor, or in
other words, each cell in the matrix as shown in
Figure 2 contains the probabilities predicted for the
label set with the row label corresponding to the
relation’s head and the column label corresponding
to the relation’s dependent. Figure 2 shows the
highest-scoring label per entry.

Ensuring graph structure constraints. Using
the outputs provided by the dependency classifier,
we can assemble a dependency graph by retriev-
ing the highest-scoring dependency (or ∅, i.e., no
relation) for each pair of tokens in the sentence
(omitting the diagonal as enhanced UD does not
allow links starting and ending at the same node)
and forming their union.

Although enhanced UD eliminates the require-
ment that dependency graphs must be trees, it main-
tains a set of structural constraints. Specifically,
each token needs to have at least one head and
must be reachable from at least one of the root(s)
of the graph.2 These global constraints are not
automatically adhered to by our simple graph con-
struction method, which operates on pairs of to-
kens. Nonetheless, we observe that around 99 % of
sentences are assigned structurally valid graphs as

2Graphs in enhanced UD may have more than one root.

[r
oo

t]

U
se

ci
nn

am
on

in
st

ea
d

of su
ga

r

or sw
ee

te
ne

r

[root] ∅ root ∅ ∅ ∅ ∅ ∅ ∅

Use ∅ ∅ obj ∅ ∅ obl:[case] ∅ obl:[case]

cinnamon ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

instead ∅ ∅ ∅ ∅ fixed ∅ ∅ ∅

of ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

sugar ∅ ∅ ∅ case ∅ ∅ ∅ conj:[cc]

or ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

sweetener ∅ ∅ ∅ ∅ ∅ ∅ cc ∅

Figure 2: Prediction matrix of the dependency classi-
fier. Cell entries show the highest-scoring label for each
ordered pair of tokens, with row/column labels indicat-
ing potential heads/dependents respectively.

determined by the official validation script.3

To make the graphs of the remaining 1 % sen-
tences structurally valid, we perform the following
steps. In the case of tokens lacking a head, the
∅ label has received the highest score during clas-
sification for all possible heads. We now simply
retrieve all second-ranked labels and their scores
and pick the relation (and corresponding head) that
received the highest score across all possible heads.

Further, in order to ensure reachability from the
root, in the cases violating this constraint, we fall
back to an external dependency tree parse, i.e., a
representation of the UD basic layer, for generat-
ing candidate links to be added to our graph. We
here use the UDify parser (Kondratyuk and Straka,
2019) to predict basic UD trees. We determine the
set of nodes V that are not reachable from any root,
and for each node v ∈ V we compute the number
of nodes in V that can be reached when starting
at v. We then pick the node vi that can reach the
largest number of nodes and check if the head of vi
in the basic layer tree can be when starting at a root
in our graph. If so, we add the relation between
vi and its head as present in the basic layer tree to
our graph, otherwise, we add a dep edge from the
sentence’s first root to vi. We repeat this procedure
until each node in the graph is reachable from at
least one root node.

Re-lexicalization of labels. As outlined in
Sec. 2.3, lexical information is stripped from de-
pendency labels during training, using the format
base:[placeholder]. At prediction time, we re-

3https://github.com/
UniversalDependencies/tools/blob/master/
validate.py

https://github.com/UniversalDependencies/tools/blob/master/validate.py
https://github.com/UniversalDependencies/tools/blob/master/validate.py
https://github.com/UniversalDependencies/tools/blob/master/validate.py


248

Use cinnamon instead of sugar or sweetener

root

obj

obl:instead_of
case

fixed
conj:or

cc

obl:instead_of

(a) Dependency graph with lexicalization of labels.

Rooms were outdated , dirty and small

root

nsubj

cop

nsubj
nsubj

punct cc

conj:and

conj:and

(b) Dependency graph with “conjunction siblings.”

Figure 3: Re-lexicalization of dependency labels in the presence of conjunctions.

lexicalize predicted placeholder labels using the
following set of rules.

First, if the token has a dependent that is attached
via the placeholder of the de-lexicalized relation in
question, we lexicalize the relation with the token
of this dependent. For example, in Figure 3a, our
parser predicts obl:[case] and we re-lexicalize this
relation with the token(s) of the case dependents
of “sugar.” (Multiword expressions, such as “in-
stead of”, are handled by concatenating word forms
linked by the fixed relation.)

If such a dependent does not exist, it may be due
to the presence of a conj relation. For example,
Figure 3a shows a case where for the de-lexicalized
link obl:[case] ending at “sweetener,” no case rela-
tion starts at this node. This is due to the presence
of a conj relation, ending at “sweetener.” We hence
check if the head of the conj relation has an incom-
ing lexicalized edge of the same base relation (here
obl) and if so, re-lexicalize accordingly.

Similarly, conj links ending at siblings in coor-
dinate constructions (here “dirty” and “small”) are
always lexicalized with the same item (in this case
“and”). Unlike “small,” the dependent “dirty” does
not have its own cc dependent that could be used to
execute the first step, i.e., to replace the placeholder
of conj:[cc] with a dependent’s token. For such
nodes, we hence search the graph for siblings that
are linked to the common governor via conj rela-
tions. If we find any, we use the lexicalized label
of the corresponding conj relation for all siblings.

The above heuristics return a result for 98.9 % of
the de-lexicalized relations predicted for the blind
test data; in the remaining cases, we simply remove
the placeholder without substituting any lexical
material. Provided that the underlying base relation
was predicted correctly, we are able to retrieve the
correct lexical material for 98.4 % of relations.

Removal of relations. In addition, UD contains
several relations that empirically only appear on
their own, i.e., whose dependent may have only
one incoming edge of this type. These relations
are fixed, flat, goeswith, punct, and cc. However,
in around 0.4 % of cases our parser erroneously
predicts several of these relations for a single token
(e.g., punctuation being attached to several tokens
at once). In these cases, we remove all but the most
confidently predicted dependency.

3 Experiments

This section describes our submission to the Shared
Task, as well as a number of additional experiments
we conducted to contextualize our results.

3.1 Experimental Settings and
Hyperparameters

We use the training and development sections of
the EWT corpus for training and validation, respec-
tively. We use gold-tokenized and gold-segmented
sentences as input for our system during training.

For hyperparameter settings, we mostly stick
with the values used by Kondratyuk and Straka
(2019). An exception to this is the training regime,
where we found a low batch size, constant learn-
ing rate, no gradient clipping, and the AdamW
optimizer (Loshchilov and Hutter, 2019) to yield
the best results. The final hyperparameters can be
found in Table 1.

Our model was trained using a single nVidia
Tesla V100 GPU, stopping early when ELAS F1
score on the development set did not improve for
10 epochs. The best model was found after 63
epochs, i. e., 73 training epochs were performed in
total, taking ca. 9 hours. Parsing the English blind
test set (3077 sentences) takes around 3 minutes in
total, i.e. 0.06 seconds per sentence.



249

RoBERTa embeddings
Embeddings dimension 1024
Token mask probability 0.15
Layer dropout 0.1
Hidden dropout 0.2
Attention dropout 0.2
Output dropout 0.5

Biaffine classifier
Hidden size 1024
Dropout 0.33

AdamW Optimizer
Batch size 5
Learning rate 5e−6

β1, β2 0.9, 0.999
Weight decay 0.0

Table 1: Hyperparameter values.

Submission IWPT-all EWT PUD

RobertNLP 88.94 88.06 89.97
TurkuNLP 87.15 86.14 88.35
median 83.41 82.04 85.02
Køpsala 65.37 64.18 66.77

UDify + converter 85.67 84.55 87.00

Table 2: Parsing results (ELAS F1) on English blind
test data in the IWPT 2020 Shared Task.

3.2 Results of Submission

Table 2 shows the results (in terms of ELAS F1
score) on the blind English test data for our system
as well as the highest- and lowest-ranking compet-
ing submissions and the median submission. Our
system achieves an ELAS F1 score of 88.94 %,
ranking first with a margin of more than 1.5 points
over the second-ranking submission.

As an additional baseline, we used the state-of-
the-art UDify parser (Kondratyuk and Straka, 2019)
to predict basic dependencies and then ran the rule-
based converter by Schuster and Manning (2016)
on the output to extract enhanced relations. This
approach achieved an F-Score of 85.67 %, consid-
erably lower than our system, confirming that our
end-to-end graph parsing approach is superior to a
pipeline model of basic parsing + rule-based con-
version.

3.3 Analysis of Results

We here describe several experiments using varia-
tions of the setting used in our official submission.
These experiments aim at determining the impact
of different factors, including choice of pre-trained
embeddings, training data, as well as segmentation
and tokenization, on model performance. Some
of the experiments described in this section were

Embeddings Train IWPT-test EWT-dev

BERT-base EWT 87.49 87.64
RoBERTa-base EWT 88.17 88.64
BERT-large EWT 88.18 88.61
RoBERTa-large EWT 88.94a 89.43

RoBERTa-large UD2.5b 87.85 88.59

Table 3: Effect of embeddings and training data on
model performance (ELAS F1, English blind test data).
aOfficial submission. bConcatenation of EWT, GUM,
LinES, and ParTUT training data.

conducted during the development of our system,
others constitute post-evaluation analyses. For con-
sistency, we present results for the blind test data
in this section. Most experiments were initially
conducted using the development data, showing
the same tendencies.

Choice of pre-trained embeddings. We exper-
iment with four different pre-trained embedding
models, namely BERT and RoBERTa in their
base and large variants respectively. As shown
in Table 3, RoBERTa outperforms BERT, and
the large variants outperform the base variants,
with BERT-large and RoBERTa-base performing
roughly equally. The best observed results are
achieved by RoBERTa-large (our official submis-
sion). The superior performance of RoBERTa may
stem from the fact that it was pre-trained on a con-
siderably larger amount of data, and that it dropped
the “next sentence prediction” objective, which
may be irrelevant or even detrimental for a single-
sentence task like syntactic parsing.

Effect of additional training data. While
preparing our submission, we experimented with
generating additional training data by using the
rule-based UD enhancer by Schuster and Manning
(2016), which was used to create the gold standard
enhanced layers of the EWT and PUD corpora, to
build enhanced versions of three other English UD
treebanks (GUM, LinES, and ParTUT).

However, we found in preliminary experiments
on the dev and test sections of the above mentioned
corpora that including this additional training data
actually slightly hurts performance if the test data
is from a different corpus. This is correlated with
the lexical distance between test and training data
as computed using the Bhattacharyya distance

DB(p, q) = −ln
∑
x∈X

√
p(x)q(x) (6)



250

Corpus Lex. dist. ELAS F1

EWT 0.142 88.94
GUM 0.204 87.98
LinES 0.240 88.20
ParTUT 0.248 87.69

Table 4: Lexical (Bhattacharyya) distance and parsing
accuracy between the blind test data and the different
training corpora. The rightmost column indicates pars-
ing performance on the IWPT test set when adding the
respective corpus to the EWT training data. (First line
is EWT only.)

between the respective vocabulary probability dis-
tributions (Bhattacharya, 1943; Ruder and Plank,
2017).

As the lexical distance of the blind test set and
EWT is much smaller than the ones between the
test set and the other corpora (see Table 4), our
official submission’s model was trained only on
EWT. Post-evaluation experiments (see rightmost
column) confirm that when including corpora with
higher lexical distance, parsing accuracy decreases.
In addition, parsing results on the blind test set
when including all additional data (results see last
line in Table 3) confirm this approach. However, if
a different test set showed greater similarity to other
corpora, including them as training data would
likely be beneficial. As one of the anonymous
reviewers points out, in addition to lexical similar-
ity, factors such as mean dependency distance or
average sentence length may also play a role. In
conclusion, our experiments once more highlight
that selecting good training corpora for an applica-
tion domain is a critical factor and an interesting
direction for further research.

Effect of segmentation and tokenization.
While our parser was trained on gold-tokenized
and gold-segmented sentences, the Shared Task re-
quired parsing from raw text. In order to determine
the extent to which automatic segementation and
tokenization impacts results, we run our parser on
the gold-tokenized and gold-segmented version of
the test data.

We observe an ELAS F1 score of 90.80, which
constitutes an increase of nearly 2 points over
the results obtained using automatic segmentation.
This indicates that our system is rather sensitive
to these kinds of errors and would greatly benefit
from improvements in segmentation accuracy. It
might also be possible to increase the robustness
of our system w. r. t. these errors by training it on

system-predicted sentence segmentation.

Performance on basic vs. enhanced relations.
We further evaluate how performance of our parser
varies between (a) relations that result from en-
hancements, i. e., relations which are exclusive to
the enhanced layer, and (b) relations that occur in
the basic layer as well. Because our parser does not
differentiate between basic and enhanced relations
internally, we can only compute recall for the two
classes, but not precision and F1.4 We perform this
evaluation for gold-segmented and gold-tokenized
input.

Recall is considerably lower on relations exclu-
sive to the enhanced layer (83.64 %) as opposed
to relations that are also present in the basic layer
(91.60 %), indicating that predicting the former is
indeed a more difficult task compared to predict-
ing the latter, as might be expected. The result
further suggests that it might be promising to use
our parser architecture in combination with a span-
ning tree algorithm to predict basic-layer style trees
as well (e. g. in a multi-task setting). This would
also eliminate the need to rely on external parser
input to post-process dependency graphs for the
rare cases of invalid graphs.

Performance on individual label types. Fi-
nally, while our system achieves a high parsing
accuracy overall, we also compute F1-Scores for
each individual label type in order to obtain a
finer-grained picture of its strengths and weak-
nesses. Again, we perform this evaluation for gold-
segmented and gold-tokenized input. A selection
of the results is displayed in Table 5.

As might be expected, the label types on which
our parser performs best are highly common func-
tional relations such as det and case, as well as
frequent content word dependencies such as nsubj
and amod. More interestingly, it also performs
close to the average on nsubj:xsubj, which is not
only considerably rarer than the aforementioned
relations but also exclusive to the enhanced repre-
sentation, demonstrating that our joint approach is
capable of capturing these dependencies as well.

Somewhat more challenging are the flat and com-
pound labels (85.53 and 83.51 F-Score, respec-
tively), which are used to annotate multiword ex-

4We compare to the gold standard which distinguishes
between basic and enhanced relations. Our parser does not
differentiate between basic and enhanced relations, i.e., the
full graph is constructed without internally identifying the
subgraph corresponding to the basic syntactic tree.



251

Label Freq. ELAS F1

det 3879 99.04
case 4481 97.16
nsubj 3708 94.78
amod 2552 92.49
(Total/avg.) 48298 90.80
nsubj:xsubj 569 88.22
flat 482 85.53
punct 5519 84.28
compound 2005 83.51
appos 347 66.31
parataxis 301 59.35
list 251 47.72

Table 5: Parsing accuracy (ELAS F1) for a selection of
label types. Scores were computed on gold-segmented
test data. Freq. denotes the number of occurrences of
the label in the gold annotations.

pressions. The computational identification and
treatment of such expressions is very challenging
and constitutes a long-standing research area in
itself (Gregoire et al., 2007; Savary et al., 2018,
2019).

The punct relation harbors perhaps the great-
est potential for improvement, yielding an F-Score
of only 84.28 despite being extremely common.
This is likely due to the rather complex set of rules
that determines which token a piece of punctua-
tion is attached to.5 However, it might also be
the label where improvements are most difficult to
achieve, as the gold standard itself contains incon-
sistencies,6 leading to a noisy training signal.

Finally, out of all label types which occur more
than 200 times in the test data, the worst perfor-
mance is observed on appos, parataxis, and list.
While their low frequency is almost certainly part
of the reason for this, it is also worth noting that
these dependencies are unusual in that they repre-
sent “side-by-side” relations between words rather
than more obviously hierarchical structures (as is
the case for most other label types). Investigating
parser performance on these kinds of constructions
in greater detail may present a promising avenue
for future work.

4 Discussion and Conclusion

With our submission to the IWPT 2020 Shared
Task, we have demonstrated a conceptually simple,

5See https://universaldependencies.org/
u/dep/punct.html.

6As noted on the treebank’s Github page at https:
//github.com/UniversalDependencies/UD_
English-EWT.

yet highly effective method for parsing Enhanced
Universal Dependencies from English text.

Although we have focused on English in our
submission, we believe that our system should in
principle be easily adaptable to other languages
as the only language-specific part of out model is
its handling of lexicalized relations. While cer-
tain other languages (e. g., Czech or Estonian) have
more complex label inventories including for exam-
ple case information as well, this should not pose a
problem for our delexicalization strategy. However,
the adaptation might require a moderate amount
of manual work, and it remains to be seen how
effective the lexicalization strategy is for other lan-
guages, a question that may be addressed in future
work.

Acknowledgments

We thank Jonas Kuhn, Heike Adel, Jannik Strötgen,
Lukas Lange and the anonymous reviewers for their
useful comments regarding this work.

References
Anil Bhattacharya. 1943. On a measure of divergence

between two statistical populations defined by their
population distributions. In Bulletin of the Calcutta
Mathematical Society, volume 35, pages 99–109.

Gosse Bouma, Djamé Seddah, and Daniel Zeman.
2020. Overview of the IWPT 2020 Shared Task
on Parsing into Enhanced Universal Dependencies.
In Proceedings of the 16th International Conference
on Parsing Technologies and the IWPT 2020 Shared
Task on Parsing into Enhanced Universal Depen-
dencies, Seattle, US. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Timothy Dozat and Christopher D. Manning. 2018.
Simpler but more accurate semantic dependency

https://universaldependencies.org/u/dep/punct.html
https://universaldependencies.org/u/dep/punct.html
https://github.com/UniversalDependencies/UD_English-EWT
https://github.com/UniversalDependencies/UD_English-EWT
https://github.com/UniversalDependencies/UD_English-EWT
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.18653/v1/P18-2077


252

parsing. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 2: Short Papers), pages 484–490, Mel-
bourne, Australia. Association for Computational
Linguistics.

Nicole Gregoire, Stefan Evert, and Su Nam Kim,
editors. 2007. Proceedings of the Workshop on
A Broader Perspective on Multiword Expressions.
Association for Computational Linguistics, Prague,
Czech Republic.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally. In Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 2779–2795, Hong Kong, China. As-
sociation for Computational Linguistics.

Nelson F. Liu, Matt Gardner, Yonatan Belinkov,
Matthew E. Peters, and Noah A. Smith. 2019a. Lin-
guistic knowledge and transferability of contextual
representations. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 1073–1094, Minneapolis, Minnesota.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019b.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Con-
ference on Learning Representations.

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Uni-
versal Stanford dependencies: A cross-linguistic ty-
pology. In Proceedings of the Ninth International
Conference on Language Resources and Evalua-
tion (LREC’14), pages 4585–4592, Reykjavik, Ice-
land. European Language Resources Association
(ELRA).

Joakim Nivre, Paola Marongiu, Filip Ginter, Jenna
Kanerva, Simonetta Montemagni, Sebastian Schus-
ter, and Maria Simi. 2018. Enhancing universal
dependency treebanks: A case study. In Proceed-
ings of the Second Workshop on Universal Depen-
dencies (UDW 2018), pages 102–107, Brussels, Bel-
gium. Association for Computational Linguistics.

Jenna Nyblom, Samuel Kohonen, Katri Haverinen,
Tapio Salakoski, and Filip Ginter. 2013. Predict-
ing conjunct propagation and other extended Stan-
ford dependencies. In Proceedings of the Second In-
ternational Conference on Dependency Linguistics

(DepLing 2013), pages 252–261, Prague, Czech Re-
public. Charles University in Prague, Matfyzpress,
Prague, Czech Republic.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal dependency pars-
ing from scratch. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 160–170, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Sebastian Ruder and Barbara Plank. 2017. Learning to
select data for transfer learning with Bayesian opti-
mization. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 372–382, Copenhagen, Denmark. Association
for Computational Linguistics.

Agata Savary, Carla Parra Escartín, Francis Bond, Je-
lena Mitrović, and Verginica Barbu Mititelu, ed-
itors. 2019. Proceedings of the Joint Workshop
on Multiword Expressions and WordNet (MWE-WN
2019). Association for Computational Linguistics,
Florence, Italy.

Agata Savary, Carlos Ramisch, Jena D. Hwang, Nathan
Schneider, Melanie Andresen, Sameer Pradhan, and
Miriam R. L. Petruck, editors. 2018. Proceedings of
the Joint Workshop on Linguistic Annotation, Mul-
tiword Expressions and Constructions (LAW-MWE-
CxG-2018). Association for Computational Linguis-
tics, Santa Fe, New Mexico, USA.

Sebastian Schuster, Éric Villemonte de La Clergerie,
Marie Candito, Benoît Sagot, Christopher Manning,
and Djamé Seddah. 2017. Paris and Stanford at EPE
2017: Downstream evaluation of graph-based depen-
dency representations. In Proceedings of the 2017
Shared Task on Extrinsic Parser Evaluation (EPE
2017), pages 47–59.

Sebastian Schuster and Christopher D. Manning. 2016.
Enhanced English universal dependencies: An im-
proved representation for natural language under-
standing tasks. In Proceedings of the Tenth Inter-
national Conference on Language Resources and
Evaluation (LREC’16), pages 2371–2378, Portorož,
Slovenia. European Language Resources Associa-
tion (ELRA).

Maria Simi and Simonetta Montemagni. 2018. Boot-
strapping enhanced universal dependencies for Ital-
ian. In 5th Italian Conference on Computational
Linguistics, CLiC-it 2018, volume 2253. CEUR-
WS.

https://doi.org/10.18653/v1/P18-2077
https://www.aclweb.org/anthology/W07-1100
https://www.aclweb.org/anthology/W07-1100
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/D19-1279
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
https://doi.org/10.18653/v1/W18-6012
https://doi.org/10.18653/v1/W18-6012
https://www.aclweb.org/anthology/W13-3728
https://www.aclweb.org/anthology/W13-3728
https://www.aclweb.org/anthology/W13-3728
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.18653/v1/K18-2016
https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038
https://doi.org/10.18653/v1/D17-1038
https://www.aclweb.org/anthology/W19-5100
https://www.aclweb.org/anthology/W19-5100
https://www.aclweb.org/anthology/W19-5100
https://www.aclweb.org/anthology/W18-4900
https://www.aclweb.org/anthology/W18-4900
https://www.aclweb.org/anthology/W18-4900
https://www.aclweb.org/anthology/W18-4900
https://www.aclweb.org/anthology/L16-1376
https://www.aclweb.org/anthology/L16-1376
https://www.aclweb.org/anthology/L16-1376

