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Abstract
Previous work has shown how to effectively
use external resources such as dictionaries to
improve English-language word embeddings,
either by manipulating the training process or
by applying post-hoc adjustments to the em-
bedding space. We experiment with a multi-
task learning approach for explicitly incorpo-
rating the structured elements of dictionary en-
tries, such as user-assigned tags and usage ex-
amples, when learning embeddings for dictio-
nary headwords. Our work generalizes sev-
eral existing models for learning word embed-
dings from dictionaries. However, we find that
the most effective representations overall are
learned by simply training with a skip-gram
objective over the concatenated text of all en-
tries in the dictionary, giving no particular fo-
cus to the structure of the entries.

1 Introduction

While word embedding models are typically
trained using large text corpora with objectives
based on distributional semantics, recent work has
shown how to take advantage of external resources
like WordNet (Miller, 1995) and other manually
created dictionaries in order to better capture word-
level semantic relationships of interest. For exam-
ple, previous work has used the graph structure
of external resources to post-process pre-trained
word embeddings, enforcing that the similarity be-
tween embeddings reflects the similarity inferred
from the graph structure of lexicons like WordNet
(Faruqui et al., 2015). Following in a similar prin-
ciple, others use known synonymy and antonymy
relationships between words to adjust the distance
between word embeddings (Mrkšić et al., 2016).
Other work uses traditional dictionaries to improve
the overall coverage of word embedding models by
creating embeddings for rare words be leveraging
information from their definitions (Bahdanau et al.,
2017).

While dictionaries have been shown to be useful,
most previous work has focused only on using the
text of the definitions in order to learn word rep-
resentations. However, many dictionaries include
additional structural elements such as usage ex-
amples, quotations containing the headword, tags,
labels, and more. For some online crowd-built dic-
tionaries, information such as the contributing users
and even upvotes and downvotes are available.

We conjecture that such meta information may
prove useful and, therefore, we seek to leverage
all of this additional information to build improved
representations of the words defined in a given dic-
tionary. To do this, we generalize the Consistency-
Penalized Autoencoder (CPAE) (Bosc and Vincent,
2018) to allow for not only the reconstruction of
dictionary definitions, but also for making predic-
tions about the other structural elements available,
such as usage examples and user-assigned tags.

We make the following contributions in this pa-
per: (1) we propose a flexible, multi-task learning
extension to the CPAE model that can be used to
produce embeddings from structured dictionary en-
tries, (2) we evaluate the applicability of this ex-
tended model to three English-language dictionary
datasets, each with their own unique characteristics
and sets of structural elements, and (3) we demon-
strate the a simple baseline approach for learning
word embeddings, based on the popular skip-gram
with negative sampling framework, can often lead
to representations that better capture word-level se-
mantic similarity according to a range of commonly
used evaluation tasks.

2 Data & Baseline

2.1 Structured Dictionary Data

We consider three manually constructed, machine-
readable, English-language dictionaries: English
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Wordnet1 (Miller, 1995), English Wiktionary2, and
Urban Dictionary (UD)3, each containing defini-
tions for each word in addition to one or more
structural elements such as usage examples, tags, or
votes (Table 1). We find that many of the terms that
are defined in Urban Dictionary are not commonly
used in everyday language, and so we choose to
further filter the set of headwords from Urban Dic-
tionary to those that have been used at least 10,000
times in a sample of tweets sampled over a five-year
period as identified in (Wilson et al., 2020b).

2.2 Baseline Approach
To provide a simple baseline for later evaluation,
we train word embeddings using the entire text of
each dictionary, including all structured elements,
by treating each structural element as a short docu-
ment and prepending the entry headword to each.
We use a standard skip-gram model with negative
sampling (SGNS), trained using the FastText li-
brary (Mikolov et al., 2018).

3 Auto-encoding Structured Entries with
Multi-task Learning

Next, we present an approach for learning word
embeddings that implicitly encode a wide range of
the elements that are present in a dictionary entry.
Given a word defined in a dictionary, the objec-
tive of the model is to accurately recover as much
structural information as possible, including the
word’s definition, usage examples, tags, and au-
thors. We also leverage user provided votes as a
means of sorting and filtering the dictionary entries.
The model takes a word’s definition as input, and
learns a transformation from the words in the defi-
nition to an embedding that contains features that
describe the structural elements of the dictionary
entry for the word. We treat the prediction of each
type of structural element as a separate task within
a multi-task learning framework.

3.1 Model Architecture
Our model (Figure 1; a more formal, detailed de-
scription of the model is given in Appendix A)
can be seen as a generalization of several others:
a simple auto-encoder, Hill’s model (Hill et al.,
2016), and the consistency penalized auto-encoder

1To make our results directly comparable with (Bosc and
Vincent, 2018), we use the filtered version of WordNet in-
cluded at: https://github.com/tombosc/cpae

2https://en.wiktionary.org/
3https://www.urbandictionary.com/

Figure 1: Model architecture for multi-task learning au-
toencoder for embedding words from their structured
dictionary entries. Input tokens are embedding using
the Input Embeddings layer, and the n tokens in the
definition of headword wh are passed to the Definition
Encoder to produce the definition embedding h. This
embedding should be consistent (low distance) with the
embedding of the definition headword eh. M possible
output tasks can be used, each with its own decoder
which needs to reconstruct the Target.

(CPAE). In each case, the input for the model is a
definition4 for the target headword, wh. The input
tokens are converted into a sequence of embeddings
using a learnable word embedding layer, and these
embeddings are passed to the definition encoder,
which produces a single embedding, h, which is
used as the representation for wh.

This embedding is then fed to any number of
decoders, each with their own specific objective
and loss function (details in the subsections of Ap-
pendix A). The goal of each decoder’s loss is to
influence the weights of the encoder to produce
an embedding h that is most useful for captur-
ing a specific structural element of the dictionary
entry for wh, or to retain some other important
property of the embedding h. The decoders that
we use and their associated losses become com-
ponents in the overall loss function for our model:
L = λ0L0 + λ1L1 . . . + λnLm for up to m ob-
jectives, each with its own associated weight term.
These weights can be used to control the overall
influence of the objective in the final loss computa-
tion.

4Or, in the case of polysemous words, the concatenation
of all tokens in all definitions, separated by a SEP token

https://github.com/tombosc/cpae
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defs examples tags votes headwords definitions tokens
Wordnet X X 83K 159K 2.4M

Wiktionary X X X 214K 380K 4.6M
Urban Dictionary X X X X 2M 3.5M 195M

UD (Filtered) X X X X 22K 104K 59M

Table 1: Structural elements present in three machine-readable dictionaries, and number of headwords, definitions,
and total tokens present in each. UD (Filtered) is the filtered version of Urban Dictionary which doesn’t contain
words that are not commonly used or definitions for which the difference between the number of upvotes and
downvotes is negative. This is the version of Urban Dictionary that is used when training our proposed model.

The target of each decoder is dependent on the
structural element that it is meant to encoder. For
the definitions, the goal of the decoder is to repro-
duce the definition itself (making the use of this
task alone equivalent to a simple autoencoder). For
the usage examples and tags, the target task is the
predict the context in which the headword appears
using a skip-gram learning objective. We also ex-
periment with using the user-provided votes to filter
and sort the data, as well as to provide weights for
the input definitions.

An additional loss term can be used in order to
enforce the consistency between the learned embed-
ding h and the input embedding for the headword
eh. This is similar to the main objective of Hill’s
model (Hill et al., 2016) and is the consistency
penalty that is used in the CPAE model (Bosc and
Vincent, 2018). This forces the model to produce
embeddings for headwords that are consistent to
the embeddings produced for the same words when
they appear in the definitions of other headwords.

4 Evaluation and Results

We evaluate all produced embeddings5 across a
range of intrinsic evaluation tasks as used in (Jas-
trzebski et al., 2017).6 For these word-level seman-
tic similarity tasks, the machine generated scores
(cosine similarity between the produced word em-
beddings) are compared against human-labeled
similarity scores by computing the correlation be-
tween the two sets of scores.

The tasks involved include the Marco, Elia and
Nam (MEN) annotated word pairs based on image
captioning data (Bruni et al., 2014), the SimVerb
(SV) verb similarity dataset (Gerz et al., 2016),
both of which have standardized development and
testing splits. We use the development splits of

5Details of the experimental setup are in Appendix C.
6We used code from the web package, located at:

https://github.com/kudkudak/
word-embeddings-benchmarks to run the intrin-
sic evaluation tasks.

these datasets in order to tune our models. The
WordSim-353 (WS) dataset contains both similar-
ity (WS-S) and relatedness (WS-R) annotations
for the same sets of words, allowing us to exam-
ine the ability of our models to capture each of
these semantic relations. We also evaluate using
the SimLex-999 dataset and a subset of that data,
SimLex-333 (SL999 and SL333) (Hill et al., 2015).
The SL333 subset contains only the 333 most re-
lated pairs according to the human annotations.
Stanford’s Contextual Word Similarities (SCWS)
dataset (Huang et al., 2012), the 65 word pairs stud-
ied by Rubenstein and Goodenough (RG65) 1965,
the Mechanical Turk (MT) dataset (Radinsky et al.,
2011), and the Rare Words (RW) dataset (Luong
et al., 2014) round out the rest of our evaluatoin
tasks.

For models that use our proposed architecture,
we initialize the input embeddings using the base-
line pre-trained skip-gram embeddings. We train
these embeddings ourselves in the case of WordNet
and Wikitionary, and use the ud-basic embed-
dings released by (Wilson et al., 2020a) for Urban
Dictionary.7 Table 2 shows the similarity and relat-
edness scores achieved when using various combi-
nations of objectives in our model.8

We observe that for WordNet, the simple SGNS
embeddings are always outperformed by the other
approaches, which is in line with the results re-
ported in (Bosc and Vincent, 2018) where the
CPAE-P model was found to achieve the best re-
sults when using WordNet. We can see that adding
structure, which, for the case of WordNet, only in-
cludes usage examples, leads to an improvement
over the base CPAE-P model in many cases. The
overall trend is similar for the Wiktionary data,
yet we see a stronger performance from the SGNS
baseline. In fact, SGNS achieves the best results for

7These embeddings were trained on the entirety of Urban
Dictionary rather than just the subset that we use in this study.

8Only best performing models are shown; the full set of
results can be found in Appendix B.

https://github.com/kudkudak/word-embeddings-benchmarks
https://github.com/kudkudak/word-embeddings-benchmarks
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dev test
Model MEN SV MEN WS-R WS-S SL999 SL333 SV SCWS RG65 MT RW

W
or

dN
et SGNS 58.6 34.7 56.2 45.6 62.9 35.0 20.4 34.4 54.0 63.1 52.8 23.2

Hill’s Model 61.1 45.6 59.9 42.3 59.5 43.8 35.8 44.2 59.0 73.6 56.0 30.3
CPAE-P 68.3 49.4 67.3 50.6 66.4 47.4 34.1 45.3 61.5 76.7 61.4 31.5
+ Structure 68.0 52.0 67.8 54.4 67.6 45.8 33.5 47.4 61.3 76.8 61.9 28.5

W
ik

t.

SGNS 65.1 43.2 65.0 56.5 68.7 42.1 22.4 38.0 56.6 72.8 63.3 25.1
Hill’s Model 63.8 33.5 66.3 53.8 70.6 37.6 27.4 33.2 58.7 80.7 57.9 30.3
CPAE-P 65.1 33.4 64.1 60.4 73.0 35.5 18.4 33.1 56.9 87.7 58.2 21.4
+ Structure 65.2 38.0 67.0 61.4 72.8 39.5 21.6 38.2 57.3 85.6 60.4 25.4

U
D

SGNS 79.1 42.1 78.0 65.7 74.2 47.9 30.2 35.5 62.5 89.3 74.3 39.2
Hill’s Model 72.5 38.9 70.0 61.4 69.6 44.3 32.8 29.5 60.1 75.8 68.4 34.2
CPAE-P 71.4 38.4 68.5 61.3 69.6 44.7 29.2 30.0 59.2 71.1 65.1 32.7
+ Structure 74.6 42.6 72.3 64.1 71.1 47.8 33.9 30.4 60.4 78.9 69.2 34.9

Table 2: Correlation (Spearman’s ρ) with gold standard similarity and relatedness scores for development and
evaluation datasets. Hill’s model (Hill et al., 2016) is the structured dictionary encoder with only the consistency
penalty, CPAE-P is the Consistency Penalized Autoencoder (Bosc and Vincent, 2018) with pre-trained word em-
bedding targets, and the version with Structure is our proposed extension to the model, making use of additional
training objectives based on any available structural elements. SGNS is the skip-gram with negative sampling
baseline word embedding model. Bold indicates the best result for a given dictionary, underlined numbers are
also the overall best.

two of the test datasets and achieves competitive
results across the board, making it a viable alterna-
tive to the more complex dictionary auto-encoding
approaches. Finally, for the Urban Dictionary data,
we see the baseline SGNS approach overtaking the
other methods in almost every evaluation set, also
leading to many of the best overall scores found in
this study. This shift in performance may be related
to the overall size of each dataset: Urban Dictio-
nary dataset contains approximately 200 million
total tokens, compared to the 1.7 million in Word-
Net and 4.6 million in English Wiktionary. Further,
as Urban Dictionary’s definitions contain a mixture
of noisy submissions, jokes, and opinions, they are
likely to be less closely tied to the true meanings
of the headwords (Nguyen et al., 2018). This could
make the auto-encoding objective less useful over-
all in comparison to learning representations of the
words simply based on their usage contexts.

5 Conclusions

We show that the extension of the CPAE model to
include additional structural elements can provide
some gains in word-level semantic similarity tasks,
however, the the extra complexity of this approach
is unnecessary for learning useful word embed-
dings, and in many cases, leads to degradation in
the scores across a range of standard word embed-
ding evaluation metrics in comparison to simpler
approaches. To build general purpose word embed-
dings from a sufficiently large dictionary (i.e., con-
taining at least several hundred million tokens of

text), our recommendation is to simply concatenate
all of the structural elements together as a single
text, inserting the entry headword between each el-
ement, and applying the widely popular skip-gram
architecture to this text to learn traditional distri-
bution embeddings. This approach requires only a
single learning objective, trains in much less time,
and achieves competitive results in many cases,
making it an easier alternative to explicitly leverag-
ing structural information from dictionary entries
while still creating useful embeddings.

Future work should explore how these ap-
proaches would work when applied to more En-
glish dictionaries such as the Oxford English Dic-
tionary9 in order to better understand the effects of
using a more standardized dictionary to learn em-
beddings. Further, dictionaries in other languages,
particularly lower-resource languages, should be
considered, since our results suggest that the ap-
proaches described in this paper outperform the
baseline approach mostly in settings where the to-
tal amount of text in the dictionary is small.
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ciech Marian Czarnecki. 2017. How to evaluate

word embeddings? on importance of data effi-
ciency and simple supervised tasks. arXiv preprint
arXiv:1702.02170.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Minh-Thang Luong, Ilya Sutskever, Quoc V Le, Oriol
Vinyals, and Wojciech Zaremba. 2014. Addressing
the rare word problem in neural machine translation.
arXiv preprint arXiv:1410.8206.
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Appendix

A Detailed Model Description

Formally, let D = {w0
in, w

1
in, . . . , w

n
in} be a se-

quence of tokens in the definition for wh. The ele-
ments of D belong to the vocabulary of all words
that appear in definitions, Vin, and wh belongs to
the vocabulary of all headwords, Vh. In the case
of polysemous words which have more than one
meaning, we concatenate the tokens from all defini-
tions together into a single sequence, and separate
them by a special SEP token.

Given the full sequence of input words,
Ein(D) = {e0in, e1in, . . . , enin} is the set of din-
dimensional embeddings representing words in
the definition. These embeddings can be learned
during training, or pre-initialized and frozen, as
discussed later in this section. The embeddings
are passed into an encoder layer in order to pro-
duce a single dh-dimensional embedding h =
enc(Ein(D)). The encoder can be any type of
model that takes a variable-length sequence of em-
beddings as input and produces a single, fixed-
length embedding as output.

This embedding is then fed to any number of
decoders, each with their own specific objective
and loss function. The goal of each decoder’s loss
is to influence the weights of the encoder to produce
an embedding h that is most useful for capturing a
specific structural element of the dictionary entry
for wh, or to retain some other important property
of the embedding h. In the following subsections,
we describe the decoders that we use and their
associated loss, which become components in the
overall loss function for our model:

L = λ0L0 + λ1L1 . . .+ λnLn

for up to n objectives, each with its own associated
weight term. These weights can be used to control
the overall influence of the objective in the final
loss computation.

A.1 Definitions as reconstruction targets

The words in a well-formed definition should pro-
vide a precise encapsulation of one of the meanings
of the headword being defined. So, we expect that
a combination of the meanings of the words in the
definition should provide a reasonable approxima-
tion for the meaning of the word itself. Since the
input to our encoder is the set of embeddings of
the definition words, a decoder objective based on

the intermediate representation, h, will lead to a
simple auto-encoder for the definition itself.

The definition decoder with learned parameters
θ produces a set of predictions of the words belong-
ing to the original definition D̂ = decθ(h), and
this decoder is used to compute the definition re-
construction loss LR. We use a simple conditional
unigram language modeling loss as our reconstruc-
tion loss

LR = − log p(D|θ) =
∑
w∈D
− log p(w|θ)

where p(w|θ) is determined by the decoder decθ.
For the decoder, the auto-encoder model uses a sin-
gle linear layer with input size dh and output size
|Vdef |, followed by a softmax operation, providing
a probability p(w) for all words in the output vo-
cabulary Vdef . The output vocabulary Vdef is equal
to Vin for the traditional auto-encoder setting, since
the objective is to reproduce the set of input words.
However, in practice, we can speed up computation
with minimal impact on performance by reducing
Vdef to only contain themdef most common words,
and treating all others as out-of-vocabulary. The
out-of-vocabulary words are represented by a sin-
gle token UNK which is ignored for the purposes of
the loss computation. Including only this objective
(which can be achieved by setting λt = 0 for every
other task t) is equivalent to a simple definition
auto-encoder: given the word in the headword’s
definition, produce an intermediate embedding h
which can then be used to reconstruct the original
set of words from the definition.

A.2 Usage examples and tags as context

While widely used distribution word embeddings
rely on examples of words in context in order to
learn representations of those words, hundreds of
examples of usage of each word are usually re-
quired in order to build stable representations (Bur-
dick et al., 2018). We experiment with using only
the few prototypical examples that are provided
in the dictionary definitions themselves as train-
ing samples for the term. This has several advan-
tages: first, no data outside of the dictionary itself
is needed to train the embeddings, and second, us-
age examples should, by nature, be written in a way
that a specific meaning of the term is emphasized,
providing a potentially stronger semantic signal
than randomly sampled occurrences of a term in a
text corpus. Usage contexts may help to capture
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aspects of meaning that correspond to general se-
mantic relatedness between words. Similarly, tags
provide high-level category information related to
words, and we expect that words with similar sets
of tags will be related in meaning.

To incorporate this information into our model,
we use a skip-gram language modeling objective
similar to the one used by the word2vec model for
learning word embeddings from word-in-context
samples. That is, given the embedding for a word,
h, we train a new feedforward output layer to pre-
dict the set of words that appear in the usage ex-
ample context around the target word, or in the
case of tags, the output layer should predict all tags.
In the case of the usage examples, we replace the
word and its morphological variations with a spe-
cial MASK token so that the model does not learn
to simply predict the word itself. Then, we define
new vocabularies Vuse and Vtag for all words that
appear in usage examples in the dictionary and all
tags, respectively, and we train linear layers to pre-
dict the set of usage words and tags given h. The
loss Luse is then the cross-entropy between the pre-
dicted distribution over Vuse and the equally sized
vector of counts representing the number of times
each word actually appeared in a usage example,
and the same is done with the tag distribution to
compute the tag prediction loss, Ltag. As with the
definition decoder, we allow for the size of the out-
put vocabulary to be restricted to the most common
muse/mtag words.

A.3 Consistency between embeddings

The consistency penalized auto-encoder model
(CPAE) adapted an additional constraint, based
on Hill’s model (Hill et al., 2016), to minimize
the distance between the input embedding eh =
Ein(wh) and the learned encoder embedding h.
To achieve this, the Euclidean distance between
the two embeddings is minimized as an additional
component of the loss, the consistency penalty:
LC = (h− eh)2 which can only be computed for
for the set of words which are both defined (head-
words) and used within definitions of other words,
i.e., Vh ∩ Vin. When setting λt = 0 for all other
tasks t, we can approximately recover Hill’s model
(Hill et al., 2016). It was previously shown (Bosc
and Vincent, 2018) that initializing the weights of
the input embeddings Ein with pre-trained word
embeddings, paired with this type of consistency
constraint, can lead to improved performance on

a number of word relatedness tasks (we label this
setting as CPAE-P).

A.4 Votes as signals of importance

User-provided information can be used in several
ways in our method. In our current setup, there may
often be too many entries for a given headword
to be able to adequately focus on all of them at
once using our models which rely on a recurrent
encoder for the concatenation of all tokens in all
definitions. In Urban Dictionary, we can rely on the
signal of user-provided votes, which are applied
at the entry-level. This information can help sort
the set of entries by importance: when training
our concatenated lists of definitions, entries, and
tags, we try sorting10 them by their net number
of votes (up-votes − down-votes) so that the top
scoring entries will be processed by the model first,
giving them priority over the other entries. We also
remove any entries that received negative net votes
from the concatenated list of entries. Empirically,
we found that using the voting information in this
way resulted in either a minor improvement or no
change in the results, and so all results presented
reflect the use of votes as signals of importance
where votes are available.

B Additional Results

Table 3 shows the full set of results across all three
dictionaries using the same evaluation tasks as be-
fore. AE/Autoencoder is the simple autoencoder
model in which the loss term only consists of the
definition reconstruction penalty. CPAE is the Con-
sistency Penalized Autoencoder (Bosc and Vincent,
2018) which is the same as the AE model with the
addition of the consistency penalty. Model names
ending with “-P” use pre-trained embeddings (the
same used for the SGNS baseline) to initialize the
input embedding layer of the model. Hill’s model
(Hill et al., 2016) only uses the consistency penalty
and always uses pre-trained embeddings to initial-
ize the input embedding layer. SGNS is the skip-
gram with negative sampling baseline, and “+Struc-
ture” is the same as the previous row, but using out
multi-task learning framework to train the model
to use the structural elements available in the dic-
tionary. For the Urban Dictionary data, for models
that use pre-trained embeddings to initialize the
input layer, “Full” indicates that those embeddings

10We also explore using votes to weight the loss for each
example, but find no significant differences in the results.
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dev test
Model MEN SV MEN WS-R WS-S SL999 SL333 SV SCWS RG65 MT RW

W
or

dN
et

Autoencoder 48.9 38.7 49.0 31.3 50.7 36.2 22.4 33.8 54.0 61.4 44.0 21.8
+ Structure 45.0 42.7 45.7 28.6 41.4 32.9 22.3 38.7 50.1 65.8 40.1 21.9
CPAE 51.1 41.6 48.9 34.5 47.8 39.7 29.0 37.2 53.2 60.0 40.5 23.4
+ Structure 51.0 44.1 51.5 36.6 52.2 36.3 23.6 37.6 54.0 63.6 47.0 21.9
AE-P 55.8 45.9 52.8 39.2 59.7 41.8 28.2 40.4 56.8 68.2 49.4 24.4
+ Structure 55.8 45.3 55.9 39.9 62.1 42.2 27.2 43.5 57.3 66.8 50.8 23.8
CPAE-P 68.3 49.4 67.3 50.6 66.4 47.4 34.1 45.3 61.5 76.7 61.4 31.5
+ Structure 68.0 52.0 67.8 54.4 67.6 45.8 33.5 47.4 61.3 76.8 61.9 28.5
Hill’s Model 61.1 45.6 59.9 42.3 59.5 43.8 35.8 44.2 59.0 73.6 56.0 30.3
SGNS 58.6 34.7 56.2 45.6 62.9 35.0 20.4 34.4 54.0 63.1 52.8 23.2

W
ik

tio
na

ry

Autoencoder 45.8 27.3 49.2 44.4 60.3 29.4 9.8 25.4 47.9 77.2 45.5 22.4
+ Structure 43.3 14.1 45.8 35.5 62.3 20.9 -2.9 16.3 42.3 50.7 40.7 17.7
CPAE 53.3 27.4 53.1 52.4 61.6 34.6 15.8 29.3 54.2 75.2 49.7 16.8
+ Structure 38.6 18.3 46.1 32.3 53.3 20.2 -1.3 19.9 43.1 56.1 33.6 13.9
AE-P 51.3 31.2 51.1 43.5 59.8 32.9 15.8 27.5 49.8 82.7 43.5 25.8
+ Structure 54.0 31.2 54.0 49.2 64.0 33.6 20.3 27.3 49.3 78.1 48.6 24.2
CPAE-P 65.1 33.4 64.1 60.4 73.0 35.5 18.4 33.1 56.9 87.7 58.2 21.4
+ Structure 65.2 38.0 67.0 61.4 72.8 39.5 21.6 38.2 57.3 85.6 60.4 25.4
Hill’s Model 63.8 33.5 66.3 53.8 70.6 37.6 27.4 33.2 58.7 80.7 57.9 30.3
SGNS 65.1 43.2 65.0 56.5 68.7 42.1 22.4 38.0 56.6 72.8 63.3 25.1

U
rb

an
D

ic
tio

na
ry

Autoencoder 8.7 9.3 13.2 3.4 7.9 10.3 9.3 10.3 25.2 15.8 8.3 4.1
+ Structure 14.1 11.7 16.0 8.3 20.7 11.2 11.0 8.0 25.2 32.8 10.5 6.2
CPAE 1.7 7.4 5.9 -2.2 5.6 3.9 -0.1 4.5 23.4 -1.4 0.6 2.8
+ Structure 20.0 15.8 22.9 17.8 17.4 10.1 9.8 5.5 27.3 21.3 13.1 3.8
AE-P (Part) 20.9 7.5 16.1 6.7 18.6 10.0 3.6 5.5 31.8 2.5 12.2 7.1
+ Structure 26.3 9.8 18.6 9.5 22.1 11.0 6.0 4.7 33.1 -3.5 7.0 7.9
CPAE-P (Part) 54.9 26.1 51.7 42.4 55.6 31.8 23.1 20.4 48.1 47.4 46.9 11.8
+ Structure 57.1 24.9 52.0 40.5 52.7 30.4 24.5 19.2 48.4 45.7 51.3 11.6
Hill’s (Part) 57.4 24.7 55.1 43.7 57.0 31.4 24.4 19.3 49.9 47.8 49.2 12.7
SGNS (Part) 65.8 28.2 63.6 51.7 58.2 36.8 20.5 27.6 55.4 50.9 59.6 17.1
AE-P (Full) 21.1 8.6 17.1 8.0 18.3 10.4 4.8 5.0 30.4 0.3 12.7 12.1
+ Structure 25.4 9.4 18.4 12.2 20.8 12.0 12.4 6.6 32.2 8.2 11.4 9.3
CPAE-P (Full) 71.4 38.4 68.5 61.3 69.6 44.7 29.2 30.0 59.2 71.1 65.1 32.7
+ Structure 74.6 42.6 72.3 64.1 71.1 47.8 33.9 30.4 60.4 78.9 69.2 34.9
Hill’s (Full) 72.5 38.9 70.0 61.4 69.6 44.3 32.8 29.5 60.1 75.8 68.4 34.2
SGNS (Full) 79.1 42.1 78.0 65.7 74.2 47.9 30.2 35.5 62.5 89.3 74.3 39.2

Table 3: Full similarity and relatedness evaluation results for each dictionary.
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have been trained on the entirety of Urban Dic-
tionary, while “Part” means that the embeddings
were only trained on the filtered subset (only com-
monly used words, no words receiving negative
total votes) of Urban Dictionary that was used to
train the main dictionary embedding model.

The models presented in the Results section of
the main paper are those that achieved the best
result for at least one evaluation task for any dictio-
nary dataset. However, from this full set of results,
we can observe that the addition of structural el-
ements through multi-task learning does lead to
improvements in some cases, especially for the Ur-
ban Dictionary. This may be due to the fact that
the definitions in Urban Dictionary are not always
strictly providing direct meanings of the words and
sometimes include jokes and opinions (Nguyen
et al., 2018), so the usage examples and tags can be
used to help provide more useful signals when train-
ing the model. This phenomenon can be seen even
more closely from the very poor results achieved by
the plain autoencoder and CPAE models on Urban
Dictionary, which achieve no better than random
results on some of the evaluation tasks, indicating
that the signal from the definitions in Urban Dic-
tionary is extremely noisy, even within the filtered
subset of the dictionary.

C Experimental details

We train our models for a maximum of 150 epochs,
implementing early-stopping using two of the in-
trinsic evaluation tasks which have readily avail-
able development sets: MEN (Bruni et al., 2012)
and SimVerb-999 (Hill et al., 2015). When the
model average performance on these two tasks does
not increase for 10 epochs in a row, we stop training
and save the embeddings produced by the model
which achieved the maximum average score on
these development tasks. We initialize our input
embeddings with the baseline FastText embeddings
trained on the concatenation of all structural dictio-
nary elements treated as plain text.

For our definition encoder, we use a 300-
dimensional, bidirectional GRU11 layer followed
by a single feedforward layer. We set the dimen-
sion dh to match the size of whichever pre-trained
embeddings we use with that model (usually 300)
so that the consistency penalty can be properly

11We also experimented with several other simple encoder
types, including the LSTM that was used in (Bosc and Vincent,
2018), but found the bi-GRU to give consistently better or
equal results with a smaller number of parameters.

computed. We limit the size of each output vocab-
ulary to the most common 10,000 words, and we
limit the size of the input vocabulary to the most
common 50,000 words.

We use Adam (Kingma and Ba, 2014) as the op-
timizer with a learning rate of 3× 10−4. Following
(Bosc and Vincent, 2018), we set the λ value for
the reconstruction task to 1 and modify the other
weights proportionally. Given the previously re-
ported importance of the consistency penalty, we
set this to 64. In order to focus our search on the
possible combinations of objectives, we also leave
the λ values for the tags and examples at 1.


