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Abstract

In the era of Big Knowledge Graphs, Ques-
tion Answering (QA) systems have reached
a milestone in their performance and feasibil-
ity. However, their applicability, particularly
in specific domains such as the biomedical do-
main, has not gained wide acceptance due to
their “black box” nature, which hinders trans-
parency, fairness, and accountability ofQA sys-
tems. Therefore, users are unable to understand
how andwhy particular questions have been an-
swered, whereas some others fail. To address
this challenge, in this paper, we develop an au-
tomatic approach for generating explanations
during various stages of a pipeline-based QA
system. Our approach is a supervised and auto-
matic approach which considers three classes
(i.e., success, no answer, andwrong answer) for
annotating the output of involved QA compo-
nents. Upon our prediction, a template expla-
nation is chosen and integrated into the output
of the corresponding component. To measure
the effectiveness of the approach, we conducted
a user survey as to how non-expert users per-
ceive our generated explanations. The results
of our study show a significant increase in the
four dimensions of the human factor from the
Human-computer interaction community.

1 Introduction

The recent advances of Question Answering (QA)
technologies mostly rely on (i) the advantages of
Big Knowledge Graphs which augment the seman-
tics, structure, and accessibility of data, e.g.,Web
of Data has published around 150B triples from a
variety of domains1, and (ii) the competency of con-
temporary AI approaches which train sophisticated
learning models (statistical models (Shekarpour
et al., 2015, 2013), neural networks (Lukovnikov
et al., 2017), and attention models (Liu, 2019)) on
a large size of training data, and given a variety of

1http://lodstats.aksw.org/

novel features captured from semantics, structure,
and context of the background data. However, sim-
ilar to other branches of AI applications, the state
of the art of QA systems are “black boxes” that
fail to provide transparent explanations about why
a particular answer is generated. This black box
behavior diminishes the confidence and trust of the
user and hinders the reliance and acceptance of the
black-box systems, especially in critical domains
such as healthcare, biomedical, life-science, and
self-driving cars (Samek et al., 2017; Miller, 2018).
The running hypothesis in this paper is that the lack
of explanation for answers provided by QA systems
diminishes the trust and acceptance of the user to-
wards these systems. Therefore, by implementing
more transparent, interpretable, or explainable QA
systems, the end users will be better equipped to
justify and therefore trust the output of QA systems
(Li et al., 2018).

Furthermore, data quality is a critical factor
that highly affects the performance of QA sys-
tems. In other words, when the background data
is flawed or outdated, it undermines the human-
likeness and acceptance of the QA systems if no
explanation is provided, especially for non-expert
users. For example, the SINA engine (Shekarpour
et al., 2015) failed to answer the simple question
“What is the population of Canada?” on the DB-
pedia (Auer et al., 2007) version 2013, whereas it
succeeded for similar questions such as “What is
the population of Germany?”. The error analysis
showed that the expected triple i.e., <dbr2:Canada
dbo3:population "xxx"> is missing from DB-
pedia 2013. Thus, if the QA system does not
provide any explanation about such failures, then
the non-expert user concludes the QA system into
the demerit points. Thus, in general, the errors or

2dbr is bound to http://dbpedia.org/resource/.
3The prefix dbo is bound to http://dbpedia.org/

ontology/.

http://lodstats.aksw.org/
http://dbpedia.org/resource/
http://dbpedia.org/ontology/
http://dbpedia.org/ontology/
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failures of the QA systems might be caused by the
inadequacies of the underlying data or misunder-
standing, misinterpretation, or miscomputation of
the employed computational models. In either case,
the black-box QA system does not provide any ex-
planations regarding the sources of the error. Often
the research community obsesses with the technical
discussion of QA systems and competes on enhanc-
ing the performance of the QA systems, whereas,
on the downside of the QA systems, there is a hu-
man who plays a vital role in the acceptance of the
system. The Human-Computer Interaction (HCI)
community already targeted various aspects of the
human-centered design and evaluation challenges
of black-box systems. However, the QA systems
over KGs received the least attention comparing to
other AI applications such as recommender systems
(Herlocker et al., 2000; Kouki et al., 2017).

Motivation andApproach: Plethora of QA sys-
tems over knowledge graphs developed in the last
decade (Höffner et al., 2017). These QA systems
are evaluated on various benchmarking datasets in-
cluding WebQuestions (Berant et al., 2013), QALD
(Unger et al., 2015), LC-QuAD (Trivedi et al.,
2017), and report results based on global metrics of
precision, recall, and F-score. In many cases, QA
approaches over KGs even surpass the human level
performance (Petrochuk and Zettlemoyer, 2018).
Irrespective of the underlying technology and algo-
rithms, these QA systems act as black box and do
not provide any explanation to the user regarding
1) why a particular answer is generated and 2) how
the given answer is extracted from the knowledge
source. The recent works towards explainable artifi-
cial intelligence (XAI) gained momentum because
several AI applications find limited acceptance due
to ethical reasons (Angwin et al., 2016) and a lack
of trust on behalf of their users (Stubbs et al., 2007).
The same rationale is also applicable to the black-
box QA systems. Research studies showed that
representing adequate explanations to the answer
brings acceptability and confidence to the user as
observed in various domains such as recommender
systems and visual question answering (Herlocker
et al., 2000; Hayes and Shah, 2017; Hendricks et al.,
2016; Wu and Mooney, 2018). In this paper, we
argue that having explanations increases the trust-
worthiness, transparency, and acceptance of the
answers of the QA system over KGs. Especially,
when the QA systems fail to answer a question or
provide a wrong answer, the explanatory output

helps to keep the user informed about a particular
behavior. Hence, we propose a template-based ex-
planation generation approach for QA systems. Our
proposed approach for explainable QA system over
KG provides (i) adequate justification: thus the end
user feels that they are aware of the reasoning steps
of the computational model, (ii) confidence: the
user can trust the system and has the willing for the
continuation of interactions, (iii) understandability:
educates the user as how the system infers or what
are the causes of failures and unexpected answers,
and (iv) user involvement: encourages the user
to engage in the process of QA such as question
rewriting.
Research Questions: We deal with two key

research questions about the explanations of the
QA systems as follows: RQ1: What is an effective
model and scheme for automatically generating
explanations? The computational model employed
in a QA system might be extremely complicated.
The exposure of the depth of details will not be
sufficient for the end user. The preference is to
generate natural language explanations that are
readable and understandable to the non-expert user.
RQ2: How is the perception of end users about
explanations along the human factor dimensions?,
which is whether or not the explanations establish
confidence, justification, understanding, and further
engagements of the user.

Our key contributions are: 1) a scheme for shal-
low explanatory QA pipeline systems, 2) a method
for automatically generating explanations, and 3) a
user survey to measure the human factors of user
perception from explanations. This paper is or-
ganized as follows: In Section 2, we review the
related work. Section 3 explains the major concepts
of the QA pipeline system, which is our employed
platform. Section 4 provides our presentation and
detailed discussion of the proposed approach. Our
experimental study is presented in Section 5, fol-
lowed by a discussion Section. We conclude the
paper in section 7.

2 Related Work

Researchers have tackled the problemof question an-
swering in various domains including open domain
question answering (Yang et al., 2019), biomedi-
cal (Bhandwaldar and Zadrozny, 2018), geospatial
(Punjani et al., 2018), and temporal (Jia et al.,
2018). Question answering over publicly available
KGs is a long-standing field with over 62 QA sys-
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tems developed since 2010 (Höffner et al., 2017).
The implementation of various QA systems can be
broadly categorized into three approaches (Singh,
2019; Diefenbach et al., 2018). The first is a seman-
tic parsing based approach such as (Usbeck et al.,
2015) that implements a QA system using several
linguistic analyses (e.g., POS tagging, dependency
parsing) and linked data technologies. The second
approach is an end-to-end machine learning based,
which uses a large amount of training data to map an
input question to its answer directly (e.g., in (Yang
et al., 2019; Lukovnikov et al., 2017)). The third ap-
proach is based on modular frameworks (Kim et al.,
2017; Singh et al., 2018b) which aims at reusing
individual modules of QA systems, independent
tools (such as entity linking, predicate linking) in
building QA systems collaboratively. Irrespective
of the implementation approach, domain, and the
underlying knowledge source (KG, documents, re-
lational tables, etc.), the majority of existing QA
systems act as a black box. The reason behind black
box behavior is due to either the monolithic tightly
coupled modules such as in semantic parsing based
QA systems or nested and nonlinear structure of
machine learning based algorithms employed in
QA systems. The modular framework, on the other
hand, provides flexibility to track individual stages
of the answer generation process. The rationale
behind our choice of the modular framework over
monolithic QA systems is a flexible architecture
design of such frameworks. It allows us to trace
failure at each stage of the QA pipeline. We enrich
the output of each step with adequate justification
with supporting natural language explanation for
the user. Hence, as the first step towards explain-
able QA over knowledge graphs, we propose an
automatic approach for generating a description
for each stage of a QA pipeline in a state-of-the-
art modular framework (in our case: Frankenstein
(Singh et al., 2018b)). We are not aware of any
work in the direction of explainable question an-
swering over knowledge graphs and we make the
first attempt in this paper. Although, efforts have
been made to explain visual question answering
systems. Some works generate textual explanations
for VQA by training a recurrent neural network
(RNN) to mimic examples of human descriptions
(Hendricks et al., 2016; Wu and Mooney, 2018)
directly. The work by (Ngonga Ngomo et al., 2013)
can be considered a closest attempt to our work.
The authors proposed a template based approach

to translate SPARQL queries into natural language
verbalization. We employ a similar template-based
approach to generate an automatic explanation for
QA pipelines.
In other domains, such as expert systems, the

earlier attempts providing explanations to the users
can be traced back in the early 70s (Shortliffe,
1974). Since then, extensive work has been done
to include explanations in expert systems followed
by recommender systems to explain the system’s
knowledge of the domain and the reasoning pro-
cesses these systems employ to produce results (for
details, please refer to (Moore and Swartout, 1988;
Jannach et al., 2010; Daher et al., 2017). For a rec-
ommender system, work by (Herlocker et al., 2000)
is an early attempt to evaluate different implemen-
tations of explanation interfaces in "MovieLens"
recommender system. Simple statements provided
to the customers as explanations mentioning the
similarity to other highly rated films or a favorite
actor or actress were among the best recommen-
dations of the MovieLens system compared to the
unexplained recommendations. Furthermore, appli-
cations of explanation are also considered in various
sub-domains of artificial intelligence, such as justi-
fying medical decision-making (Fox et al., 2007),
explaining autonomous agent behavior (Hayes and
Shah, 2017), debugging of machine learning mod-
els (Kulesza et al., 2015), and explaining predictions
of classifiers (Ribeiro et al., 2016).

3 QA Pipeline on Knowledge Graph

One of the implementation approaches for
answering questions from interlinked knowledge
graphs is typically a multi-stage process which is
called QA pipeline (Singh et al., 2018b). Each
stage of the pipeline deals with a required task
such as Named Entity Recognition (NER) and
Disambiguation (NED) (referred as Entity Linking
(EL)), Relation extraction and Linking (RL), and
Query Building (QB). There is an abundance of
components performing QA tasks (Diefenbach
et al., 2018). These implementations run on the
KGs and have been developed based on AI, NLP,
and Semantic Technologies, which accomplish one
or more tasks of a QA pipeline (Höffner et al.,
2017). Table 1 (Singh et al., 2018b) presents
performance of best QA components on the
LC-QuAD dataset, implementing QA tasks. The
components are Tag Me API (Ferragina and
Scaiella, 2010)) for NED, RL (Relation Linking)
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implemented by RNLIWOD4 and SPARQL query
builder by NLIWOD QB5). For example, given
the question “Did Tesla win a nobel prize in
physics?”, the ideal NED component is expected
to recognize the keyword “Tesla” as a named
entity and map it to the corresponding DBpedia
resource, i.e. dbr:Nikola_Tesla. Similarly, the
multi-word unit “nobel prize in physics” has to
be linked to dbr:Nobel_Prize_in_Physics.
Thereafter, a component performing RL finds
embedded relations in the given question and
links them to appropriate relations of the un-
derlying knowledge graph. In our example,
the keyword “win” is mapped to the relation
dbo:award. Finally, the QB component generates
a formal query (e.g. expressed in SPARQL)
(i.e. ASK {dbr:Nikola_Tesla dbo:award
dbr:Nobel_Prize_in_Physics.}). The per-
formance values in Table 1 are averaged over the
entire query inventory.

Table 1: Performance of QA components implementing
various QA tasks on LC-QuAD dataset.

QA Component QA Task Precision Recall F-Score

TagMe NED 0.69 0.66 0.67
RNLIWOD RL 0.25 0.22 0.23
NLIWOD QB QB 0.48 0.49 0.48

4 Approach

A full QA pipeline is required to answer a
given question q. Such QA pipelines are com-
posed of all the required components perform-
ing necessary tasks to transform a user-supplied
natural language (NL) question into a formal
query language (i.e., SPARQL). We consider
three generic classes for outputs of a full QA
pipeline or individual components, namely Oc =

{Success,NoAnswer,WrongAnswer}. Concern-
ing a given question, a “success” class is when the
QA pipeline (component) successfully provides a
correct output, a “No Answer” class happens when
the full QA pipeline (or an individual component)
does not return any output and “Wrong Answer”
class is when the provided output is incorrect.

To address RQ1, we introduce a scheme for gen-
erating explanations for the QA pipeline system.
This scheme produces shallow, however automatic

4Component is similar to Relation Linker of https://
github.com/dice-group/NLIWOD

5Component is based on https://github.com/
dice-group/NLIWOD and (Unger et al., 2012).

explanations using a semi-supervised approach for
generating individual explanations after running
each integrated component. In our proposed model,
the class of the output of each integrated com-
ponent is predicted using a supervised learning
approach. We train a classifier per component
within the pipeline. Then based on the prediction
of the classifier, an explanation template is chosen.
The explanation template and the output of the
component are incorporated to form the final rep-
resentation of explanations. We have a repository
of explanation templates for each component of the
QA pipeline system. For example, the NED compo-
nent corresponds to several explanation templates
differing based on the number of the output entities.
Precisely, the explanation template when the NED
has one single entity is different from when it has
two or three. Moreover, the templates vary based
on the Part of Speach (POS) tag of the entities rec-
ognized in the input question. For example, Figure
1 shows a pipeline containing three components:
1) NED component: TagMe, 2) RL component:
RNLIWOD QB, and 3) QB component: NLIWOD
QB. Three classifiers were individually trained for
each component. In this example, for the given
question “Did Tesla win a nobel prize in physics?”
the classifiers predicted the class of “Success” for
NED and the class "No Answer" for RL and QB
components. Thus, the explanation templates corre-
sponding to the class of “success” for NED, and "No
Answer" for RL and QB are filtered. Then since the
NED component has two outputs, therefore, two
explanations were generated for NED, whereas the
remaining components show one explanation.

4.1 Predicting Output of Components

The set of necessary QA tasks formalized as
T = {t1, t2, . . . , tn} such as NED, RL, and QB. Each
task (ti ∶ q∗ → q+) transforms a given representation
q∗ of a question q into another representation q+.
For example, NED and RL tasks transform the in-
put representation “What is the capital of Finland?”
into the representation “What is the dbo:capital
of dbr:Finland?”. The entire set of QA com-
ponents is denoted by C = {C1,C2, . . . ,Cm}. Each
component Cj solves one single QA task; Cti

j cor-
responds to the QA task ti in T implemented by Cj .
For example, RNLIWOD implements the relation
linking QA task, i.e. RNLIWODRL. Let ρ(Cj) de-
note the performance of a QA component, then our
key objective is to predict the likelihood of ρ(Cj)

https://github.com/dice-group/NLIWOD
https://github.com/dice-group/NLIWOD
https://github.com/dice-group/NLIWOD
https://github.com/dice-group/NLIWOD
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Pipeline QA

NED

TagMe

RE

RNLIWOD

QA

NLIWOD
QB

 Answer: NULLQ1: Did Tesla win a nobel 
prize in physics?

X2: TAGME identifies the word Tesla as the subject in the
question. The subject is mapped to the DBpedia concept
dbr:Nicole Tesla.

X1: TAGME identifies the multiword "nobel prize in physics"
as the entity in the question. The entity is mapped to the
DBpedia concept dbr:Nobel Prize in Physics.

X3: RNLIWOD could not recognize any predicate in
the question, hence there is no mapping to any
concepts of the DBpedia knowledge graph.

X4: NLIWOD QB cannot formulate any query
to extract the final answer, and the answer to
this question is NULL

Figure 1: The QA pipeline generates the explanations in various stages of running; each explanation is generated
per output of each integrated component. The demonstrated pipeline contains three components, i.e., NED, RL,
and QB; the output(s) of each one is integrated into an explanation template and represented to the end user.

for a given representation q∗ of q, a task ti, and
an underlying knowledge graph λ. This is denoted
as Pr(ρ(Cj)∣q∗, ti,λ). In this work, we assume
a single knowledge graph (i.e. DBpedia); thus, λ
is considered a constant parameter that does not
impact the likelihood leading to:

Pr(ρ(Cj)∣q∗, ti) = Pr(ρ(Cj)∣q∗, ti,λ) (1)

Further, we assume that the given representation
q∗ is equal to the initial input representation q for
all the QA components, i.e. q∗ = q.

Solution Suppose we are given a set of NL ques-
tions Q with the detailed results of performance
for each component per task. We can then model
the prediction goal Pr(ρ(Cj)∣q, ti) as a supervised
learning problem on a training set, i.e. a set of
questions Q and a set of labels L representing
the performance of Cj for a question q and a task
ti. In other words, for each individual task ti and
component Cj , the purpose is to train a supervised
model that predicts the performance of the given
component Cj for a given question q and task ti
leveraging the training set. If ∣T ∣ = n and each
task is performed by m components, and the QA
pipeline integrates all the n ×m components, then
n ×m individual learning models have to be built
up.
Question Features. Since the input question q
has a textual representation, it is necessary to au-
tomatically extract suitable features, i.e. F(q) =
( f1, . . . , fr). In order to obtain an abstract and con-
crete representation of NL questions, we reused
question features proposed by (Singh et al., 2018b,
2019) which impact the performance of the QA
systems. These features are: question length,
answer type (list, number, boolean), Wh-word

(who,what,which,etc.), and POS tags present in
a question. Please note, our contribution is not the
underlying Frankenstein framework, we reused it
for the completion of the approach. Our contribu-
tion is to add valid explanation to each step of the
QA pipeline, and empirical study to support our
hypothesis.

NED

Classifier Classifier Classifier

RE QA

Input 
Question

Explanation Explanation Explanation

 Answer

Explanation 
Templates

Figure 2: This figure sketches a top overview of our ap-
proach. There is a classifier for each component, which
predicts the output of the associated component. Also,
there is a repository of the explanation templates. Thus,
based on the prediction of the classifier and the actual
output of the component, a suitable template is filtered.
For final explanation, the output of the component was
incorporated into the template.

4.2 Methodology
Figure 2 shows the architecture of our approach.
Initially, a pipeline for a QA system is built up; in
our casewe used Frankenstein platform (Singh et al.,
2018b,a) to facilitate building up a pipeline. Please
note, we do not aim to build a new QA system and
reused an existing implementation. We extend the
Frankenstein QA pipeline as illustrated in Figure 2.
We rely on the best performing pipeline reported
in (Singh et al., 2018b) over LC-QuAD dataset
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(Trivedi et al., 2017). In addition, we manually
populated a repository of explanation templates.
For example, all the required explanation templates
for NED components are created for cases such as
templates for wrong answers, when components
produce no answer, and in the case of correct
answers. Similarly, the templates for other tasks
such as RE an QB were handcrafted. Please note
that these templates are generic, thereby they do not
depend on the employed component. For example,
if we integrate another NED component rather than
TagMe, there is no need to update the template
repositories. In the next step, we trained classifiers
based on the settings which will be presented in the
next section. Thus, when a new question arrives at
the pipeline, in addition to running the pipeline to
exploit the answer, our trained classifiers are also
executed. Then the predictions of the classifiers
lead us to choose appropriate templates from the
repositories. The filtered templates incorporate
the output of the components to produce salient
representations for NL explanations. The flow
of the explanations is represented to the end user
besides the final answer.
Templates for Explanation To support our

approach for explainable QA, we handcrafted
11 different templates for the explanation. We
create placeholders in the predefined templates
to verbalize the output of the QA components.
Consider the explanation provided in Figure 1.
The original template for explaining the output
of TagMe component is: TagMe identifies
the multiword X as the entity in the
question. The entity is mapped to the
DBpedia concept dbr:W. The placeholders
X and dbr:W are replaced accordingly for each
question if a classifier selects this template in its
prediction.

5 Experimental Study

We direct our experiment in response to our two
research questions (i.e., RQ1 and RQ2) respectively.
First, we pursue the following question “How effec-
tive is our approach for generating explanations?”
This evaluation implies the demonstration of the
success of our approach in generating proper expla-
nations. It quantitatively evaluates the effectiveness
of our approach. On the contrary, the second dis-
course of the experiment is anHCI study in response
to the question “How effective is the perception of
the end user on our explanations?” This experi-

ment qualitatively evaluates user perception based
on the human factors introduced earlier (cf. Section
1). In the following Subsections, we detail our
experimental setups, achieved results, and insights
over the outcomes of the evaluation.

5.1 Quantitative Evaluation
This experiment is concerned with the question
“How effective is our approach for generating expla-
nations?”. We measure the effectiveness in terms
of the preciseness of the explanations. Regarding
the architecture of our approach, choosing the right
explanation template depends on the prediction of
the classifiers. If classifiers precisely predict a
correct output for the underlying components, then
consequently, the right templates will be chosen.

0

20

40

60

80

TagMe RNLIWOD NLIWOD QB

Logestic Regression SVM RandomForest GaussianNB DecisionTree

Figure 3: This figure illustrates the accuracy of five
classifiers perQAcomponent: TagMe, RNLIWOD, and
NLIWOD QB. Logistic Regression classifier performs
best for all the components.

In other words, any flaw in the prediction leads
to a wrong template. Thus, here we present
the accuracy of our classifiers per component.
We consider three generic classes, namely Oc =

{Success,NoAnswer,WrongAnswer} (cf. sec-
tion 4) for the outputs of individual components.
A benchmarking approach has been followed to
choose best classifier per task. We employ five
different classifiers (SVM, Logistic Regression,
Random Forest, Gaussian NB, and Decision Tree)
and calculated each classifier’s accuracy per com-
ponent. To train the classifiers per component, we
require to create a single dataset. The sample-set in
training is formed by considering questions of the
LC-QuAD dataset. To get the concrete representa-
tion of each question, we extracted the following
features: question length, headword(who, what,
how), answer types (boolean, number, list), and
POS tags. If a particular feature is present, we
consider the value 1; if not, then the value of that
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feature is 0 while representing the question. The
label set of the training datasets for a given com-
ponent was set up by measuring the micro F-Score
of every given question for 3,253 questions from
the LC-QuAD dataset. The F-score per question
is calculated by adopting the same methodology
proposed by (Singh et al., 2018b). We rely on 3,253
questions out of 5,000 questions of the LC-QuAD
dataset because the gold standard SPARQL queries
of the remaining 1,747 questions do not return any
answer from DBpedia endpoint (also reported by
(Azmy et al., 2018)). The classifier predicts if a
component can answer the question or not, and
trained using features extracted from the natural
language questions against the F score per question.
During the training phase, each classifier was tuned
with a range of regularization on the dataset. We
used the cross-validation approach with 10 folds on
the LC-QuAD dataset. We employ a QA pipeline
containing TagMe (Ferragina and Scaiella, 2010)
for entity disambiguation, RNLIWOD6 for relation
linking, and NLIWOD QB7 for SPARQL query
builder. Figure 3 reports the accuracy of five classi-
fiers (average of all classes). Furthermore, Table 2
reports the accuracy of the best classifier (Logistic
Regression in our case) for each component.

Component Accuracy

TagMe 0.64
RNLIWOD 0.60
NLIWODWB 0.49

Table 2: Accuracy of our multi-class classifier for
predicting type of explanation for each component.

Observations. We observe that the logistic re-
gression classifier performs best for predicting the
output of components. However, the accuracy of
the classifier is low as depicted in the Table 2.
(Singh et al., 2018b) report accuracy of binary
classifiers for TagMe, RNLIWOD, and NLIWOD
QB as 0.75, 0.72, and 0.65 respectively. When we
train multi-class classifiers (i.e., three classes) on
the same dataset, we observe a drop in the accu-
racy. The main reason for the low performance of
the classifiers is the low component accuracy (c.f.
Table 1)

6Component is similar to Relation Linker of https://
github.com/dice-group/NLIWOD

7Component is based on https://github.com/
dice-group/NLIWOD and (Unger et al., 2012).

5.2 User Perception Evaluation
In the second experiment, we pursue the following
research question: “How is the perception of end
user about explanations along the human factor
dimensions?” To respond to this question, we con-
duct the following experiment:
Experimental Setup: We perform a user study
to evaluate how the explanations impact user per-
ception. We aim at understanding user’s feed-
back on the following four parameters inspired by
(Ehsan et al., 2019; Ehsan and ark Riedl, 2019):
1) Adequate Justification: Does a user feel
the answer to a particular question is justified or
provided with the reasoning behind inferences of
the answer? 2) Education: Does the user feel ed-
ucated about the answer generation process so that
she may better understand the strengths and limita-
tions of the QA system? 3) User involvement:
Does the user feel involved in allowing the user
to add her knowledge and inference skills to the
complete decision process? 4) Acceptance: Do
explanations lead to a greater acceptance of the
QA system in future interactions? With respect to
the above criteria, we created an online survey to
collect user feedback. The survey embraces random
ten questions from our underlying dataset from a
variety of answer types such as questions with the
correct answer, incorrect answer, no answer (for
which classifiers predict correct templates). The
first part of the survey displays the questions to the
userwithout any explanation. In the second part, the
same ten questions, coupled with the explanations
generated by our approach, are displayed to the user.
The participants of the survey are asked to rate each
representation of question/answer based on the four
human factor dimensions (i.e., acceptance, justifica-
tion, user involvement, and education). The rating
scale is based on the Likert scale, which allows the
participants to express how much they agree or dis-
agree with a given statement (1:strongly disagree
– 5:strongly agree). We circulated the survey to
several channels of the co-authors’ network, such as
a graduate class of Semantic Web course, research
groups in the USA and Europe, along with scientific
mailing lists. Collectively we received responses
from 80 participants. Please note, the number of
participants is at par with the other explainable
studies such as (Ehsan et al., 2019).

Results and Insights. Figure 4 summarizes the
ratings of our user study. We evaluate the user
responses based on the four human factor dimen-

https://github.com/dice-group/NLIWOD
https://github.com/dice-group/NLIWOD
https://github.com/dice-group/NLIWOD
https://github.com/dice-group/NLIWOD
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sions: Adequate Justification, Education,
User involvement, and Acceptance. The sum-
mary of ratings for each dimension was captured
in one individual chart. The green bars show the
feedback over questions with provided explanations,
and on the contrary, red bars are aggregated over the
question with no explanation. The x-axis shows the
Likert scale. The Y-axis is the distribution of users
over the Likert scale for each class independently-
with explanation and without explanation. Overall
it shows a positive trend towards the agreement
with the following facts; the provided explanations
helped users to understand the underlying process
better, justify a particular answer, involve the user in
the complete process, and increase the acceptability
of the answers. The green bars are larger in positive
ratings, such as strongly agree.
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Do you feel involved in the answer
generation process?
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Do you feel the answer to the question is
justified or provided with the reasoning
why this answer has been extracted?
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%
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Figure 4: User perception Evaluation. The figure illus-
trates the comparative analysis of providing with and
without explanation to the user. We consider the mean
of all the responses. X-axis depicts the Likert scale (1
is strongly disagree, 5 is strongly agree). A clear trend
in user responses shows that across all four parameters,
there aremany answers towards disagreement or neutral
when no explanation is provided. In the case of expla-
nation, users feel involved, and responses are shifted
towards the agreement. Furthermore, users show more
trust in the acceptance of the answer when provided
with an explanation.

6 Discussion
In this paper, we focus on the challenge of explain-
able QA systems. We mainly target systems that
consume data from the KGs. These systems receive
a natural language question and then transform that
to a formal query. Our primary aim is to take the
initial steps to break down the full black-box QA
systems. Thus, we reuse an existing QA pipeline
systems since it already decompose the prominent

tasks of the QA systems and then integrate individ-
ual implementations for each QA task. We based
our approach and associated evaluation on the hy-
pothesis that every component integrated into the
pipeline should explain the output. It will edu-
cate and involve non-expert users and trigger them
to trust and accept the system. Our findings in
Section 5 support our hypothesis both on quantita-
tive and qualitative evaluation. The limitation of
our approach is that it heavily relies on the perfor-
mance of the components. In the case of having
low performing components, the accuracy of the
classifiers is also downgraded. Although, on the
one hand, this approach is shallow, one the other
hand it avoids exposing the user to overwhelming
details of the internal functionalities by showing
succinct and user-friendly explanations. (Hoffman
et al., 2017) noted that for improving the usability
of XAI systems, it is essential to combine theories
from social science and cognitive decision making
to validate the intuition of what constitutes a "good
explanation." Our work in this paper is limited to
predefined template based explanations, and does
not consider this aspect. Also, our work does not
focus on the explainability of the behavior of the em-
ployed classifier, and the explanations only justify
the final output of components.

7 Conclusion and Future Direction

In this paper, we proposed an approach that is auto-
matic and supervised for generating explanations
for a QA pipeline. Albeit simple, our approach in-
tuitively expressive for the end user. This approach
requires to train a classifier for every integrated
component, which is costly in case the components
are updated (new release) or replaced by a latest
outperforming component. Our proposed approach
induced in a QA pipeline of a modular framework
is the first attempt for explainable QA systems over
KGs. It paves the way for future contributions
in developing explainable QA systems over KGs.
Still, there are numerous rooms in this area that
require the attention of the research community –
for example, explanations regarding the quality of
data, or metadata, or credibility of data publishers.
Furthermore, recent attempts have been made to
provide explanations of machine learning models
(Guo et al., 2018). However, the inclusion of the
explanations in neural approaches for question an-
swering (such as in (Lukovnikov et al., 2017)) is still
an open research question, and we plan to extend
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our work in this direction. The concerning domain
of the system is also influential in explanations. for
example, biomedical or marketing domains require
various levels of details of explanations. In general,
all of these concerns affect the acceptance and trust
of the QA system by the end user. Our ambitious
vision is to provide personalized and contextualized
explanations, where the user feels more involved
and educated.
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