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Abstract

Generating multi-sentence image descriptions
is a challenging task, which requires a good
model to produce coherent and accurate para-
graphs, describing salient objects in the im-
age. We argue that multiple sources of in-
formation are beneficial when describing vi-
sual scenes with long sequences. These in-
clude (i) perceptual information and (ii) se-
mantic (language) information about how to
describe what is in the image. We also com-
pare the effects of using two different pool-
ing mechanisms on either a single modality
or their combination. We demonstrate that
the model which utilises both visual and lan-
guage inputs can be used to generate accurate
and diverse paragraphs when combined with a
particular pooling mechanism. The results of
our automatic and human evaluation show that
learning to embed semantic information along
with visual stimuli into the paragraph genera-
tion model is not trivial, raising a variety of
proposals for future experiments.

1 Introduction

The quality of automatically generated image cap-
tions (Bernardi et al., 2016) has been continuously
improving as evaluated by a variety of metrics.
These improvements include use of neural net-
works (Kiros et al., 2014; Vinyals et al., 2014),
attention mechanisms (Xu et al., 2015; Lu et al.,
2017) and more fine-grained image features (An-
derson et al., 2017). More recently, a novel open-
ended task of image paragraph generation has been
proposed by Krause et al. (2017). This task requires
the generation of multi-sentence image descrip-
tions, which are highly informative, thus, include
descriptions of a large variety of image objects, and
attributes, which makes them different from stan-
dard single sentence captions. In particular, a good
paragraph generation model has to produce descrip-

tive, detailed and coherent text passages, depicting
salient parts in an image.

When humans describe images, especially over
longer discourses, they take take into account (at
least) two sources of information that interact with
each other: (i) perceptual information as expressed
by visual features and (ii) cognitive reasoning that
determines the communicative intent of the text and
the use of language (Kelleher and Dobnik, 2019).
Perceptual information mainly determines what to
refer to while the reasoning mechanisms tell us how
and when to refer to it. Both mechanisms interact:
that a particular object is described at a particular
point of discourse and with particular words de-
pends not only on its perceptual salience but also
whether that object should be referred to at that
point of the story that the text is narrating which is
its discourse salience. Compare for example: “two
cows are standing in the field”, “there are trees in
the field” and “a few of them are close to the trees”.
The selection and the order of the relevant features
are described by a cognitive mechanism of atten-
tion and memory (Lavie et al., 2004; Dobnik and
Kelleher, 2016).

In this paper, we investigate the interplay be-
tween visual and textual information (reflecting
background knowledge about the world and com-
municative intent) and their ability to generate nat-
ural linguistic discourses spanning over several sen-
tences. Our primary research question is as follows:
does using both visual and linguistic information
improve accuracy and diversity of generated para-
graphs? We experiment with several types of in-
puts to the paragraph generator: visual, language
or both. We also investigate the effects of differ-
ent kinds of information fusion between visual and
textual information using either attention or max-
pooling. We demonstrate that multimodal input
paired with attention on these modalities benefits
model’s ability to generate more diverse and accu-
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rate paragraphs.

We evaluate the accuracy and diversity of our
paragraphs with both automatic metrics and human
judgements. We also argue that, as some previous
work shows (van der Lee et al., 2019), n-gram-
based metrics might be unreliable for quality eval-
uation of generated texts. The generated paragraph
can be accurate as of the image, but because it does
not match the ground truth, this would score low
based on the automatic evaluation. To provide a
different view on paragraph evaluation, we asked
humans to judge the subset of generated paragraphs
across several criteria, more specifically described
in Section 3.4 and Appendix A.

In language and vision literature, “diversity” of
image descriptions has been mostly defined in
terms of lexical diversity, word choice and n-gram
based metrics (Devlin et al., 2015; Vijayakumar
et al., 2016; Lindh et al., 2018; van Miltenburg
et al., 2018). In these papers, the focus is on gen-
erating a diverse set of independent, one-sentence
captions, with each describing image as a whole.
Each of these captions might refer to identical ob-
jects due to the nature of the task (”describe an
image with a single sentence”). Then, diversity is
measured in terms of how different object descrip-
tions are from one caption to another (e.g. a man
can be described as a “person” or “human” in two
different captions). However, as argued above, a
good image paragraph model must also introduce
diversity at the sentence level, describing different
scene objects throughout the paragraph. Here, we
define paragraph diversity with two essential con-
ditions. First, a generative model must demonstrate
the ability to use relevant words to describe objects
without unnecessary repetitions (word-level diver-
sity). Secondly, it must produce a set of sentences
with relevant mentions of a variety of image objects
in an appropriate order (sentence-level diversity).

Producing structured and ordered sets of sen-
tences (e.g. coherent paragraphs) has been a topic
of research in NLG community for a long time
with both formal theories of coherence (Grosz
et al., 1995; Barzilay and Lapata, 2008) and tra-
ditional rule-based model implementations (Reiter
and Dale, 2000; Deemter, 2016). The coherence of
generated text depends on several NLG sub-tasks:
content determination (selection), the task of decid-
ing which parts of the source information should be
included in the output description, and text structur-
ing (micro-planning), the task of ordering selected

information (Gatt and Krahmer, 2017). We believe
that the hierarchical structure of our models reflects
the nature of these tasks. First, the model attends
to the image objects and defines both their salience
and order of mention and then it starts to realise
them linguistically, first as paragraph visual-textual
topics and then as individual sentences within para-
graphs.

2 Approach

Overview For our experiments we implement
and adapt the hierarchical image paragraph model
by Krause et al. (2017).1 We deliberately chose to
re-implement an existing model to study the effects
of using different modalities (visual or language).
However, through our implementation and exten-
sions, we propose several new models based on
the original model in (Krause et al., 2017). To pre-
pare input features, we utilise the pre-trained model
for dense captioning (Johnson et al., 2016) in two
ways. First, we use it to extract convolutional fea-
tures of identified image regions. We also use its
hidden states from the RNN layer as language fea-
tures. In the original model, these states are used to
generate region descriptions; therefore, these vec-
tors represent semantic information about objects.
We construct a multi-modal space, in which we
learn mappings from both text and vision features.
Lastly, we concatenate both modalities and attend
to them to form a multi-modal vector, which is
used as an input to the paragraph generator. Our
paragraph generator consists of two components:
discourse-level and sentence-level LSTMs (Hochre-
iter and Schmidhuber, 1997). First, the discourse-
level LSTM learns the topic of each sentence from
the multi-modal representation, capturing informa-
tion flow between sentences. Second, each of the
topics is used by sentence-level LSTM to generate
an actual sentence. Finally, all generated sentences
per image are concatenated to form a final para-
graph. An overview of our model and a more de-
tailed description is shown in Fig. 1. Our model is
different from the model by Krause et al. (2017) in
the following ways: (i) we use either max-pooling
or attention in our models, (ii) we do not learn to
predict the end of the paragraph, but generate the
same number of sentences as we find in ground-
truth paragraph per each image, (iii) we use seman-

1The authors have not publicly released the code of their
model and hence the model implementation is based on our
interpretation of their paper.
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Figure 1: Multimodal paragraph generator architecture. The orange area on the left is the learned space where two
modalities are attended to (vision in purple, language in green). The mapped features are concatenated together
and passed to the attention mechanism, that outputs a vector which is used as an input to the discourse LSTM
(in blue, marked with δ ). The attention module also uses the last hidden state of the discourse LSTM at each
timestamp. The sentence LSTM (in green, marked with ς ) is given the sentence topic and word embeddings. Due
to limited space, we omit the linear layer and the softmax layer which are used to predict the next word from the
output of the sentence LSTM.

tic information about objects in the visual scene.
The focus of our work is not to improve on the
results of Krause et al. (2017) but to investigate
the effects of different multi-modal fusion on the
accuracy or the diversity of paragraph descriptions.

2.1 Input Features

Visual Features We use DenseCap region detec-
tor (Johnson et al., 2016)2 to identify salient im-
age regions and extract their convolutional features.
First, a resized image is passed through the VGG-
16 network (Simonyan and Zisserman, 2015) to
output a feature map of the image. A region pro-
posal network is conditioned on the feature map to
identify the set of salient image regions which are
then mapped back onto the feature map to produce
corresponding map regions. Each of these map re-
gions is then fed to the two-layer perceptron which
outputs a set of the final region features {v1, ...,vM},
where vm ∈R1×D with M = 50 and D= 4096. This
matrix V ∈RM×D provides us with fine-grained im-
age representation at the object level. We use this
representation as features of visual modality.

Language Features In the dense captioning task,
a single layer LSTM is conditioned on region fea-
tures to produce descriptions of these regions in nat-
ural language. We propose to utilise its outputs as
language features, using them as additional seman-
tic background information about detected objects.
Specifically, we condition a pre-trained LSTM on
region features to output a set Y = {ym, ...,yM}
with ym ∈ R1×T×H , where T = 15 and H = 512.

2Available at: https://github.com/jcjohnson/densecap

We condense each vector over the second dimen-
sion T, which determines the maximum number
of words in each description. We achieve this by
summing all elements across this dimension and
dividing the result by the actual length of the cor-
responding region description, which we generate
from Y . The final matrix L ∈ RM×H , contains lan-
guage representations of M detected regions.

Multimodal Features First, we learn two differ-
ent mappings, using Vmap for vision and Lmap for
language. These linear projections learn to em-
bed modality-specific information into the atten-
tion space. Then, we concatenate these mappings
to form the multimodal vector f , which is then
combined with the mapping from the hidden state.
We have experimented with fusing two attended
modalities into a single vector via an additional
linear layer but observed no improvement. We also
tried to use modality-dependent attention (early
attention) as such setting has shown to produce
good joint representation for the task of multimodal
machine translation (Caglayan et al., 2016, 2019),
which is very similar to image captioning in its na-
ture. However, this set-up provided us with worse
scores of automatic metrics. Therefore, here we use
late attention: attending to the visual and textual
features when they are already concatenated.

As shown in Eq. 1, at each timestamp t we
concatenate mapped features from both modali-
ties to output the multimodal vector multt , where
t ∈ {1, ...,S} and S is the maximum number of
sentences to generate. We use δ to refer to the dis-
course LSTM and ς when referring to the sentence
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LSTM. Concatenation, the logistic sigmoid func-
tion and element-wise multiplication are indicated
with ⊕, σ and � respectively. We set S depend-
ing on the number of sentences in the ground-truth
paragraph with the maximum S = 6. Then, as Eq. 2
indicates, we generate attention weights for our
multimodal vector multt . We use additive (concat)
attention mechanism and concatenate multimodal
representation with the previous hidden state of the
discourse LSTM. Finally, as in Eq. 3, we obtain
a weighted multimodal vector f ∈ R1×H , which
encapsulates and merges salient information from
attended visual and textual modalities.

multt = [WV
m Vt ⊕W L

mLt ] (1)

α
mult
t = so f tmax(W L

a tanh(multt ⊕Whhδ
t−1) (2)

ft = [αmult
t �multt ] (3)

2.2 Discourse LSTM
Our discourse-level LSTM is responsible for mod-
elling multi-modal topics of each of the individual
sentences in the paragraph. At each timestamp, it is
conditioned on the weighted multimodal vector ft ,
and its output is a set of hidden states {h1, ...,hS},
where each state is used as an input to the sentence-
level LSTM. In its nature, the discourse LSTM has
to simultaneously complete at least two tasks: pro-
duce a topic with a relevant combination of visual
and linguistic information for each sentence, while
preserving some type of ordering between the top-
ics. Such topic ordering is essential for keeping
a natural transition between sentences (discourse
items) in the paragraph (discourse). We expect
attention on the combination of two modalities to
assist the discourse LSTM in its multiple objectives
since attention weights specific parts of the input
as more relevant for a particular sentence. We ex-
pect that this allows discourse LSTM to learn better
sentence representations and sentence order.

Similar to Xu et al. (2015), we also learn a gating
scalar β and apply it to ft :

β = σ(Wbhδ
t−1), (4)

where Wb is a learnable model parameter. Thus,
the input to discourse LSTM is computed as fol-
lows:

f δ
t = β � ft (5)

2.3 Sentence LSTM

Our sentence-level LSTM is a single-layer LSTM
that generates individual sentences in the paragraph.
We run the sentence LSTM S times. Each time we
use a concatenation of the corresponding hidden
state of the discourse LSTM with the learned em-
beddings of the words in the target sentence ys as
its input:

xς
s = [hδ

s ⊕Eys] (6)

Our word embedding matrix E ∈ RK×H is
learned from scratch, K is the vocabulary size. This
is different from (Krause et al., 2017), who use
word embeddings and LSTM weights from the
pre-trained DenseCap model. We have also ex-
perimented with transferring DenseCap weights
and embeddings into our model but observed no
significant improvement.

At each timestamp t, our sentence LSTM is un-
rolled N+1 times, where N is the number of words
to generate. At each step, its hidden state is used
to predict a probability distribution over the words
in the vocabulary. We set N = 50. The final set
of sentences is concatenated together to form a
paragraph.

2.4 Learning Objective

We train our model end-to-end with image-
paragraph pairs (x,y) from the training data. Our
training loss is a simple cross-entropy loss on the
sentence level:

lossς (x,y) =−
S

∑
i=1

Mi

∑
j=1

log(p j,s) (7)

where p j,s is the softmax probability of the jth

word in the ith sentence given all previously gen-
erated words for the current sentence y1: j−1,i. For
the first sentence, the hidden states of both LSTMs
are initialised with zeros. For every subsequent
sentence, both LSTMs use the last hidden states
generated for the previous sentence for each respec-
tive layer. During training, we use teacher forcing
and feed ground-truth words as target words at each
timestamp. We use Adam (Kingma and Ba, 2014)
as an optimiser and choose the best model based
on the validation loss (early stopping). For decod-
ing we use beam search (Freitag and Al-Onaizan,
2017) with beam width B = 2 (we tested several
values for the beam width B ∈ {2,4,6,8,10}). We
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leave the investigation of the effects of using differ-
ent decoding strategies such as nucleus sampling
(Holtzman et al., 2020) or various techniques for
controlling decoding (length penalty, n-gram repeti-
tion penalty (Klein et al., 2017; Paulus et al., 2017))
for future work.

3 Experiments and Evaluation

3.1 Models
We describe six configurations of our model, which
we train, validate and test on the released Stan-
ford paragraph dataset splits (14,575, 2,487, 2,489
for training, validation and testing respectively)
(Krause et al., 2017). Our models are described
as follows: the IMG model is conditioned only on
the mapped visual features, while the LNG model
only uses the mapped semantic information to gen-
erate paragraphs. The IMG+NLG is conditioned
on both mapped visual and semantic information.
All models with +ATT use late attention on either
uni-modal or multi-modal features. We also test an-
other configuration of the models with max-pooling
of input features across M regions, represented by
mapping from either language features x =W L

mLt

or visual features x =WV
m Vt :

xς
s = maxM

i=1(x) (8)

In the IMG+LNG model we apply max-pooling
on both modalities and concatenate them into a
single vector:

xς
s = [maxM

i=1(W
L
mLt)⊕maxM

i=1(W
V
m Vt)] (9)

3.2 Metrics
Typically, a variety of n-gram based automatic met-
rics is used to measure the correctness/accuracy
of image captions. We evaluate our models with
the following metrics: CIDEr (Vedantam et al.,
2014), METEOR (Denkowski and Lavie, 2014),
BLEU-{1, 2, 3, 4} (Papineni et al., 2002), and
Word Mover’s Distance (Kusner et al., 2015; Kilick-
aya et al., 2017). We also measure lexical diversity
of sentences within the generated paragraphs. For
this we report self-BLEU (Zhu et al., 2018) which
is sometimes referred to as mBLEU (Shetty et al.,
2017). Estimating lexical diversity is important for
paragraph generation as their sentences should be
neither too similar nor too different from each other.
We calculate self-BLEU as follows: we split each
generated paragraph into sentences and use one

sentence as a hypothesis and the other sentences
as references. A lower score indicates more diver-
sity, e.g. fewer n-gram matches between compared
sentences. We also calculate the diversity metric in-
troduced by Wang and Chan (2019). This metric ap-
plies Latent Semantic Analysis (Deerwester et al.,
1990) to the weighted n-gram feature representa-
tions (CIDEr values between unique pairs of sen-
tences) and identifies the number of topics among
sentences. Compared to self-BLEU, which mea-
sures n-gram overlap, LSA combined with CIDEr-
based kernel metric measures semantic differences
between sentences as well. More identified topics
in paragraph sentences indicate a higher level of
diversity. However, this intrinsic metric does not
evaluate if the paragraph demonstrates discourse
coherence in terms of how these topics are intro-
duced and the quality of the generated sentences
and their sequences (Section 1).

3.3 Results

As the results in Table 1 demonstrate, models
which utilise both semantic and visual informa-
tion (any IMG+LNG configuration) outperform
their single modality variants in both attention and
max-pooling settings. When using max-pooling,
IMG+LNG model improves on CIDEr by 0.72 and
METEOR by 0.10. Also, two-modal architecture
is slightly lexically more diverse from the ground
truth paragraphs, according to the WMD scores.
This result comes at no decrease in other metrics,
concerned with lexical accuracy.

When replacing max-pooling with late attention,
we observe that the IMG model reaches the highest
scores in BLEU-{2, 3, 4}, while finishing second
in all other metrics. However, IMG+LNG model
does not seem to benefit from the attention that
much, reaching lower scores in comparison to its
version with max-pooling. Interestingly, semantic
information is beneficial to WMD, CIDEr and ME-
TEOR, which also take into account the syntactic
structure of the sentences.

Table 2 contains the scores of the lexical di-
versity metrics. The best (i.e. the lowest)
mBLEU scores are achieved by models which
use either a visual modality with max-pooling
(IMG+MAX) or both modalities with attention
(IMG+LNG+ATT). The best self-CIDEr scores
are achieved by both bi-modal architectures. In
addition, IMG+LNG+ATT strongly outperforms
all other models in both lexical diversity metrics:
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Model Input Type WMD CIDEr METEOR BLEU-1 BLEU-2 BLEU-3 BLEU-4
IMG +MAX 7.48 25.66 11.20 24.51 13.67 7.96 4.51
LNG +MAX 7.19 22.27 10.81 23.20 12.69 7.34 4.19
IMG+LNG +MAX 7.61 26.38 11.30 25.10 13.88 8.11 4.61
IMG +ATT 7.47 26.01 11.26 24.88 13.99 8.13 4.67
LNG +ATT 7.20 22.11 10.82 23.20 12.55 7.16 3.97
IMG+LNG +ATT 7.54 26.04 11.28 24.96 13.82 8.04 4.60

Table 1: Automatic evaluation results. Models are separated based on the input features (one modality / multi-
modal) and type of the mechanism used to compactly describe content of the image (max-pooling / attention).
Best scores for both +MAX and +ATT modes are shown in bold. The colour intensity indicates how good the
score is compared to the other models’ scores.

Model Input Type mBLEU self-CIDEr
IMG +MAX 50.63 76.43
LNG +MAX 52.24 75.59
IMG+LNG +MAX 52.09 76.46
IMG +ATT 51.82 75.51
LNG +ATT 50.93 76.41
IMG+LNG +ATT 47.42 78.39
GT - 18.84 96.51

Table 2: Automatic paragraph diversity evaluation.
mBLEU stands for the average score between all self-
BLEU scores for n-grams (1, 2, 3, 4). Self-CIDEr
stands for the average score of the LSA-based diversity
metric. We also include ground-truth scores calculated
from the test set (GT, coloured in blue). Best models
are shown in bold. All scores are multiplied by 100 for
better interpretability.

mBLEU is reduced by 3.21% indicating a smaller n-
gram overlap between paragraph sentences, while
self-CIDEr increases by 1.93% demonstrating that
attention in the model which uses multimodal fea-
tures helps to generate a more diverse set of sen-
tences in terms of topicality.

We include two examples of generated texts by
humans and our models. As Figure 2a demon-
strates, the IMG+LNG+ATT model can generate
less redundant/repetitive descriptions compared to
the IMG+LNG+MAX model. Figure 2b demon-
strates a case where IMG+LNG+ATT generated
a paragraph which seems correct but different from
the human-generated text (e.g. ‘human’ instead of
a ‘dog’). However, to a human eye it is not entirely
clear whether the surfer is a human or a dog. Nei-
ther of our models was able to see a ‘dog’ in this
image. Similar challenging examples include cases
where different human describers have a different
take on what the image is about or what is the focus
of the image.

Therefore, the intrinsic metrics might not be the
best indicator for identifying clear differences in
diversity and accuracy of the generated texts. In

addition, such diversity metrics as mBLEU under-
represent the diversity, being unable to take into
account semantic differences between sentences.
Therefore, we conduct a human evaluation exper-
iment to achieve a better understanding of which
input features and which pooling mechanism as-
sists in the generation of both accurate and diverse
paragraphs.

3.4 Human Evaluation

In the human evaluation task we are interested in
the following properties of generated paragraphs
covering both accuracy and diversity aspects: word
choice, object salience, sentence structure and para-
graph coherence. We randomly chose 10% of the
images from our test set, resulting in 250 images.
For each of these images, we gathered seven para-
graphs (six from the models and one from the test
set). We presented workers with the instructions
shown in Appendix A. To ensure quality and vari-
ety of workers’ judgements, we presented our tasks
only to the Master workers (those with the high
reputation and task acceptance rate) and controlled
for the number of tasks a single worker is able to
submit (we set it to 30). We paid 0.15$ per task to
a single worker. Finally, we obtained judgements
from 154 unique Master workers for 1,750 image
paragraphs overall. For each judgement criteria,
we took the average score across all models; the
results are shown in Table 3.

As shown by human evaluation, looking at the
overall mean, the multi-modal information does
help the generation of better paragraphs when us-
ing max-pooling. The IMG+LNG model with
max-pooling might be a beneficial choice (scores
first in two criteria out of four) in terms of word
choice and identification of salient objects. The
performance of the IMG+LNG model with max-
pooling is close to the performance of the IMG
model while the performance of the LNG model is
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(a) HUMAN: There are several cars parked along a street.
There are many trees in a field in front of the street. There
are small blue parking meters on the sidewalk next to the
street.
IMG+MAX : There are several cars parked on the road.
There are cars parked on the street. There are trees behind
the street.
LNG+MAX : There are several cars on the street. There
are trees on the street. There are trees on the street.
IMG+LNG+MAX : There are several cars on the street.
There are two cars on the street. There are cars parked on
the sidewalk.
IMG+ATT : There are several cars parked on the street.
There are two cars parked on the road. There are two cars
parked on the road.
LNG+ATT : There are several signs on the street. There are
signs on the street. The pole is white.
IMG+LNG+ATT : There is a parking meter on a sidewalk.
There are cars next to the street. There is a parking lot next
to the street.

(b) HUMAN: A large splash is in front of a wave in the water.
There is a large white and black surf board in the water. There
is a black dog that is riding on top of the surf board.
IMG+MAX : A man is riding a wave. He is holding a surf-
board. The man is wearing a black wet suit.
LNG+MAX : A person is surfing in the water. The surfboard
is black and white. The surfboard is black and white.
IMG+LNG+MAX : A man is standing on a surfboard. The
surfboard is black. The man is wearing black shorts.
IMG+ATT : A man is standing on a surfboard. The surf-
board is black and white. The man has black hair.
LNG+ATT : A person is standing in the water. The person is
wearing a black suit. The person is holding a black surfboard.
IMG+LNG+ATT : A person is surfing in the ocean. She is
wearing a black wet suit. She is holding a white surfboard.

Figure 2: Two example images with generated paragraphs from our models (incl. ground truth descriptions).

Input Type WC OS SS PC Mean
IMG +MAX 31.58 38.24 59.57 37.87 41.81
LNG +MAX 29.64 36.43 56.43 36.95 39.86
IMG+LNG +MAX 34.20 38.72 57.85 37.06 41.95
Mean +MAX 31.80 37.79 57.95 37.29 -

IMG +ATT 36.91 45.10 69.34 32.27 45.90
LNG +ATT 37.06 46.78 72.95 40.88 49.41
IMG+LNG +ATT 33.81 37.67 45.37 34.71 37.89
Mean +ATT 35.92 43.18 62.55 35.95 -
GT - 89.83 87.36 83.07 84.78 -

Table 3: Human evaluation results. WC, OS, SS, PC
stand for word choice, object salience, sentence struc-
ture and paragraph coherence. Each value in the table
is the average of all scores for the corresponding cri-
terion. The mean values per each model and type of
pooling mechanism are coloured in light cyan.

slightly lower. Overall, attention is judged as more
advantageous in general than max pooling, having
higher mean scores across all criteria compared
to the mean scores of max-pooling models. How-
ever, here the IMG+LNG model is outperformed
by both uni-modal models. The LNG model which
utilises semantic information and uses attention is

judged as the best configuration by humans, which
is in line with some previous work that reports
strong bias on the semantic information (Agrawal
et al., 2017). Note that while its performance is
close to the IMG model in terms of word choice
and object salience, the improvement of the LNG
model is much more expressed in terms of sen-
tence structure and paragraph coherence, categories
where one would expect that semantic informa-
tion matters most. Interestingly, max-pooling does
not seem to have the same effect on utilisation
of semantic information: the LNG+MAX model
achieves the lowest scores. A possible explanation
for this is that when using max-pooling, the same
semantic information is chosen for every sentence
topic. At the same time, attention learns to se-
lect different semantic information for a sequence
of topics. This appears to affect semantic features
more than visual features. Note that humans mostly
judge models that incorporate linguistic informa-
tion as the best ones for the word choice criterion.
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This supports the idea that utilising semantic infor-
mation reduces redundancy in terms of the number
of repeated words in the generated paragraph.

Overall, the results indicate that both visual and
semantic information are beneficial for the gener-
ated paragraphs as they affect different evaluation
categories differently. The main challenge lies in
information fusion of visual and semantic informa-
tion in the model with attention. We believe that
these results suggest the following future experi-
ments: (i) detailed investigation of early vs. late at-
tention (when to fuse two modalities and how), (ii)
as van Miltenburg et al. (2017) argue, more control
over human evaluation can provide us with better,
more precise human judgements, (iii) training with
other decoding strategies such as top-k sampling or
nucleus sampling (Holtzman et al., 2020).

4 Related Work

Neural image paragraph captioning The task
of generating image paragraphs has been intro-
duced in (Krause et al., 2017) along with the dataset
of image-paragraph pairs. The authors hierarchi-
cally construct their model: sentence RNN is condi-
tioned on visual features to output sentence topics.
Then, each of these topics is used by another RNN
to generate actual sentences. Our models are based
on this hierarchical model. However, we substan-
tially change its structure and also remove the end
of paragraph prediction.

Liang et al. (2017) also use the hierarchical net-
work, but with an adversarial discriminator, that
forces model to generate realistic paragraphs with
smooth transitions between sentences. Chatterjee
and Schwing (2018) also address cross-sentence
topic consistency by modelling the global coher-
ence vector, conditioned on all sentence topics. Dif-
ferent from these approaches, Melas-Kyriazi et al.
(2018) employ self-critical training technique (Ren-
nie et al., 2017) to directly optimise a target evalua-
tion metric for image paragraph generation. Lastly,
Wang et al. (2019) use convolutional auto-encoder
for topic modelling based on region-level image
features. They demonstrate that extracted topics
are more representative and contain information rel-
evant to sentence generation. We also model topic
representations, but we use additional semantic rep-
resentations of image objects as part of the input to
our topic generator. Lin et al. (2015) has proposed
a non-neural approach to generate texts describing
images. However, this approach depends on multi-

ple components: visual scene parsing, generative
grammar for learning from training descriptions,
and an algorithm, which analyses scene graphs and
extracts semantic trees to learn about dependencies
across sentences.

Language representation for image captioning
Several existing models for image captioning are
conditioned on both visual and background infor-
mation. You et al. (2016) detect visual concepts
found in the scene (objects, attributes) and extract
top-down visual features. Both of these modalities
are then fed to the RNN-based caption generator.
Attention is applied on detected concepts to inform
the generator about how relevant a particular con-
cept is at each timestamp. Our approach does not
use any attribute detectors to identify objects in
the scene. Instead, we use the output of another
pre-trained model for the task of dense captioning.
Lu et al. (2017) emphasise that image is not always
useful in generating some function words (“of”,
“the”). They introduce adaptive attention, which
determines when to look at the image and when
it is more important to use the language model to
generate the next word. In their work, the attention
vector is a mixture of visual features and visual
sentinel, a vector obtained through the additional
gate function on decoder memory state. Our model
is guided by their approach: we are interested in
deciding which type of information is more rele-
vant at a particular timestamp, but we also look
at how merging two modalities into a single rep-
resentation performs and how it affects attention
of the model. Closest to our work is the work by
Liang et al. (2017), who apply attention to region
description representation and use it to assist recur-
rent word generation in producing sentences in a
paragraph. Similar to our approach, they also sup-
ply their model with embeddings of local phrases
used to describe image objects. However, they use
textual phrases directly, while we are using hidden
representations from the model trained to generate
such phrases (Johnson et al., 2016). Also, our ap-
proach explores a different application of semantic
information encoded in language: we use phrase
representations to define sentence topics to choose
from (topic selection) rather than directly guide the
generation of words (micro-planning).

5 Conclusion

In this paper, we addressed the problem of gener-
ating both accurate and diverse image paragraphs.
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We demonstrated that utilising both visual and lin-
guistic information might benefit the quality of gen-
erated texts depending on the pooling mechanism
that is used. We showed that intrinsic evaluation
metrics are insufficient for evaluation of paragraphs
as they focus on lexical choice and do not capture
human level of judgement: LNG+ATT is judged
as the best model in human evaluation, while it is
not among the leaders according to the automatic
evaluation. We believe that our work is a good
starting point for further investigation of the ways
multiple sources of information about the world can
be merged for learning generation of high-quality
multi-sentence stories, describing real-world visual
scenes. In our future work we also intend to test
how our models can generate task-dependent para-
graphs. For this task we will use the dataset of
image description sequences (Ilinykh et al., 2019)
which consists of paragraphs collected in a task-
based setting to train our models. In contrast, in
the Stanford dataset humans were not given a spe-
cific task when describing images. We believe that
generation from more context-dependent and struc-
tured descriptions can open up new perspectives
for the research on image paragraphs.
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