
Proceedings of the 6th International Workshop on Computational Linguistics of Uralic Languages, pages 9–14
Wien, Austria, January 10 — 11, 2020. c© 2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/FIXME

9

Effort versus performance tradeoff in Uralic lemmatisers

Nicholas Howell and Maria Bibaeva
National Research University Higher School of Economics, Moscow, Russia

Francis M. Tyers
National Research University Higher School of Economics, Moscow, Russia

Indiana University, Bloomington, IN, United States

Abstract
Lemmatisers in Uralic languages are required
for dictionary lookup, an important task for
language learners. We explore how to de-
cide which of the rule-based and unsuper-
vised categories is more efficient to invest
in. We present a comparison of rule-based
and unsupervised lemmatisers, derived from
the Giellatekno finite-state morphology project
and the Morfessor surface segmenter trained
on Wikipedia, respectively. The compari-
son spanned six Uralic languages, from rela-
tively high-resource (Finnish) to extremely low-
resource (Uralic languages of Russia). Perfor-
mance is measured by dictionary lookup and vo-
cabulary reduction tasks on the Wikipedia cor-
pora. Linguistic input was quantified, for rule-
based as quantity of source code and state ma-
chine complexity, and for unsupervised as the
size of the training corpus; these are normalised
against Finnish. Most languages show perfor-
mance improving with linguistic input. Future
work will produce quantitative estimates for the
relationship between corpus size, ruleset size,
and lemmatisation performance.

Abstract
Uralilaisten kielten sanakirjahakuihin tarvitaan
lemmatisoijia, jotka tulevat tarpeeseen kiele-
noppijan etsiessä sanan perusmuotoa. Tutkim-
me miten päästään selville sääntöpohjaisten
ja ohjastamattomien lemmatisoijien luokitte-
lun tehokkuudesta ja mihin pitää sijoittaa li-
sää työtä. Esittelemme vertailun Giellateknon
äärellistilaisen morfologian projektista derivoi-
duista sääntöpohjaisista lemmatisoijista sekä
Morfessor -pintasegmentoijaprojektin ohjasta-
mattomista lemmatisoijista, jotka on opetet-
tu Wikipedia-aineistoilla. Vertailu koskee kuut-
ta uralilaista kieltä, joista suomi edustaa suh-
teellisen suuriresurssista kieltä ja Venäjän ura-
lilaiset kielet edustavat erityisen vähäresurssi-
sia kieliä. Suoritusta mitataan sanakirjahaku-
ja sanastovähentämistehtävillä Wikipediakor-

puksilla. Kielellistä syötettä kvantifioitiin si-
ten, että lähdekoodi- ja äärellistilakoneen mo-
nipuolisuutta pidettiin sääntöpohjaisten lemma-
tisoijien mittana, ja ohjastamattomien lemma-
tisoijien mittana pidettiin opetuskorpusta. Näi-
den molempien mittausta normalisoitiin suo-
men arvoilla. Valtaosa kielistä näyttää suoriu-
tuvan tehtävästä paranevalla tavalla sitä mukaa,
kun kielellistä syötettä lisätään. Tulevassa työs-
sä tehdään kvantitatiivisia arviointeja korpus-
koon, säännöstösuuruuden ja lemmatisointisuo-
rituksen välisistä suhteista.

1 Introduction
Lemmatisation is the process of deinflecting a word
(the surface form) to obtain a normalised, grammatically
“neutral” form, called the lemma.
A related task is stemming, the process of removing

affix morphemes from a word, reducing it to the inter-
section of all surface forms of the same lemma.
These two operations have finer (meaning more infor-

mative) variants: morphological analysis (producing the
lemma plus list of morphological tags) and surface seg-
mentation (producing the stem plus list of affixes). Still,
a given surface form may have several possible analyses
and several possible segmentations.
Uralic languages are highly agglutinative, that is, in-

flection is often performed by appending suffixes to the
lemma. For such languages, stemming and lemmatisa-
tion agree, allowing one dimension of comparison be-
tween morphological analysers and surface segmenters.
Such agglutinative languages typically do not have all

surface forms listed in a dictionary; users wishing to look
up a wordmust lemmatise before performing the lookup.
Software tools (Johnson et al., 2013) are being developed
to combine the lemmatisation and lookup operations.
Further, most Uralic languages are low-resourced,

meaning large corpora (necessary for the training of
some analysers and segmenters) are not readily available.
In such cases, software engineers, linguists and system
designers must decide whether to invest effort in obtain-
ing a large enough corpus for statistical methods or in
writing rulesets for a rule-based system.



10

In this article we explore this trade-off, comparing
rule-based and statistical stemmers across several Uralic
languages (with varying levels of resources), using a
number of proxies for “model effort”.
For rule-based systems, we evaluate the Giellatekno

(Moshagen et al., 2014) finite-state morphological trans-
ducers, exploring model effort through ruleset length,
and number of states of the transducer.
For statistical systems, we evaluate Morfessor (Virpi-

oja et al., 2013) surface segementer models along with
training corpus size.
We hope to provide guidance on the question, “given

an agglutinative language with a corpus ofN words, how
much effort might a rule-based analyser require to be
better than a statistical segmenter at lemmatisation?”

1.1 Reading Guide
The most interesting results of this work are the fig-
ures shown in Section 5.4, where effort proxies are plot-
ted against several measures of performance (normalised
against Finnish). The efficient reader may wish to look at
these first, looking up the various quantities afterwards.
For (brief) information on the languages involved, see

Section 2; to read about the morphological analysers and
statistical segmenters used, see Section 3.
Discussion and advisement on directions for future

work conclude the article in Section 6. The entire project
is reproducible, and will be made available before publi-
cation.

2 Languages
The languages used for the experiments in this paper are
all of the Uralic group. These languages are typologically
agglutinative with predominantly suffixing morphology.
The following paragraphs give a brief introduction to
each of the languages.

Finnish (ISO-639-3 fin) is the majority and official
(together with Swedish) language of Finland. It is in the
Finnic group of Uralic languages, and has an estimate of
around 6 million speakers worldwide. The language, like
other Uralic languages spoken in the more western re-
gions of the language area has predominantly SVO word
order and NP-internal agreement.

Komi-Zyrian (ISO-639-3 kpv; often simply referred
to as Komi) is one of the major varieties of the Komi
macrolanguage of the Permic group of Uralic languages.
It is spoken by the Komi-Zyrians, the most populous eth-
nic subgroup of the Komi peoples in the Uralic regions
of the Russian Federation. Komi languages are spoken
by an estimated 220, 00 people, and are co-official with
Russian in the Komi Republic and the Perm Krai terri-
tory of the Russian Federation.

Moksha (ISO-639-3 mdf) is one of the twoMordvinic
languges, the other being Erzya; the two share co-official
status with Russian in theMordovia Republic of the Rus-
sian Federation. There are an estimated 2, 000 speakers

of Moksha, and it is dominant in the Western part of
Mordovia.

Meadow Mari (ISO-639-3 mhr, also known as East-
ern Mari) is one of the minor languages of Russia be-
longing to the Finno-Volgaic group of the Uralic family.
After Russian, it is the second-most spoken language of
the Mari El Republic in the Russian Federation, and an
estimated 500, 000 speakers globally. Meadow Mari is
co-official with Hill Mari and Russian in the Mari El Re-
public.

Hill Mari (ISO-639-3 mrj; also known as Western
Mari) is one of the minor languages of Russia belong-
ing to the Finno-Volgaic group of the Uralic family, with
an estimated 30, 000 speakers. It is closely related to
Meadow Mari (ISO-639-3 mhr, also known as Eastern
Mari, and Hill Mari is sometimes regarded as a dialect
of Meadow Mari. Both languages are co-official with
Russian in the Mari El Republic.

Erzya (ISO-639-3 myv) is one of the two Mordvinic
languages, the other being Moksha, which are tradition-
ally spoken in scattered villages throughout the Volga Re-
gion and former Russian Empire by well over a million
in the beginning of the 20th century and down to ap-
proximately half a million according to the 2010 census.
Together with Moksha and Russian, it shares co-official
status in the Mordovia Republic of the Russian Federa-
tion.1

North Sámi (ISO-639-3 sme) belongs to the Samic
branch of the Uralic languages. It is spoken in the North-
ern parts of Norway, Sweden and Finland by approxi-
mately 24.700 people, and it has, alongside the national
language, some official status in the municipalities and
counties where it is spoken. North Sámi speakers are
bilingual in their mother tongue and in their respective
national language, many also speak the neighbouring of-
ficial language. It is primarily an SVO language with lim-
ited NP-internal agreement. Of all the languages studied
it has the most complex phonological processes.

Udmurt (ISO-639-3 udm) is a Uralic language in the
Permic subgroup spoken in the Volga area of the Russian
Federation. It is co-official with Russian in the Republic
of Udmurtia. As of 2010 it has around 340,000 native
speakers.
Grammatically as with the other languages it is agglu-

tinative, with 15 noun cases, seven of which are locative
cases. It has two numbers, singular and plural and a se-
ries of possessive suffixes which decline for three persons
and two numbers.
In terms of word order typology, the language is SOV,

like many of the other Uralic languages of the Russian
Federation. There are a number of grammars of the lan-
guage in Russian and in English, e.g. Winkler (2001).

1https://efo.revues.org/1829

https://efo.revues.org/1829


11

Table 1: Giellatekno bilingual dictionary sizes, in words.

Language Lexemes
fin 19012
kpv 43362
mdf 28953
mhr 53134
mrj 6052
myv 15401
sme 17605
udm 19639

3 Lemmatisers
3.1 Giellatekno transducers
Giellatekno is a research group working on language
technology for the Sámi languages. It is based in Tromsø,
Norway and works primarily on rule-based language
technology, particularly finite-state morphological de-
scriptions and constraint grammars. In addition to the
Sámi languages, their open-source infrastructure also
contains software and data for many other Uralic lan-
guages.
In particular, Giellatekno has produced (Moshagen

et al., 2014) finite-state transducers for morphological
analysis of our chosen Uralic languages; we use these to
extract lemmas from surface forms. When multiple lem-
matisations are offered, the highest weight one is chosen.
Unaccepted words are treated as already-lemmatised.

3.2 Morfessor
Morfessor (Virpioja et al., 2013) is a class of unsuper-
vised and semi-supervised trainable surface segmenta-
tion algorithms; it attempts to find a minimal dictionary
of morphemes. We use Wikipedia as training data for
this model.

4 Evaluation
4.1 Dictionary task
The stemmers are applied to every word in the corpus,
and the resulting stem is looked up in a dictionary. This
mimics a user attempting to look up a highlighted word
in a dictionary.
Bilingual dictionaries are taken fromGiellatekno, with

definitions in Russian, Finnish, English, or German.
(The actual definitions are not used, just the presence of
an entry; we take the union over all dictionaries.) Dic-
tionary sizes are shown in Table 1.
As baseline we take the percentage of words in the

corpus which are already in the dictionary. Both token
and type counts provided.

4.2 Vocabulary reduction
We apply the lemmatisers to each word of the corpus,
and measure the reduction in tokens and types. Lower

diversity of post-lemmatisation tokens or types demon-
strates that the lemmatiser is identifying more words as
having the same lemma.
The distinction between token reduction and type re-

duction corresponds to a notion of ”user experience”:
from the perspective of our tasks, correctly lemmatis-
ing a more frequent token is more important than a less
frequent token.

4.3 Effort
The effort expended in producing a model is a subjective
and qualitative measure; we claim only to provide coarse
objective and quantitative proxies for this.
In the case of statistical methods, total effort (which

would include the effort of developing the algorithm) is
not important for our purposes: we are comparing the
specialisation of a statistical method to a particular lan-
guage with the development of a rule-based model. (In-
deed, to fairly compare total effort of the technique, a
completely different and perhaps more academic ques-
tion, we would need to include the general development
of rule-based methods.) Thus for statistical methods we
include only the size of the corpus used to train the sys-
tem. In our experiments, this corpus isWikipedia, which
we use (for better or worse) as a proxy for general avail-
ability of corpora in a given language on the internet.
For rule-based systems, we must find a measure of the

effort. In this article our rule-based systems are all finite-
state transducers, compiled from rulesets written by lin-
guists. We choose two proxies for invested effort: the
lines of code in all rulesets used in compiling the trans-
ducer, and the number of states of the transducer.
The former will count complex and simple rules the

same, which the latter may provide insight into. Con-
versely, a highly powerful rule system may create a great
number of states while being simple to write; in this case,
the ruleset is a better proxy than the number of states.

4.4 Wikipedia
Wikipedia dumps from 20181201 are used as source
corpus; the corpus is split into tokens at word bound-
aries and tokens which are not purely alphabetical are
dropped. Corpus size in tokens, post-processing, is
shown in Table 2.
Corpora were randomly divided into training (90%

of the corpus) and testing subcorpora (10%); Morfes-
sor models are produced with the training subcorpus, and
lemmatiser evaluation is only with the test subcorpus.

5 Results
Our study involves treating the Uralic language as an in-
dependent variable; the six languages we consider here
do not provide for a very large sample. We attempt to
mitigate this by using both traditional and robust statis-
tics; potential “outliers” can then be quantitatively iden-
tified. Thus for every mean and standard deviation seen,
we will also present the median and the median absolute
deviation.



12

Table 2: Wikipedia corpus size by language, in alpha-
betic words.

Language Tokens Types
fin 897867 276761
mrj 352521 51420
mhr 15159 6468
myv 11177 5107
sme 9442 6552
udm 7503 4308

For reference: suppose that {xi}Ni=1 is a finite set of
numbers. If {yi}Ni=1 is the same collection, but sorted
(so that y1 ≤ y2 ≤ · · · ≤ yN ), then the median is

med{xi} =

{
yN/2 N is even
mean{y(N±1)/2} N is odd

and the median absolute deviation (or for brevity, “me-
dian deviation”) is

mad{xi} = med {|xi −medxi|} .

When we quote means, we will write them as µ ± σ
where µ is the mean and σ the standard deviation of the
data. Similarly, for medians we will write m± d where
m is the median and d the median deviation.
Data with potential outliers can be identified by

comparing the median/median deviation and the
mean/standard deviation: if they are significantly
different (for example, the mean is much further than
one standard deviation away from the median, or the
median deviation is much smaller than the standard
deviation), then attention is likely warranted.

5.1 Dictionary lookup
Results of the dictionary lookup are presented in Table 3.
Cursory inspection shows that while the Giellatekno

model for Finnish slightly out-performs the Wikipedia
Morfessor model, on average Morfessor provides not
only the greatest improvement in token lookup perfor-
mance (average/median improvement of 1.6/1.5 versus
Giellatekno’s 1.4/1.3), but also more consistent (stan-
dard/median deviation of 0.3/0.1 versus 0.4/0.3).
We see some limitations in the Morfessor model when

projecting to type lookup performance: the value of
Morfessor on type lookup is essentially random, hurting
as often and as much as it helps: mean and median im-
provement factors are both 1.0. Compare with Giellate-
kno, where improvement mean and median are at least
one deviation above baseline. We suggest this disparity
could be due to ourMorfessor model over-stemming rare
words, and successfully stemming common words.

5.2 Vocabulary reduction
Vocabulary reduction results are presented in Table 4.
Generally, we see that Morfessor is much more ag-

gressively reducing the vocabulary: average Morfessor

reduction is 9% versus Giellatekno’s 15%; here North
Sámi and Finnish again stand out with Morfessor reduc-
ing to 7.2% and 6.5% respectively. Compare with Hill
Mari, where reduction is to a mere 11%.
While the performance of Giellatekno is much less

dramatic, we still notice that North Sámi and Hill Mari
are more than a standard deviation, or more than twome-
dian deviations, away from the mean performance. Oth-
erwise, the clustering is fairly tight, with all languages
besides North Sámi and Hill Mari within one standard
deviation and 1.5 median deviations.
The analysis above shows that our data are affected

by outlier models; which of the two measures is nom-
inally more representative of the overall performance
landscape could be demonstrated through an increase of
sample size, i.e., increasing the number of languages sur-
veyed.

5.3 Effort
The effort quantification is presented in Table 5. Trans-
ducer source code complexity, measured in number of
transducer states per line of source code, is presented in
Table 6. Note that comments are included as part of the
“source code”; we consider, for example, explanation of
how the code works to count as some of the effort behind
the development of the transducer.
Some immediate observations: among the Uralic lan-

guages studied here, Finnish is high-resource, but not
overwhelmingly: North Sámi compares for transducer
size (in number of states), at nearly 2.5 times the median.
While Meadow Mari actually has a comparable amount
of transducer source code (1.8 million lines of code,
about 80% the size of the Finnish transducer), its trans-
ducer code is extremely low complexity; see Table 6.
FinnishWikipedia is approximately 2.5 times larger than
the next largest, Hill Mari, and nearly 7 times larger than
the median; under our assumption, this would indicate
that Finnish written material is also much more accessi-
ble on the internet than our other Uralic languages.
Among Giellatekno models, Hill Mari transducer is

uniformly the lowest-resource of the Uralic languages
studied, with very few lines of below-average complex-
ity code written; contrast this with theMorfessor models,
where Hill Mari has a respectable 350, 000 tokens. The
lowest resource Morfessor model is Udmurt, with only
7, 000 tokens; the Udmurt Giellatekno model is also sig-
nificantly below-average in resources.
While North Sámi has slightly below-median trans-

ducer source size, it has extremely high (eight deviations
abovemedian) state complexity, withmore than one state
for every two lines of code.

5.4 Analysis
See Figures 1, 2, and 3 for plots of effort normalised
against Finnish versus performance. Plots are colored
by language and marked by the effort quantification
method. Note that since “lines of code” and “number
of states” are two different measures of the same model,



13

Table 3: Results of the dictionary lookup task for no-op (NOOP), Morfessor (MF), and Giellatekno transducer (GT).
A “hit” means a successful dictionary lookup. Percentage hits (tokens or types) is the percentage of tokens or types in
the corpus for which the lemmatiser produces a dictionary word. The “no-op” (NOOP) lemmatiser takes the surface
form as-is, and is used as baseline; the last two columns are percentage hits normalised by this.

Language Lemmatiser Hits (thous.) %Hits Improvement
tokens types tokens types tokens types

fin

NOOP

10.2 2.55 11.0 5.0 - -
kpv 0.5 0.14 43.0 22.0 - -
mdf 2.1 0.75 32.0 19.0 - -
mhr 0.6 0.26 39.0 24.0 - -
mrj 5.4 0.76 15.0 6.0 - -
myv 0.4 0.13 38.0 19.0 - -
sme 0.1 0.08 15.0 10.0 - -
udm 0.2 0.14 31.0 22.0 - -
average NOOP 2.0 ± 3.0 0.6 ± 0.8 30.0 ± 10.0 16.0 ± 7.0 - -
median 0.5 ± 0.3 0.2 ± 0.09 32.0 ± 9.0 19.0 ± 4.0 - -
fin

GT

19.1 3.0 21.0 6.0 1.9 1.2
kpv 0.5 0.14 45.0 21.0 1.0 0.9
mdf 3.9 1.08 61.0 27.0 1.9 1.4
mhr 0.6 0.27 42.0 26.0 1.1 1.1
mrj 8.3 0.88 23.0 7.0 1.5 1.1
myv 0.4 0.17 38.0 24.0 1.0 1.3
sme 0.3 0.14 29.0 17.0 2.0 1.7
udm 0.3 0.16 35.0 25.0 1.1 1.1
average GT 4.0 ± 6.0 0.7 ± 0.9 40.0 ± 10.0 19.0 ± 8.0 1.4 ± 0.4 1.2 ± 0.2
median 0.6 ± 0.3 0.22 ± 0.08 36.0 ± 8.0 22.0 ± 4.0 1.3 ± 0.3 1.2 ± 0.1
fin

MORF

18.7 2.4 21.0 5.0 1.8 0.9
kpv 0.6 0.18 56.0 27.0 1.3 1.2
mdf 3.0 0.63 47.0 16.0 1.5 0.8
mhr 0.8 0.24 51.0 23.0 1.3 0.9
mrj 8.1 0.57 23.0 5.0 1.5 0.7
myv 0.6 0.13 49.0 19.0 1.3 1.0
sme 0.3 0.11 34.0 14.0 2.3 1.3
udm 0.3 0.15 45.0 24.0 1.4 1.1
average MORF 4.0 ± 6.0 0.6 ± 0.7 40.0 ± 10.0 16.0 ± 8.0 1.6 ± 0.3 1.0 ± 0.2
median 0.7 ± 0.4 0.21 ± 0.09 46.0 ± 7.0 17.0 ± 6.0 1.5 ± 0.1 1.0 ± 0.1



14

Table 4: Vocabulary reduction results for no-op
(NOOP), Morfessor (MF), and Giellatekno (GT) lem-
matisers. The final column gives the reduction factor in
vocabulary size: reduction of 1 corresponds to no reduc-
tion performed, while 0.01 corresponds to a 100-fold re-
duction in vocabulary (average of 100 types per lemma).
Note that there is no constraint that the “lemmas” pro-
duced are dictionary words.

Lang. Model Lemmas (k) %Red.
fin

NOOP

264.5 -
kpv 4.7 -
mdf 18.1 -
mhr 6.3 -
mrj 46.9 -
myv 5.0 -
sme 6.5 -
udm 4.2 -
average NOOP 45 ± 84 -
median 6.4 ± 2.0 -
fin

GT

41.8 15.8
kpv 0.6 13.6
mdf 2.9 15.8
mhr 1.0 16.6
mrj 9.7 20.8
myv 0.7 13.4
sme 0.8 12.1
udm 0.6 14.7
average GT 7.3 ± 13 15.3 ± 2.5
median 0.9 ± 0.3 15.2 ± 1.5
fin

MORF

17.1 6.5
kpv 0.4 9.1
mdf 1.8 9.9
mhr 0.6 9.9
mrj 5.2 11.1
myv 0.4 8.6
sme 0.5 7.2
udm 0.4 9.9
average MORF 3.3 ± 5.4 9.0 ± 1.4
median 0.5 ± 0.1 9.5 ± 0.6

Table 5: Effort quantification; last column is normalized
by Finnish. The group ‘Mloc’ refers to millions of lines
of code in the Giellatekno transducer source, including
lexc, xfst, regular expression, constrain grammar, and
twol code. The group ‘kst’ is the number (in thousands)
of states in the Giellatekno transducer, and ‘ktok’ is the
number (in thousands) of tokens in the Morfessor train-
ing corpus. The final column normalises against Finnish.

Lang. Model Effort Quan. % fin

fin

GT kst

440 100
kpv 150 35
mdf 60 13
mhr 80 17
mrj 50 11
myv 110 25
sme 540 122
udm 60 15
avg. GT kst 190 ± 180 40 ± 40
med. 90 ± 40 20 ± 9
fin

GT Mloc

2.3 100.0
kpv 0.7 30.0
mdf 0.9 40.0
mhr 1.8 80.0
mrj 0.5 20.0
myv 1.2 50.0
sme 0.9 40.0
udm 0.5 20.0
avg. GT Mloc 1.1 ± 0.6 50 ± 30
med. 0.9 ± 0.3 40 ± 10
fin

MORF ktok

898.0 100.0
kpv 11.0 1.2
mdf 64.0 7.1
mhr 15.0 1.7
mrj 353.0 39.3
myv 11.0 1.2
sme 9.0 1.1
udm 7.0 0.8
avg. MORF ktok 171 ± 296 19.1 ± 33.0
med. 13 ± 5 1.5 ± 0.5



Table 6: Transducer source complexity, in number of
states per line of transducer source code. The column
“LoC (M)” gives the number of lines of source code, in
millions, and “States (k)” the size, in thousands of states
of the compiled transducer.

Lang. LoC (M) States (k) Complex.
fin 2.3 440.0 0.19
kpv 0.7 150.0 0.21
mdf 0.9 60.0 0.06
mhr 1.8 80.0 0.04
mrj 0.5 50.0 0.09
myv 1.2 110.0 0.09
sme 0.9 540.0 0.63
udm 0.5 60.0 0.14
avg. 1.1 ± 0.6 200 ± 200 0.2 ± 0.2
med. 0.9 ± 0.3 90 ± 40 0.12 ± 0.06

their performance is the same.
Figure 1 indicates that for the dictionary lookup task

by-token, Morfessor with Wikipedia is more effort-
efficient (relative to Finnish) for Komi-Zyrian, Udmurt,
North Sámi, Erzya, Meadow Mari, and Giellatekno is
more effort-efficient for Hill Mari. Remaining is Mok-
sha, for which performance improvement scales with ef-
fort independent of model, and Finnish.
Since we normalise effort against Finnish, we can

only observe that the Finnish Giellatekno model per-
forms slightly better than the Finnish Wikipedia Mor-
fessor model; efficiency claims cannot be made.
Figure 2 indicates that for the dictionary lookup task

by-token, Morfessor with Wikipedia is more effort-
efficient (relative to Finnish) for Komi-Zyrian only;
Giellatekno remains more effort-efficient for Hill Mari.
Meanwhile, Udmurt, North Sámi, Erzya, and Meadow
Mari join Moksha in improvement scaling with effort;
the spread in slopes (the rate at which performance im-
proves as effort is increased) is, however, quite large.
Figure 3 shows that, as with lookup performance for

tokens, Morfessor dominates vocabulary reduction effi-
ciency, with only Hill Mari scaling with relative effort.

6 Conclusion
6.1 Discussion
There are many interesting things to notice in the effort-
performance analysis.
Focusing just on the dictionary task, we find that com-

pared against the same technology for Finnish, the Giel-
latekno North Sámi (sme) transducer has very high per-
formance (relatively small ruleset), due to high rule com-
plexity (the number of states is not very low). It is possi-
ble that North Sámi is simply easy to lemmatise, as Mor-
fessor seems to do very well with a small corpus.
Hill Mari (mrj) shows predictable performance: rela-

tive to Finnish, a small increase in resources (going from
20% or 30% of Finnish resources for the Giellatekno

transducer to 40% resources for the Wikipedia corpus)
gives a modest increase in performance.
Overall, we see that percent improvement in tasks

scales with effort (relative to Finnish) in the type-lookup
task; in the token-lookup and vocabulary reduction tasks,
performance improvement favours Morfessor. (That
is, the Morfessor model has a higher improvement-to-
resource ratio, with resources relative to Finnish.) This
might be explained by the dramatic spread in Wikipedia
corpus sizes used in the Morfessor models: median cor-
pus size is 1.5% ± 0.5% the size of Finnish. Thus, im-
provement of 5% of the Morfessor model is increasing
the nominal effort (kilotokens) by a factor of four, for the
median corpus; compare with Giellatekno, where me-
dian model is 20% or 40% the size of the corresponding
Finnish model, depending on the metric used. See the
following section for potential avenues to control for this.

6.2 Future work
In the dictionary task, hits/words is lower than unique
hits/words (see Section 5.1); this indicates that mis-
lemmatised words are more frequent. Since irregular
words are typically high-frequency, we might hypothe-
size that filtering these would close this gap. If not, it
might point out areas for improvement in the lemmatisa-
tion algorithm.
We would like to also try other methods of lemma-

tising. One of the problems with the finite-state trans-
ducers is that they have limited capacity for lemmatis-
ing words which are not found in the lexicon. It is pos-
sible to use guesser techniques such as those described
in Lindén (2009), but the accuracy is substantially lower
than for hand-written entries. We would like to approach
the problem as in Silfverberg and Tyers (2018) and train
a sequence-to-sequence LSTM to perform lemmatisa-
tion using the finite-state transducer to produce forms for
the training process.
There are other statistical methods, in particular byte-

pair encoding and adaptor grammars (Johnson et al.,
2006), which should be added to the comparison, and
addition of further languages should be straightforward.
A more refined understanding of the relationship

between size of corpus and Morfessor would give a
richer dataset; this could be achieved by decimating the
Wikipedia corpus. For truly low-resource languages, ad-
ditional corpora may be necessary.
Similar refinement could be produced for the Giellate-

kno transducers using their version history: older ver-
sions of the transducers have had less work, and presum-
ably have less source code. A dedicated researcher could
compare various editions of the same transducer.
Cross-validation (in the case of Morfessor) and us-

ing multiple testing subcorpora would give some idea of
the confidence of our performance measurements at the
language-level.
Another interesting analysis, which we do not have

the space to perform here, would be to normalise perfor-
mance P , along the model axis m, for example for lan-



0.0 0.2 0.4 0.6 0.8 1.0 1.2
Effort/fin

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Im
p.

 %
 H

its
 (t

ok
en

s)

Lang.
fin
kpv
mdf
mhr
mrj
myv
sme
udm
Meas.
gt.loc
gt.states
mf

Figure 1: Improvement factor in hit rate in dictionary lookup (by tokens) (see Section 4.1; higher is better) vs. effort
relative to Finnish (see Section 4.3; higher is more effort). In general, more effort-efficient models will appear to the
upper-left of less effort-efficient models.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Effort/fin

0.8

1.0

1.2

1.4

1.6

Im
p.

 %
 H

its
 (t

yp
es

)

Lang.
fin
kpv
mdf
mhr
mrj
myv
sme
udm
Meas.
gt.loc
gt.states
mf

Figure 2: Improvement factor in hit rate in dictionary lookup (by types) (see Section 4.1; higher is better) vs. effort
relative to Finnish (see Section 4.3; higher is more effort). In general, more effort-efficient models will appear to the
upper-left of less effort-efficient models.



0.0 0.2 0.4 0.6 0.8 1.0 1.2
Effort/fin

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20
%
 V
oc

ab
. R

ed
uc

tio
n

Lang.
fin
kpv
mdf
mhr
mrj
myv
sme
udm
Meas.
gt.loc
gt.states
mf

Figure 3: Vocabulary reduction performance in types (see Section 4.2; lower is better) vs. effort relative to Finnish
(see Section 4.3; higher is more effort). In general, more effort-efficient models will appear to the lower-left of less
effort-efficient models.

guage xxx (normalising against Giellatekno model per-
formance):

P ∗
xxx,m = Pxxx,m · Pfin,GT

Pfin,m

This measure, P ∗, would always be fixed to 1.0
for Finnish, and would partially control for language-
independent performance variation between models.
This would then allow study of the distribution over lan-
guages of marginal performance improvement with ef-
fort.

References
Mark Johnson, Thomas L. Griffiths, and Sharon Gold-
water. 2006. Adaptor grammars: A framework
for specifying compositional nonparametric bayesian
models. In Advances in neural information processing
systems, pages 641–648.

Ryan Johnson, Lene Antonsen, and Trond Trosterud.
2013. Using finite state transducers for making effi-
cient reading comprehension dictionaries. In Proceed-
ings of the 19th Nordic Conference of Computational
Linguistics (NODALIDA 2013), 85, pages 59–71.

Krister Lindén. 2009. Guessers for finite-state trans-
ducer lexicons. Computational Linguistics and Intel-
ligent Text Processing 10th International Conference,
CICLing 2009, 5449:158–169.

Sjur Nørstebø Moshagen, Jack Rueter, Tommi Prinen,
Trond Trosterud, and Francis Morton Tyers. 2014.
Open-source infrastructures for collaborative work on
under-resourced languages.

Miikka Silfverberg and Francis M. Tyers. 2018. Data-
driven morphological analysis for Uralic languages.
In Proceedings of the 5th International Workshop on
Computational Linguistics for the Uralic Languages
(IWCLUL 2018).

Sami Virpioja, Peter Smit, Stig-Arne Grönroos, , and
Mikko Kurimo. 2013. Morfessor 2.0: Python Im-
plementation and Extensions for Morfessor Baseline.
Technical report, Aalto University.

Eberhard Winkler. 2001. Udmurt. Lincom Europa.


