
ICON 2020

17th International Conference on Natural Language
Processing

Proceedings of the TechDOfication 2020 Shared Task

December 18 - 21, 2020
Indian Institute of Technology Patna, India

©2020 NLP Association of India (NLPAI)

ii

Introduction

These shared task proceedings concluded the shared task on Technical DOmain Identification, named
as TechDOfication 2020, launched on 7th October 2020. The shared task was collocated with the 17th
International Conference on Natural Language Processing (ICON 2020), held at IIT-Patna, India. The
goal of the shared task was to automatically identify the technical domain of a given text in a specified
language. The languages included in this task were English, Bangla, Gujarati, Hindi, Malayalam,
Marathi, Tamil, and Telugu.

Two subtasks were part of this shared task. The first subtask was to identify a Coarse-grained technical
domain like Computer Science, Communication Technology, Management, Math, Physics, Life Science,
Law etc. The second subtask involved the task of identification of fine-grained subdomains for the
Computer Science domain like Operating System, Computer Network, Database etc. The first subtask
was conducted in all the mentioned languages while the second subtask only involved English.

We received nine system submissions and system description papers. Each system description paper was
reviewed by two members of the reviewing committee – all papers were accepted. Macro F1 scores were
used to evaluate the systems.

Both Machine Learning and Neural Network methods were used by different teams in this shared
task. Support Vector Machine and Voting Classifiers were the predominantly used Machine Learning
models. Different Neural architectures like Multi-Layer Perceptron, BiLSTM, BERT based models,
Graph Convolutional Neural Networks, XLM-RoBERTa, Multichannel LSTM-CNN were also used. We
would like to thank the ICON-2020 organizers, the shared task participants, the authors, and the reviewers
for making this shared task successful.

Shared task page: http://ssmt.iiit.ac.in/techdofication
Main conference page: https://www.iitp.ac.in/~ai-nlp-ml/icon2020/index.html

iii

Organizing Committee:

Dipti Misra Sharma (IIIT-Hyderabad)
Asif Ekbal (IIT-Patna)
Karunesh Arora (C-DAC, Noida)
Sudip Kumar Naskar (Jadavpur University)
Dipankar Ganguly (C-DAC, Noida)
Sobha L (AUKBC-Chennai)
Radhika Mamidi (IIIT-Hyderabad)
Sunita Arora (C-DAC, Noida)
Pruthwik Mishra (IIIT-Hyderabad)
Vandan Mujadia (IIIT-Hyderabad)

v

Table of Contents

MUCS@TechDOfication using FineTuned Vectors and n-grams
Fazlourrahman Balouchzahi, M D Anusha and H L Shashirekha . 1

A Graph Convolution Network-based System for Technical Domain Identification
Alapan Kuila, Ayan Das and Sudeshna Sarkar . 6

Multichannel LSTM-CNN for Telugu Text Classification
Sunil Gundapu and Radhika Mamidi .11

Multilingual Pre-Trained Transformers and Convolutional NN Classification Models for Technical Do-
main Identification

Suman Dowlagar and Radhika Mamidi . 16

Technical Domain Identification using word2vec and BiLSTM
Koyel Ghosh, Dr. Apurbalal Senapati and Dr. Ranjan Maity . 21

Automatic Technical Domain Identification
Hema Ala and Dipti Sharma . 27

Fine-grained domain classification using Transformers
Akshat Gahoi, Akshat Chhajer and Dipti Mishra Sharma. .31

TechTexC: Classification of Technical Texts using Convolution and Bidirectional Long Short Term Mem-
ory Network

Omar Sharif, Eftekhar Hossain and Mohammed Moshiul Hoque . 35

An Attention Ensemble Approach for Efficient Text Classification of Indian Languages
Atharva Kulkarni, Amey Hengle and Rutuja Udyawar . 40

vii

Shared Task Program

Monday, December 21, 2020

+ 14:00 - 14:30 Talk by Sobha L, AUKBC-Chennai

+ 14:30 - 14:45 Shared Task Overview

Presentations

16:45 - 16:55 Automatic Technical Domain Identification
Hema Ala and Dipti Sharma

16:58 - 17:08 Technical Domain Identification using word2vec and BiLSTM
Koyel Ghosh, Dr. Apurbalal Senapati and Dr. Ranjan Maity

17:11 - 17:21 A Graph Convolution Network-based System for Technical Domain Identification
Alapan Kuila, Ayan Das and Sudeshna Sarkar

17:24 - 17:34 Fine-grained domain classification using Transformers
Akshat Gahoi, Akshat Chhajer and Dipti Mishra Sharma

17:37 - 17:47 MUCS@TechDOfication using FineTuned Vectors and n-grams
Fazlourrahman Balouchzahi, M D Anusha and H L Shashirekha

17:50 - 18:00 TechTexC: Classification of Technical Texts using Convolution and Bidirectional
Long Short Term Memory Network
Omar Sharif, Eftekhar Hossain and Mohammed Moshiul Hoque

18:03 - 18:13 An Attention Ensemble Approach for Efficient Text Classification of Indian Lan-
guages
Atharva Kulkarni, Amey Hengle and Rutuja Udyawar

18:16 - 18:26 Multilingual Pre-Trained Transformers and Convolutional NN Classification Mod-
els for Technical Domain Identification
Suman Dowlagar and Radhika Mamidi

18:29 - 18:39 Multichannel LSTM-CNN for Telugu Text Classification
Sunil Gundapu and Radhika Mamidi

ix

Proceedings of the 17th International Conference on Natural Language Processing: TechDOfication 2020 Shared Task, pages 1–5
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

MUCS@TechDOfication using FineTuned Vectors and N-grams

F Balouchzahi
Dept. of Computer Science

Mangalore University
Mangalore - 574199

India
frs b@gmail.com

M D Anusha
Dept. of Computer Science

Mangalore University
Mangalore - 574199

India
anugowda251@gmail.com

H L Shashirekha
Dept. of Computer Science

Mangalore University
Mangalore - 574199

India
hlsrekha@gmail.com

Abstract

The increase in domain specific text process-
ing applications are demanding tools and tech-
niques for domain specific Text Classification
(TC) which may be helpful in many down-
stream applications like Machine Translation,
Summarization, Question Answering etc. Fur-
ther, many TC algorithms are applied on glob-
ally recognized languages like English giv-
ing less importance for local languages par-
ticularly Indian languages. To boost the re-
search for technical domains and text process-
ing activities in Indian languages, a shared
task named ”TechDOfication2020” is orga-
nized by ICON’20. The objective of this
shared task is to automatically identify the
technical domain of a given text which pro-
vides information about coarse grained tech-
nical domains and fine grained subdomains
in eight languages. To tackle this challenge
we, team MUCS have proposed three models,
namely, DL-FineTuned model applied for all
subtasks, and VC-FineTuned and VC-ngrams
models applied only for some subtasks. n-
grams and word embedding with a step of fine-
tuning are used as features and machine learn-
ing and deep learning algorithms are used as
classifiers in the proposed models. The pro-
posed models outperformed in most of sub-
tasks and also obtained first rank in subTask1b
(Bangla) and subTask1e (Malayalam) with f1
score of 0.8353 and 0.3851 respectively using
DL-FineTuned model for both the subtasks.

1 Introduction

TC is one of the important areas of research in
Natural Language Processing (NLP). Most of the
TC experiments being conducted are on resource
rich languages such as English, Spanish etc. giving
less importance to resource poor languages particu-
larly Indian languages. Further, with the increase
in domain specific text processing applications, do-
main specific TC is gaining importance demanding

specialized tools and techniques to handle domain
specific text datasets (Sun et al., 2019) for many
downstream applications like Machine Translation,
Summarization, Question Answering etc. In this di-
rection, a shared task named ”TechDOfication2020:
Technical Domain Identification” is organized in
association with 17thInternational Conference on
Natural Language Processing1 (ICON) 2020 to au-
tomatically identify the technical domain of a given
text in eight languages, namely, English, Bangla,
Gujarati, Hindi, Malayalam, Marathi, Tamil, and
Telugu. These text provides information about
specific coarse grained technical domains and fine
grained subdomains. Details of the shared tasks
are provided in the task website2. Technical do-
main identification can be modeled as a domain
specific TC task. In this paper, we describe our
models, namely, VC-ngrams, VC-FineTuned and
DL-FineTuned proposed by our team MUCS for
technical domain identification in eight languages
using n-grams and fine-tuned vectors as features.

n-grams features which are simple and scalable
are utilized in many NLP tasks. With a bigger value
of ‘n’, a model can store more contexts with a well-
understood space-time tradeoff enabling many TC
experiments to scale up efficiently. Word embed-
ding or vector representation of words captures
grammatical and semantic information of a word
which can be an enlightening feature for many NLP
applications. In this study, we investigate the two
popular word vector models namely, GloVe3 for
English (subTask1a and subTask2a) and Bangla
(subTask1b) and fastText4 (we didn’t get Glove
for other languages) for rest of subtasks for learn-
ing word vectors. GloVe model produces a vector
space with meaningful substructure, as evidenced

1http://www.iitp.ac.in/ ai-nlp-ml/icon2020/
2https://ssmt.iiit.ac.in/techdofication.html
3https://nlp.stanford.edu/projects/glove
4https://fasttext.cc

1

by its performance on a recent word analogy task5

and it forces the model to encode the frequency
distribution of words that occur near them in a
more global context. FastText, an extension of the
Word2Vec model is a word embedding method that
helps to achieve the meaning of shorter words. It
allows the embedding’s to understand suffixes and
prefixes and works well with rare words. So even
if a word is not seen during training, it can be bro-
ken down into n-grams to obtain its embedding’s.
Rarely pre-trained word embeddings are available
for domain specific text and even so infrequent for
resource poor languages such as Persian and Indian
languages. Hence, fine-tuning a word embedding
using specific (technical) domain texts can improve
the performance of TC as vectors for words miss-
ing in the pre-trained model will be updated by the
domain specific texts (Liao et al., 2010) given for
training.

Several Machine Learning (ML) and Deep
Learning (DL) models are providing effective and
accurate results for TC by reducing false positives
(Bhargava et al., 2016). Many DL models are using
Bidirectional Long Short Term Memory (BiLSTM)
which contains two LSTMs: one taking the com-
mitment to a forward course, and the other in a
retrogressive way. BiLSTMs are at the core of a
few neural models accomplishing cutting edge ex-
ecution in a wide assortment of undertakings in
NLP (Bhargava et al., 2016). BiLSTM model can
use the pre-trained word embeddings provided by
fastText and GloVe.

The rest of the paper is organized as follows.
Section 2 highlights the related work followed by
the proposed methodology in Section 3. Experi-
ments and results are described in Section 4 and
the paper finally concludes in Section 5.

2 Related Work

Researchers round the globe have developed sev-
eral approaches for domain specific TC. Some of
related ones are described below:

A strategy to develop sentence vectors (sent2vec)
by averaging the word embeddings is proposed by
(Liu, 2017) to explore the effect of word2vec on
the performance of sentiments analysis of citations.
The authors trained the ACL-Embeddings (300 and
100 measurements) from ACL collection and also
examined polarity-specific word embeddings (PS-

5https://dzone.com/articles/glove-and-fasttext-two-
popular-word-vector-models

Embeddings) for characterizing positive and neg-
ative references. The generated embedding is fed
to SVM classifier and using 10-fold cross valida-
tion they obtained a macro-f1 score of 0.85 and the
weighted-f1 score of 0.86 and proved the efficiency
of word2vec on classifying positive and negative
citations.

A domain-specific intent classification for Sin-
hala language proposed by (Buddhika et al., 2018)
utilized a feed-forward neural network with back
propagation. They trained their model on a banking
domain-related data set with Mel Frequency Cep-
stral Coefficients extracted from a Sinhala speech
corpus of 10 hours and obtained 74% results on
identification accuracy of speech queries. (Zhou
et al., 2016) proposed a combination of two mod-
els BLSTM-2D Pooling and BLSTM-2D CNN
and tested it on six TC tasks, including sentiment
analysis, question classification, subjectivity clas-
sification, and newsgroups classification to com-
pare their models with the state-of-the-art mod-
els. The authors evaluated the performance of pro-
posed models on different lengths of sentences and
then conducted a sensitivity analysis of 2D filter
and max-pooling size. BLSTM-2DCNN model
achieved excellent performance on 4 out of 6 tasks
and obtained 52.4% and 89.5% test accuracies on
Stanford Sentiment Treebank-1 and Treebank-2
datasets respectively.

(Rabbimov and Kobilov, 2020) explored a multi-
class TC task to classify Uzbek language text. They
collected articles on ten classes taken from the
Uzbek ”Daryo” online news and used six diverse
ML algorithms namely, Multinomial Naıve Bayes
(MNB), Decision Tree Classifier (DTC), SVM,
Random Forest (RF) and LR. Hyper parameters
for the classifiers were obtained by Grid search al-
gorithms with 5-fold cross-validation. The results
obtained illustrates that, in many cases the charac-
ter n-grams gives better results than the word level
n-grams. However, among all,SVM with the Radial
Basis Function kernel (RBF SVM) using TF-IDF
and character level four grams features obtained
best results with an accuracy of 86.88

3 Methodology

Inspired by (Liu, 2017) to use word embeddings
as features for classification, (Zhou et al., 2016)
to use BiLSTMs for classification and (Rabbimov
and Kobilov, 2020) for using ML algorithms for
classification, we proposed three models, namely,

2

Voting Classifiers using n-grams (VC-ngrams), Vot-
ing Classifiers using FineTuned word vectors (VC-
FineTuned) and Deep Learning using FineTuned
word vectors (DL-FineTuned). Each model is built
in two steps namely, i) Feature Extraction and ii)
Model Construction, as explained below:

3.1 Feature Extraction
n-grams and word embeddings features are utilized
in the proposed models. Linguistic models have
proven their efficiency in many studies. Hence, n-
grams features including Char n-grams (1, 2, 3, 4,
5) along with word n-grams (1, 2, 3) are extracted
from input data and CountVectorizer6 library is
used to generate n-grams count vectors which are
used in VC-ngrams model.

The pre-trained word embeddings-GloVe, with
a vector size 300 is used for English and Bangla
subtasks and fastText with a size of 300 for the
subtasks of rest of the languages as features after
fine tuning using the training data. Fine tuning of
vectors in a pre-trained model by training data of a
specific task helps in generating vectors for words
missing in pre-trained models, and it can lead
to higher performance specifically in fine-grained
tasks such as domain specific TC. Fine-tuned vec-
tors are utilized to build embedding matrix to train
VC-FineTuned and DL-FineTuned models.

3.2 Model Construction
Construction of the three models is explained be-
low:

• VC-ngrams model: An ensemble Voting
Classifier with three ML classifiers namely,
Multilayer Perceptron (MLP), Logistic Re-
gression (LR), and Support Vector Machine
(SVM) have been trained on n-grams count
vectors obtained in Feature Extraction step.
Default parameters are used for SVM and LR
classifiers and for MLP, hidden layer sizes are
set to (150, 100, 50) and maximum iteration,
activation, solver, and random state have been
set to 300, Relu, Adam and 1 respectively.
Structure of VC-Ngrams model is shown in
figure-1.

• DL-FineTuned model: This model is created
based on DL architecture using pre-trained
word embeddings. A pre-trained word em-
bedding of size 300 is fine-tuned using the

6https://scikit-learn.org/stable/modules/generated/
sklearn.featureextraction.text.CountV ectorizer.html

Figure 1: Structure of VC-ngrams model

specific language training set and the obtained
vectors are used to build embedding matrix.
This embedding matrix is used as input for
Sequential model from Keras7 library to build
a BiLSTM network of size 100 with activation
and optimizer parameters set to “softmax” and
“adam” respectively. The output dimensions
are configured based on the corresponding
subTask’s labels (e.g. seven labels for sub-
Task2a) as given by the organizers. The con-
structed model has been trained for dynamic
epochs till loss value got stabilized (not more
than 20 epochs). Structure of DL-FineTuned
model is shown in Figure 2.

• VC-FineTuned model: The architecture of
VC-FineTuned model is driven from merging
the features extraction part of DL-FineTuned
model and model construction part of VC-
Ngrams model. In this model, a pre-trained
word embedding of size 300 is fine-tuned us-
ing the specific language training set and the
resulting vectors are used to build an ensem-
ble Voting Classifier with similar estimators
as the VC-ngrams model, namely, MLP, SVM,
and LR.

The DL-FineTuned model is applied for all the sub-
tasks whereas due to lack of pre-trained models
and the long time taken for training the models,
VC-ngrams model is applied for English and Gu-
jarathi subTask1 and English subTask2 and VC-
FineTuned model is applied for English, Gujarathi
and Malayam subtasks1.

7https://keras.io/guides/sequentialmodel

3

Figure 2: Structure of DL-FineTuned model

4 Experimental Results

4.1 Datasets
Datasets provided by TechDOfication 2020 con-
sists of train, development, and test sets for
nine subtasks of eight languages namely, En-
glish, Bangla, Gujarati, Hindi, Malayalam, Marathi,
Tamil, and Telugu and the details of the datasets
are given in Table 1. Only the training datasets
for English subtasks are balanced and the subtasks
of all other languages are not balanced. Further,
subTask1e (Malayalam) has only three classes and
subTask1d (Hindi) and subTask2a (English) have
seven classes each. More details about the datasets
are available in task website8 and also in Github
repository9.

4.2 Results
The number of participated teams and submitted
runs given in Table 2 illustrates that more teams
have registered for English subtasks and number of
runs submitted for English subtasks are also more
compared to other subtasks. Performance of the
models for the subtasks on the development set in
terms of F1 score are shown in Table 3.

While DL-FineTuned model is applied for all the
subtasks VC-ngrams and VC-FineTuned models
are applied only for some subtasks. It can be ob-
served that DL-FineTuned models perform better
for some subtasks and VC-ngrams models perform
better for some other subtasks. Also the proposed
DL-FineTuned model obtained first position in sub-
Task 1b (Bangla) and subTask1e (Malayalam) with

8https://ssmt.iiit.ac.in/techdofication.html
9https://github.com/fazlfrs/TechDofication2020

f1 score of 0.8353 and 0.3851 respectively. The
results illustrate that fine-tuning the vectors by
specific domain text for the subtasks using DL-
FineTuned model have performed better compared
to other two models. However, VC-ngrams applied
on the three subtasks have also performed well.

Conclusion and future works

We, team MUCS proposed three models namely
DL-FineTuned model applied for all subtasks, and
VC-FineTuned and VC-ngrams models applied for
only few subtasks to identify technical domain of
a given text in Indian languages. The results re-
ported by TechDOfication 2020 task organizers
illustrate that the proposed DL-FineTuned model
outperformed in most of the subtasks and also ob-
tained first rank in subTask 1b (Bangla) and sub-
Task 1e (Malayalam) with f1 score of 0.8353 and
0.3851 respectively. We would like to improve our
proposed models by applying other features and
also learning models such as Transfer Learning.

References
Rupal Bhargava, Yashvardhan Sharma, and Shubham

Sharma. 2016. Sentiment analysis for mixed script
indic sentences. In 2016 International conference
on advances in computing, communications and in-
formatics (ICACCI), pages 524–529. IEEE.

Darshana Buddhika, Ranula Liyadipita, Sudeepa
Nadeeshan, Hasini Witharana, Sanath Javasena, and

4

Uthayasanker Thayasivam. 2018. Domain specific
intent classification of sinhala speech data. In 2018
International Conference on Asian Language Pro-
cessing (IALP), pages 197–202. IEEE.

Chunyuan Liao, Hao Tang, Qiong Liu, Patrick Chiu,
and Francine Chen. 2010. Fact: fine-grained cross-
media interaction with documents via a portable hy-
brid paper-laptop interface. In Proceedings of the
18th ACM international conference on Multimedia,
pages 361–370.

Haixia Liu. 2017. Sentiment analysis of citations using
word2vec. arXiv preprint arXiv:1704.00177.

IM Rabbimov and SS Kobilov. 2020. Multi-class text
classification of uzbek news articles using machine
learning. In Journal of Physics: Conference Series,
volume 1546, page 012097.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In China National Conference on Chinese Computa-
tional Linguistics, pages 194–206. Springer.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming Xu,
Hongyun Bao, and Bo Xu. 2016. Text classifi-
cation improved by integrating bidirectional lstm
with two-dimensional max pooling. arXiv preprint
arXiv:1611.06639.

5

Proceedings of the 17th International Conference on Natural Language Processing: TechDOfication 2020 Shared Task, pages 6–10
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

A Graph Convolution Network-based System for Technical Domain
Identification

Alapan Kuila, Ayan Das and Sudeshna Sarkar
Department of Computer Science and Engineering

Indian Institute of Technology Kharagpur,
Kharagpur, WB, India-721302

{alapan.kuila, ayan.das, sudeshna}@cse.iitkgp.ac.in

Abstract

This paper presents the IITKGP contribu-
tion at the Technical DOmain Identification
(TechDOfication) shared task at ICON 2020.
In the preprocessing stage, we applied part-of-
speech (PoS) taggers and dependency parsers
to tag the data. We trained a graph convo-
lution neural network (GCNN) based system
that uses the tokens along with their PoS and
dependency relations as features to identify the
domain of a given document. We participated
in the subtasks for coarse-grained domain clas-
sification in the English (Subtask 1a), Bengali
(Subtask 1b) and Hindi language (Subtask 1d),
and, the subtask for fine-grained domain classi-
fication task within Computer Science domain
in English language (Subtask 2a).

1 Introduction

Text classification is the task of assigning a cate-
gory to a given piece of text based on its content
from a predefined set of categories (Aggarwal and
Zhai, 2012; Kowsari et al., 2019). It is a fundamen-
tal natural language processing (NLP) task with
several downstream applications such as sentiment
analysis, topic labeling and machine translation.

The ICON 2020 shared task on technical do-
main identification is essentially a text classifica-
tion problem which involves identification of the
technical domain in which a document belongs to
a fixed set of domains. In this task, the participants
are expected to develop a system that automatically
identifies the technical domain of a given text (a
small passage) in specified language.

We participated in the following subtasks:

1. Subtask 1a: Coarse grained domain classifi-
cation in English.

2. Subtask 1b: Coarse grained domain classifi-
cation in Bengali.

3. Subtask 1d: Coarse grained domain classifi-
cation in Hindi.

4. Subtask 2a: Fine grained domain classifica-
tion within Computer Science domain in En-
glish.

We applied PoS tagging and dependency parsing
on the training and test data using PoS taggers and
dependency parsers in the corresponding languages.
We have used the PoS tags and the dependency
relations of the tokens with their parent nodes in
the dependency trees as features of the tokens in
our system.

In the domain identification stage, the techni-
cal domain of a document is predicted from the
representation of the document obtained using a
GCNN, that takes the contextual representations of
the constituent tokens of the document and a graph
representation of the document as input. The con-
textual representations of the tokens are obtained by
using a multi-layer bi-directional long-short term
memory (LSTM) (Hochreiter and Schmidhuber,
1997; Schuster and Paliwal, 1997) that takes the
representations of the tokens as input.

Corresponding to each subtask we submitted sin-
gle runs of the systems.

2 Our Proposed Model

In this section, we will discus our proposed tech-
nical domain identification system in detail. The
steps for predicting the domain of a given docu-
ment are as follows.

S1. We partitioned the document into constituent
sentences and tokenized each sentence into its
constituent words.

S2. We PoS tagged and dependency parsed each
sentence.

6

S3. We obtained the contextual representation of
each token in the document by applying a
multi-layer bi-directional LSTM on the repre-
sentations of the tokens where we considered
the entire document as a single sequence.

S4. We used the contextual representations of the
tokens obtained in the previous step and the
graph representation of the document as input
to a GCNN to obtain the final feature repre-
sentation of each word.

S5. We combined the final feature representations
of the tokens to derive the document represen-
tation.

S6. We passed the document representation as
input to a multi-layer perceptron (MLP) fol-
lowed by a softmax layer to predict domain of
the document.

2.1 Partitioning of Document into Sentences
and Tokenization

We derived the sentences from the documents by
partitioning the document on the following charac-
ters: “.”, “?” and “!”. The sentences were tokenized
based on spaces. The tokens are essentially the
space separated word in the sentences.

2.2 PoS Tagging and Dependency Parsing of
Sentences

Before training or testing we PoS tagged and de-
pendency parsed the sentences. We PoS tagged
and parsed the English sentences in the subtasks
1a and 2a using the SpaCy library (Honnibal and
Johnson, 2015; Honnibal and Montani, 2017). The
Bangla and Hindi sentences for the subtasks 1b and
1d respectively were PoS tagged and dependency
parsed using a LSTM based sequence tagger (Qi
et al., 2018) and a bi-affine graph based depen-
dency parser (Dozat et al., 2017). The Bangla tag-
ger and parser were trained using a Bangla treebank
developed in our institute. The Hindi tagger and
parser were trained using the Universal Dependen-
cies v2.0 Hindi treebank (Nivre et al., 2016).

2.3 Generation of Contextual Representation
of Tokens

We obtained the contextual representation of the
tokens in a document by passing the distributed
representations of the tokens in the document as
input to a 3-layer bi-directional LSTM. Here we
treated the entire document as a sequence. Each

token is represented as the concatenation of the
embedding of the token, the embedding of its PoS
tag, the embedding of its dependency relation with
its parent in the dependency tree of the sentence,
and, the character-level representation of the word
obtained by applying a convolutional neural net-
work (Goodfellow et al., 2016) on the embeddings
of the constituent characters of the token.

All the embeddings were randomly initialized
and updated during training phase.

2.4 Graph Convolution Neural Network to
Generate the Document Representation

In this section, we discuss the implementation of
GCNN (Kipf and Welling, 2016) used in our sys-
tem.

2.4.1 Input Layer
The input to the the GCNN comprises of the contex-
tual representations of the tokens in the document
and the directed graph representation of the docu-
ment in the form of an adjacency matrix.

2.4.2 Graph Construction
The number of nodes |V | in the document graph is
the total number of tokens contained in the docu-
ment and the graph edges are represented by var-
ious intra- and inter-sentence dependency edges
which are discussed below.

• Syntactic dependency edges: The edge set
comprises of the edges between all token pairs
that are linked by head-dependent relations in
the dependency tree of the corresponding sen-
tence. To consider that the information flows
in both forward and backward directions of
syntactic dependency arcs, we included both
forward and backward edges in the graph edge
set. More precisely, if there is an arc from a
token ti to a token tj in the dependency tree,
then A(i, j) = 1 and A(j, i) = 1.

• Adjacent sentence edges: In order to keep
sequential information flows through the con-
secutive sentences we also connected the root
nodes of the neighbouring sentences. There-
fore, Aadj(i, j) = 1 and Aadj(j, i) = 1, if
the tokens ti and tj are the root nodes of the
consecutive sentences.

• Self-node edges: We also include self node
edges in the graph. Therefore, for all the to-
kens ti in the document, A(i, i) = 1.

7

2.4.3 GCNN Layer

GCNN is an advanced version of CNN operating
on graphs that induce the node features based on
the properties of their neighbouring nodes. GCNN
with one layer of convolution can capture informa-
tion of only immediate neighbours. When multiple
GCNN layers are stacked, information from larger
neighbourhoods are accumulated. Let A be the
adjacency matrix of the text-graph. A contains the
edges as stated in Section 2.4.2 and the adjacency
matrix is of the dimension |V | × |V |, where |V | is
the number of tokens in the document. After stack-
ing k GCNN layers we get the adjacency matrix for
the k-th-order text graph Ak, where, Ak = (A)k.
Ak holds all the k-hop paths in the text-graph. The
ith word representation of the (k + 1)-layer text-
graph (Ak) is calculated as:

hk+1
i = g(hki , A

k)

where, g(.) refers to the graph convolution function
and + indicates element wise summation operation.
The function g(.) is defined as:

g
(
hki , A

k
)
= σ(

|V |∑

j=1

(Ak(i, j)(W k
A ∗ hk + bkA)))

Here, σ indicates the ReLU activation function.
W k

A and bkA are the weight matrix and bias item for
Ak.

The initial value of the representation of the ith

token h0i is the contextual representation of the
token ti from the output of the LSTM (Section 2.3).

In our system we have trained a stacked GCNN
of 3 blocks. The model architecture is shown in
Figure 1.

Figure 1: Block diagram of our proposed model

Sub-
task Classes

of docs.
Train Dev Test

1a

cse, che,
physics,

law, math 23962 4850 2500

1b

bioche, mgmt,
com tech,
phy, cse 58500 5842 1921

1d

other, mgmt, phy,
com tech, cse,
math, bioche 148445 14338 4211

2a
ca, se, algo, cn,
pro, ai, dbms 13580 1360 1929

Table 1: Statistics of datasets for the different subtasks

Training settings

Loss function
Cross-entopy over
the domain classes

Optimizer
Adam (lr=1e-4,

eps=0.1)
System settings

Token embeddings 140
PoS embeddings 20

Relation embeddings 20
Character embeddings 20
of char CNN kernel 3
of char CNN filter 30

LSTM layers 3
LSTM hidden size 100

GCNN stack 3
GCNN size 500, 200, 200
Dropout rate 0.25

Table 2: System settings and hyper-parameters

2.5 Document Representation and Domain
Prediction

A representation of the document is obtained as
the point-wise mean of the token representations
obtained as the output of the GCNN (Section 2.4).
Finally, the document representation is passed as
input to a MLP layer followed by a softmax layer.
The output of the softmax layer is a probability
distribution over the possible domain classes. The
class label with the highest probability value is
predicted as the class of the document.

3 Data Description

The statistics of the data corresponding to the dif-
ferent subtasks in which we have participated are
summarized in Table 1.

8

Subtask
Accuracy Precision Recall F1-score

GCN Best GCN Best GCN Best GCN Best
Subtask-1a 0.6564 0.8156 0.6850 0.8155 0.6564 0.8156 0.6560 0.8144
Subtask-1b 0.6878 0.8335 0.7432 0.8420 0.7023 0.8515 0.6897 0.8353
Subtask-1d 0.4656 0.6117 0.4706 0.6478 0.4523 0.5989 0.4523 0.6044
Subtask-2a 0.7029 0.8252 0.7021 0.8265 0.7034 0.8252 0.7008 0.8244

Table 3: Performance of our system for the different subtasks and comparison with overall best performing systems.
The column heading GCN indicates our system and Best indicates overall best performing system.

4 Training Setup

In this section we present the settings and hyper-
parameters used in our domain prediction system.
In Table 2 we summarize the system settings.

5 Results

In this section, we present the performance of our
systems corresponding to the different subtasks. In
Table 3 we present the performance of our systems
in terms of their accuracy, precision, recall and F1-
score on the test data and compare them with the
best results achieved for that subtask.

6 Error Analysis

We have inspected the outputs of our system on the
development set. Thorough error analysis has re-
vealed several type of errors. Aside from the errors
propagated from the PoS tagger and dependency
parser, some of the errors generated in the output
are discussed bellow:

1. As some of the classes are very related and
lots of common terms exist in some of these
classes, the system has confused to detect the
correct class.

• S1: and so we have shown e i square of
x is e i of x for all x .

• S2: so , grad f at r t naught is a vector ,
whose dot product with any tangent vec-
tor is 0.

These instances are from Subtask 1a. S1
is detected as physics (actual class: math)
where as S2 is detected as math (actual class:
physics). Same errors happen in case of Sub-
task 1b for classes: cse (Computer Science)
and com tech(Communication Technology)

2. Most of the candidate texts are single sen-
tences. Sometimes system has failed to iden-
tify the correct class as it could not understand

the contextual information from those single
sentences. For example:

• S3: Why that is what is the reason why?

System has failed to classify the domain of
these sentences properly. From these errors,
it is evident that the problem of domain selec-
tion (among highly related classes) is really a
challenging task. The accuracy and F-1 score
of our system are also lower than the best sys-
tem submitted. In future we will apply some
other data processing techniques and smarter
machine learning models to improve our per-
formance.

References
Charu C. Aggarwal and ChengXiang Zhai. 2012. A

survey of text classification algorithms. pages 163–
222.

Timothy Dozat, Peng Qi, and Christopher D. Manning.
2017. Stanford’s graph-based neural dependency
parser at the CoNLL 2017 shared task. In Proceed-
ings of the CoNLL 2017 Shared Task: Multilingual
Parsing from Raw Text to Universal Dependencies,
pages 20–30, Vancouver, Canada. Association for
Computational Linguistics.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville.
2016. Deep Learning. MIT Press. http://www.
deeplearningbook.org.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural Comput., 9(8):1735–
1780.

Matthew Honnibal and Mark Johnson. 2015. An im-
proved non-monotonic transition system for depen-
dency parsing. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1373–1378, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

9

Thomas N Kipf and Max Welling. 2016. Semi-
supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907.

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba Hei-
darysafa, Sanjana Mendu, Laura E. Barnes, and Don-
ald E. Brown. 2019. Text classification algorithms:
A survey.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
ter, Yoav Goldberg, Jan Hajič, Christopher Man-
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.
2016. Universal Dependencies v1: A multilingual
treebank collection. In Proceedings of the 10th In-
ternational Conference on Language Resources and
Evaluation (LREC 2016), pages 1659–1666, Por-
torož, Slovenia. European Language Resources As-
sociation.

Peng Qi, Timothy Dozat, Yuhao Zhang, and Christo-
pher D. Manning. 2018. Universal dependency pars-
ing from scratch. In Proceedings of the CoNLL 2018
Shared Task: Multilingual Parsing from Raw Text
to Universal Dependencies, pages 160–170, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

M. Schuster and K. K. Paliwal. 1997. Bidirectional re-
current neural networks. IEEE Transactions on Sig-
nal Processing, 45(11):2673–2681.

10

Proceedings of the 17th International Conference on Natural Language Processing: TechDOfication 2020 Shared Task, pages 11–15
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Multichannel LSTM-CNN for Telugu Technical Domain Identification

Sunil Gundapu
Language Technologies Research Centre

KCIS, IIIT Hyderabad
Telangana, India

sunil.g@research.iiit.ac.in

Radhika Mamidi
Language Technologies Research Centre

KCIS, IIIT Hyderabad
Telangana, India

radhika.mamidi@iiit.ac.in

Abstract

With the instantaneous growth of text informa-
tion, retrieving domain-oriented information
from the text data has a broad range of applica-
tions in Information Retrieval and Natural lan-
guage Processing. Thematic keywords give a
compressed representation of the text. Usually,
Domain Identification plays a significant role
in Machine Translation, Text Summarization,
Question Answering, Information Extraction,
and Sentiment Analysis. In this paper, we pro-
posed the Multichannel LSTM-CNN method-
ology for Technical Domain Identification for
Telugu. This architecture was used and eval-
uated in the context of the ICON shared task
“TechDOfication 2020” (task h), and our sys-
tem got 69.9% of the F1 score on the test
dataset and 90.01% on the validation set.

1 Introduction

Technical Domain Identification is the task of auto-
matically identifying and categorizing a set of unla-
beled text passages/documents to their correspond-
ing domain categories from a predefined domain
category set. The domain category set consists
of 6 category labels: Bio-Chemistry, Communica-
tion Technology, Computer Science, Management,
Physics, and Other. These domains can be viewed
as a set of text passages, and test text data can be
treated as a query to the system. Domain identifi-
cation has many applications like Machine Trans-
lation, Summarization, Question Answering, etc.
This task would be the first step for most down-
stream applications (i.e., Machine Translation). It
decides the domain for text data, and afterward,
Machine Translation can choose its resources as
per the identified domain.

Majority of the research work in the area of text
classification and domain identification has been
done in English. There has been well below con-
tribution for regional languages, especially Indian

Languages. Telugu is one of India’s old traditional
languages, and it is categorized as one of the Dra-
vidian language family. According to the Ethno-
logue1 list, there are about 93 million native Telugu
speakers, and it ranks sixteenth most-spoken lan-
guages worldwide.

We tried to identify the domain of Telugu text
data using various Supervised Machine Learning
and Deep Learning techniques in our work. Our
Multichannel LSTM-CNN method outperforms the
other methods on the provided dataset. This ap-
proach incorporates the advantages of CNN and
Self-Attention based BiLSTM into one model.

The rest of the paper is structured as follows:
Section 2 explains some related works of domain
identification, Section 3 describes the dataset pro-
vided in the shared task, Section 4 addresses the
methodology applied in the task, Section 5 presents
the results and error analysis, and finally, Section
6 concludes the paper as well as possible future
works.

2 Related Work

Several methods for domain identification and text
categorization have been done on Indian languages,
and few of the works have been reported on the
Telugu language. In this section, we survey some of
the methodologies and approaches used to address
domain identification and text categorization.

Murthy (2005) explains the automatic text cate-
gorization with special emphasis on Telugu. In his
research work, supervised classification using the
Naive Bayes classifier has been applied to 800 Tel-
ugu news articles for text categorization. Swamy
et al. (2014) work on representing and categorizing
Indian language text documents using text mining
techniques K Nearest Neighbour, Naive Bayes, and
decision tree classifier.

1https://www.ethnologue.com/guides/ethnologue200

11

Categorization of Telugu text documents using
language-dependent and independent models pro-
posed by Narala et al. (2017). Durga and Govard-
han (2011) introduced a model for document clas-
sification and text categorization. In their paper
described a term frequency ontology-based text
categorization for Telugu documents. Combining
LSTM and CNN’s robustness, Liu et al. (2020) pro-
posed Attention-based Multichannel Convolutional
Neural Network for text classification. In their
network, BiLSTM encodes the history and future
information of words, and CNN capture relations
between words.

3 Dataset Description

We used the dataset provided by the organizers
of Task-h of TechDOfication 2020 for training the
models. The data for the task consists of 68865 text
documents for training, 5920 for validation, 2611
for testing. For hyperparameter tuning, we used
the validation set provided by the organizers. The
statistics of the dataset are shown in Table 1. And
the amount of texts for the dataset can be seen in
Figure 1.

Labels(↓) Train Data Validation Data
cse 24937 2175
phy 16839 1650

com tech 11626 970
bio tech 7468 580

mgnt 2347 155
other 5648 390
Total 68865 5920

Table 1: Dataset Statistics

Figure 1: Number of samples per class

4 Proposed Approach

4.1 Data Preprocessing

The text passages have been originally provided in
the Telugu script with the corresponding domain
tags. The text documents have some noise, so be-
fore passing the text to the training stage, they are
preprocessed using the following procedure:

• Acronym Mapping Dictionary: We created
an acronym mapping dictionary. Expanded
the English acronyms using the acronym map-
ping dictionary.

• Find Language Words: Sometimes, English
words are co-located with Telugu words in the
passage. We find the index of those words to
translate into Telugu.

• Translate English Words: Translate the En-
glish words into the Telugu language, which
are identified in the first stage of preprocess-
ing. Google’s Translation API2 was used for
this purpose.

• Hindi Sentence Translation: We can ob-
serve a few Hindi sentences in the dataset. We
translated those sentences into Telugu using
Google translation tool.

• Noise Removal: Removed the unnecessary
tokens, punctuation marks, non-UTF format
tokens, and single length English tokens from
the text data.

4.2 Supervise Machine Learning Algorithms

To build the finest system for domain identification,
we started with supervised machine learning tech-
niques then moved to deep learning models. SVM,
Multilayer Perceptron, Linear Classifier, Gradient
Boosting methods performed very well on the given
training dataset. These supervised models trained
on the word level, n-gram level, and character level
TF-IDF vector representations.

4.3 Multichannel LSTM-CNN Architecture

We started experiments with individual LSTM,
GRU, CNN models with different word embed-
dings like word2vec, glove and fasstext. How-
ever, ensembling of CNN with self-attention LSTM
model gave better results than individual models.

2https://py-googletrans.readthedocs.io/en/latest/

12

We develop a multichannel model for domain
identification consisting of two main components.
The first component is a long short time mem-
ory (Hochreiter and Schmidhuber, 1997) (hence-
forth, LSTM). The advantage of LSTM can han-
dle the long term dependencies but does not store
the global semantics of foregoing information in
a variable-sized vector. The second component
is a convolutional neural network (LeCun, 1989)
(henceforth, CNN). The advantage of CNN can
capture the n-gram features of text by using con-
volution filters, but it restricts the performance due
to convolutional filters size. By considering the
strengths of these two components, we ensemble
the LSTM and CNN model for domain identifica-
tion.

Figure 2: Multichannel LSTM-CNN Model

4.3.1 Self-Attention BiLSTM Classifier
The first module in architecture is Self-Attention
based BiLSTM classifier. We employed this self-
attention (Kelvin Xu and Bengion, 2015) based
BiLSTM model to extract the semantic and senti-
ment information from the input text data. Self-
attention is an intra-attention mechanism in which
a softmax function gives each subword’s weights
in the sentence. The outcome of this module is
a weighted sum of hidden representations at each
subword.

The self-attention mechanism is built on BiL-
STMs architecture (See figure 3), and it takes input
as pre-trained embeddings of the subwords. We
passed the Telugu fasttext (Grave et al., 2018) sub-
word embeddings to a BiLSTM layer to get hidden
representation at each timestep, which is the input
to the self-attention component.

Suppose the input sentence S is given by the
subwords (w1, w2, ..., wn). Let

−→
h represents the

forward hidden state and
←−
h represents the back-

ward hidden state at ith position in BiLSTM. The
merged representation ki is obtained by combining

Figure 3: Self-Attention BiLSTM

the forward and backward hidden states. We con-
catenate the forward and backward hidden units to
get the merged representations (k1, k2, ...kn).

ki = [
−→
hi ;
←−
hi] (1)

The self-attention model gives a score ei to each
subword i in the sentence S, as given by below
equation

ei = kTi kn (2)

Then we calculate the attention weight ai by
normalizing the attention score ei

ai =
exp(ei)∑n
j=1 exp(ej)

(3)

Finally, we compute the sentence S latent repre-
sentation vector h using below equation

h =

ai×ki∑

i=1

(4)

The latent representation vector h is fed to a
fully connected layer followed by a softmax layer
to obtain probabilities Plstm.

4.3.2 Convolutional Neural Network
The second component is CNN, which consider the
ordering of the words and the context in which each
word appears in the sentence. We present Telugu
fasstext subword embeddings (Bojanowski et al.
(2016)) of a sentence to 1D-CNN (See figure 4) to
generate the required embeddings.

13

Figure 4: CNN Classifier

Initially, we present a d × S sentence embed-
ding matrix to the convolution layer. Each row is
a d-dimension fasstext subword embedding vec-
tor of each word, and S is sentence length. We
perform convolution operations in the convolution
layer with three different kernel sizes (2, 4, and
6). The purpose behind using various kernel sizes
was to capture contexts of varying lengths and to
extract local features around each word window.
The output of convolution layers was passed to cor-
responding max-pooling layers. The max-pooling
layer is used to preserve the word order and bring
out the important features from the feature map.
We change the original max-pooling layer in the
convolution neural network with the word order-
preserving k-max-pooling layer to preserve the in-
putted sentences word order. The order persevering
max-pooling layer reduces the number of features
while preserving the order of these words.

The max-pooling layer output is concatenated
together fed to a fully connected layer followed
by a softmax layer to obtain softmax probabilities
Pcnn.

The CNN and BiLSTM models softmax prob-
abilities are aggregated (See figure 2) using an
element-wise product to obtain the final probabil-
ities Pfinal = Pcnn ◦ Plstm. We tried various ag-
gregation techniques like average, maximum, min-
imum, element-wise addition, and element-wise
multiplication to combine LSTM and CNN mod-
els’ probabilities. But an element-wise product
gave better results than other techniques.

5 Results and Error Analysis

We first started our experiments with machine learn-
ing algorithms with various kinds of TF-IDF fea-
ture vector representations. SVM, MLP gave pretty
good results on the validation dataset but failed
on bio-chemistry and management data points.
And CNN model with fasstext word embeddings
seemed to be confused between the computer tech-
nology and cse data points (See table 2). Maybe the
reason behind this confusion is that both datapoints
quite similar at the syntactic level.

The self-attention based BiLSTM model outper-
forms the CNN model on physics, cse, and com-
puter technology data points though it performs
worse on the bio-chemistry and management data
points. If we observe the training set, 75% of the
data samples belong to physics, cse, and computer
technology domains remaining 25% of data owned
by the remaining domain labels. So we were as-
suming that an imbalanced training set was also
one of the problems for misclassification of bio-
chemistry and management domain samples. We
tried to handle the this data-skewing problem with
SMOTE (Chawla et al., 2002) technique, but it is
doesn’t work very well.

After observing the CNN and BiLSTM model
results, we ensemble these two models for better
results. The ensemble Multichannel LSTM CNN
model outperforms all our previous models, achiev-
ing a recall of 0.90 with the weighted F1-score of
0.90 on the development dataset and a recall of
0.698 with an F1-score of 0.699 on the test dataset
(See table 3).

14

Validation Data Test Data

Model Accuracy Precision Recall F1-Score Accracy Precision Recall F1-Score

SVM 0.8612 0.8598 0.8601 0.866 - - - -
CNN 0.8890 0.8874 0.8897 0.8902 0.6465 0.6558 0.6948 0.6609

BiLSTM 0.8706 0.8714 0.8702 0.8786 0.6465 0.6519 0.6927 0.6571
Multichannel 0.9001 0.9008 0.9006 0.9003 0.6928 0.6984 0.7228 0.6992

Organizers System - - - - 0.6855 0.6974 0.7289 0.7028

Table 2: Comparison between various model results

Measures(↓) Validation Data Test Data
precision 0.90 0.7228

recall 0.90 0.6984
f1score 0.90 0.6992

accuracy 0.9003 0.6928

Table 3: Performance of multichannel system

6 Conclusion

In this paper, we proposed a multichannel approach
that integrates the advantages of CNN and LSTM.
This model captures local, global dependencies,
and sentiment in a sentence. Our approach gives
better results than individual CNN, LSTM, and
supervised machine learning algorithms on the Tel-
ugu TechDOfication dataset.

As discussed in the previous section, we will
handle the data imbalance problem efficiently in
future work. And we will improve the performance
of the unambiguous cases in cse and computer tech-
nology domains.

References

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Nitesh Chawla, Kevin Bowyer, Lawrence Hall, and
W. Kegelmeyer. 2002. Smote: Synthetic minority
over-sampling technique. J. Artif. Intell. Res. (JAIR),
16:321–357.

A. Durga and A. Govardhan. 2011. Ontology based
text categorization - telugu documents.

Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Ar-
mand Joulin, and Tomas Mikolov. 2018. Learning
word vectors for 157 languages. In Proceedings
of the International Conference on Language Re-
sources and Evaluation (LREC 2018).

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Ryan Kiros Kyunghyun Cho Aaron C. Courville Rus-
lan Salakhutdinov Richard S. Zemel Kelvin Xu,
Jimmy Ba and Yoshua Bengion. 2015. Show, attend
and tell: Neural image caption generation with vi-
sual attention. CoRR, pages 1735–80.

Y. LeCun. 1989. Generalization and network design
strategies.

Zhenyu Liu, Haiwei Huang, Chaohong Lu, and
Shengfei Lyu. 2020. Multichannel cnn with atten-
tion for text classification. ArXiv, abs/2006.16174.

Kavi Murthy. 2005. Automatic categorization of telugu
news articles.

Swapna Narala, B. P. Rani, and K. Ramakrishna. 2017.
Telugu text categorization using language models.
Global journal of computer science and technology.

M. N. Swamy, M. Hanumanthappa, and N. Jyothi.
2014. Indian language text representation and
categorization using supervised learning algorithm.
2014 International Conference on Intelligent Com-
puting Applications, pages 406–410.

15

Proceedings of the 17th International Conference on Natural Language Processing: TechDOfication 2020 Shared Task, pages 16–20
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Multilingual Pre-Trained Transformers and Convolutional NN
Classification Models for Technical Domain Identification

Suman Dowlagar
LTRC

IIIT-Hyderabad
suman.dowlagar@

research.iiit.ac.in

Radhika Mamidi
LTRC

IIIT-Hyderabad
radhika.mamidi@

iiit.ac.in

Abstract

In this paper, we present a transfer learning
system to perform technical domain identifica-
tion on multilingual text data. We have submit-
ted two runs, one uses the transformer model
BERT, and the other uses XLM-ROBERTa
with the CNN model for text classification.
These models allowed us to identify the do-
main of the given sentences for the ICON
2020 shared Task, TechDOfication: Techni-
cal Domain Identification. Our system ranked
the best for the subtasks 1d, 1g for the given
TechDOfication dataset.

1 Introduction

Automated technical domain identification is a cat-
egorization/classification task where the given text
is categorized into a set of predefined domains.
It is employed in tasks like Machine Translation,
Information Retrieval, Question Answering, Sum-
marization, and so on.

In Machine Translation, Summarization, Ques-
tion Answering, and Information Retrieval, the do-
main classification model will help leverage the
contents of technical documents, select the appro-
priate domain-dependent resources, and provide
personalized processing of the given text.

Technical domain identification comes under
text classification or categorization. Text classi-
fication is one of the fundamental tasks in the field
of NLP. Text classification is the process of iden-
tifying the category where the given text belongs.
Automated text classification helps to organize un-
structured data, which can help us gather insight-
ful information to make future decisions on down-
stream tasks.

Traditional text classification approaches mainly
focus on feature engineering techniques such as
bag-of-words and classification algorithms (Yang,
1999). Nowadays, the sate-of-the-art results on text

classification are achieved by various NNs such as
CNN (Kim, 2014), LSTM (Hochreiter and Schmid-
huber, 1997), BERT (Adhikari et al., 2019), and
Text GCN (Adhikari et al., 2019). Attention mech-
anisms (Vaswani et al., 2017) have been introduced
in these models, which increased the representa-
tiveness of the text for better classification. Trans-
former models such as BERT (Devlin et al., 2018)
uses the attention mechanism that learns contex-
tual relations between words or sub-words in a
text. Text GCN (Yao et al., 2019) uses a graph-
convolutional network to learn a heterogeneous
word document graph on the whole corpus, which
helped classify the text. However, of all the deep
learning approaches, transformer models provided
SOTA results in text classification.

In this paper, We present two approaches for
technical domain identification. One approach uses
the pre-trained Multilingual BERT model, and the
other uses XLM-ROBERTa with CNN model.

The rest of the paper is structured as follows.
Section 2 describes our approach in detail. In Sec-
tion 3, we provide the analysis and evaluation of
results for our system, and Section 4 concludes our
work.

2 Our Approach

Here we present two approaches for the TechDOfi-
cation task.

2.1 BERT for TechDOfication
In the first approach, we use the pre-trained mul-
tilingual BERT model for domain identification
of the given text. Bidirectional Encoder Repre-
sentations from Transformers (BERT) is a trans-
former encoder stack trained on the large corpora.
Like the vanilla transformer model (Vaswani et al.,
2017), BERT takes a sequence of words as input.
Each layer applies self-attention, passes its results
through a feed-forward network, and then hands

16

Figure 1: The architecture of the BERT model for sen-
tence classification.

it off to the next encoder. The BERT configura-
tion model takes a sequence of words/tokens at a
maximum length of 512 and produces an encoded
representation of dimensionality 768.

The pre-trained multilingual BERT models have
a better word representation as they are trained on a
large multilingual Wikipedia and book corpus. As
the pre-trained BERT model is trained on generic
corpora, we need to finetune the model for the given
domain identification tasks. During finetuning, the
pre-trained BERT model parameters are updated.

In this architecture, only the [CLS] (classifica-
tion) token output provided by BERT is used. The
[CLS] output is the output of the 12th transformer
encoder with a dimensionality of 768. It is given as
input to a fully connected neural network, and the
softmax activation function is applied to the neural
network to classify the given sentence.

2.2 XLM-ROBERTa with CNN for
TechDOfication

Figure 2: The architecture of the XLM-ROBERTa with
CNN for sentence classification.

XLM-ROBERTa (Conneau et al., 2019) is a
transformer-based multilingual masked language
model pre-trained on the text in 100 languages,
which obtains state-of-the-art performance on
cross-lingual classification, sequence labeling, and
question answering. XLM-ROBERTa improves
upon BERT by adding a few changes to the BERT
model such as training on a larger dataset, dy-
namically masking out tokens compared to the
original static masking, and uses a known pre-
processing technique (Byte-Pair-Encoding) and a
dual-language training mechanism with BERT in
order to learn better relations between words in dif-
ferent languages. The given model is trained for the
language modeling task, and the output is of dimen-
sionality 768. It is given as input to a CNN (Kim,
2014) because convolution layers can extract bet-
ter data representations than Feed Forward layers,
which indirectly helps in better domain identifica-
tion.

3 Experiment

This section presents the datasets used, the task
description, and two models’ performance on tech-
nical domain identification. We also include our
implementation details and error analysis in the
subsequent sections.

3.1 Dataset

We used the dataset provided by the organizers
of TechDOfication ICON-2020. There are two
subtasks, one is coarse-grained, and the other
is fine-grained. The coarse-grained TechDOfica-
tion dataset contains sentences about Chemistry,
Communication Technology, Computer Science,
Law, Math, and Physics domains in different lan-
guages such as English, Bengali, Gujarati, Hindi,
Malayalam, Marathi, Tamil, and Telugu. Whereas
the fine-grained English dataset focuses on the
Computer-Science domain with sub-domain labels
as Artificial Intelligence, Algorithm, Computer Ar-
chitecture, Computer Networks, Database Manage-
ment system, Programming, and Software Engi-
neering.

3.2 Implementation

For the implementation, we used the transform-
ers library provided by HuggingFace1. The Hug-
gingFace contains the pre-trained multilingual
BERT, XLM-ROBERTa, and other models suitable

1https://huggingface.co/

17

for downstream tasks. The pre-trained multilin-
gual BERT model used is “bert-base-multilingual-
cased” and pre-trained XLM-R model used is “xlm-
roberta-base”. We programmed the CNN architec-
ture as given in the paper (Kim, 2014). We used
the PyTorch library that supports GPU processing
for implementing deep neural nets. The BERT
models were run on the Google Colab and Kaggle
GPU notebooks. We trained our classifier with a
batch size of 128 for 10 to 30 epochs based on
our experiments. The dropout is set to 0.1, and the
Adam optimizer is used with a learning rate of 2e-5.
We used the hugging face transformers pre-trained
BERT tokenizer for tokenization. We used the
BertForSequenceClassification module provided
by the HuggingFace library during finetuning and
sequence classification for the multilingual-BERT
based approach.

3.3 Baseline models
Here, we compared the BERT model with other
machine learning algorithms.

SVM with TF IDF text representation We
chose Support Vector Machines (SVM) with
TF IDF text representation for technical domain
identification. SVM classifier and TF IDF vector
representation is obtained from the scikit-learn li-
brary (Pedregosa et al., 2011).

CNN: Convolutional Neural Network (Kim,
2014). We explored CNN-non-static, which uses
pre-trained word embeddings.

3.4 Results
The results are tabulated in Table 1. We evalu-
ated the performance of the method using macro
F1. The multilingual-BERT model performed well
when compared to the other SVM with TF-IDF and
CNN models. Given all the languages, we have ob-
served an increase of 7 to 25% in classification
metrics for BERT compared to the baseline SVM
classifier, it showed a 2 to 5% increase in classifi-
cation metrics compared to the CNN classifier on
the validation data. On the test data, multilingual
BERT showed better performance in subtasks 1a,
1b, 1c, 1h and 2a whereas XLM-ROBERTa with
CNN showed better performance in the subtasks 1d,
1e, 1f, 1g. This increase in classification metrics is
due to the transformer model’s and convolutional
NN’s capability, which learned better text repre-
sentations from the generic data than other models.

4 Error Analysis

The multilingual-BERT model’s confusion matrix
is compared with the poorly performed model for
languages, Hindi, and Tamil languages are shown
in Figure 3. We chose Hindi and Tamil languages
because, here, the difference in performance is
more significant. For the Hindi subtask, the SVM
classifier confused between “cse”, “com tech”, and
“mgmt” labels, whereas the BERT model performed
better. For the Tamil subtask, the SVM classifier
confused between “com tech” and “mgmt” labels,
whereas the BERT model performed better than
the other models. This is because both the ap-
proaches (pre-trained multilingual-BERT and pre-
trained XLM-ROBERTa with CNN) learned better
representation of the above data than the other mod-
els that helped in technical document identification.

5 Conclusion and Future work

We used pre-trained bi-directional encoder rep-
resentations using multilingual-BERT and XLM-
ROBERTa with CNN technical domain identifica-
tion for English, Bengali, Gujarati, Hindi, Malay-
alam, Marathi, Tamil, and Telugu languages. We
compared the approaches with the baseline meth-
ods. Our analysis showed that pre-trained mul-
tilingual BERT and XLM-ROBERTa with CNN
models and finetuning it for text classification tasks
showed an increase in macro F1 score and accuracy
metrics compared to baseline approaches.

Some datasets are large, like for the Hindi, Tamil,
and Telugu, we can train the BERT and XLM-
ROBERTa models from scratch and consider its
hidden layer representation, and concatenate this
with the representation of the pre-trained model. It
might help to classify the datasets even better.

References
Ashutosh Adhikari, Achyudh Ram, Raphael Tang, and

Jimmy Lin. 2019. Docbert: Bert for document clas-
sification. arXiv preprint arXiv:1904.08398.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

18

Classifier Models
Dataset Validation Test

SVM CNN M-Bert XLM-R+CNN M-Bert XLM-R+CNN
English subtask-1a 81.48 83.05 88.87 87.09 79.84 73.57
Bengali subtask-1b 66.35 85.78 86.81 85.71 80.35 78.17
Gujarati subtask-1c 69.63 86.27 87.21 86.89 68.67 66.73
Hindi subtask-1d 58.21 81.03 83.40 82.13 59.89 60.44
Malayalam subtask-1e 80.60 92.51 94.72 93.40 34.47 34.86
Marathi subtask-1f 73.32 86.89 87.42 86.37 59.52 59.89
Tamil subtask-1g 65.95 85.75 87.50 86.54 49.24 51.34
Telugu subtask-1h 71.98 88.07 90.28 89.43 67.17 62.26
English subtask-2a 70.24 72.53 77.36 76.77 78.98 78.07

Table 1: macro F1 on validation and test data for all the subtasks

(a) (b)

(c) (d)

Figure 3: Confusion matrix on the given validation data for the Hindi and Tamil languages

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-

esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Yiming Yang. 1999. An evaluation of statistical ap-

19

proaches to text categorization. Information re-
trieval, 1(1-2):69–90.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7370–7377.

20

Proceedings of the 17th International Conference on Natural Language Processing: TechDOfication 2020 Shared Task, pages 21–26
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Technical Domain Identification using word2vec and BiLSTM
Koyel Ghosh

ghosh.koyel8@gmail.com
Dr. Apurbalal Senapati

a.senapati@cit.ac.in
Dr. ranjan Maity

r.maity@cit.ac.in
CSE Department

Central Institute of Technology, Kokrajhar(Assam)

Abstract

Coarse-grained and Fine-grained classification
tasks are mostly based on sentiment or basic
emotion analysis. Now, switching from emo-
tion and sentiment analysis to another domain,
in this paper, we are going to work on technical
domain identification. The task is to identify
the technical domain of a given English text.
In the case of Coarse-grained domain classi-
fication, such a piece of text provides infor-
mation about specific Coarse-grained techni-
cal domains like Computer Science, Physics,
Math, etc, and in Fine-grained domain clas-
sification, Fine-grained subdomains for Com-
puter science domain, it can be like Artificial
Intelligence, Algorithm, Computer Architec-
ture, Computer Networks, Database Manage-
ment system, etc. To do the task, Word2Vec
skip-gram model is used for word embed-
ding, later, applied the Bidirectional Long
Short Term memory (BiLSTM) model to clas-
sify Coarse-grained domains and Fine-grained
sub-domains. To evaluate the performance of
the approached model accuracy, precision, re-
call, and F1-score have been applied.

1 Introduction

ICON20201 has organized a shared task, de-
tails here: https://ssmt.iiit.ac.in/
techdofication.html where they share
some DATASETs for the Shared Task on Identi-
fication of a Technical Domain from Text. Among
them, here, we are working with Subtask-1a
Coarse-grained Domain Classification - English
and Subtask-2a Fine-grained Domain Classifica-
tion - Computer Science datasets. In this pa-
per, system description of our approached model
on identification of a technical domain from text
and the result of this approach has been dis-
cussed. There are lots of work already have done

1https://www.iitp.ac.in/ai-nlp-
ml/icon2020/sharedtasks.html

successfully (Akhtar et al., 2020) in the coarse-
grained and fine-grained classification with sen-
timent (Cortis et al., 2017) and emotion analysis
(Mohammad and Bravo-Marquez, 2017) dataset.
Often, in the classification task, Word2Vec or fast-
text or GloVe or all-combined approach (Salur and
Aydin, 2020) is used to utilize the effectiveness
of different word embedding algorithms. To get a
better result on a domain specific corpus Occupa-
tional Safety and Health Administration(OSHA),
a hybrid deep neural network with Word2Vec
was used (Zhang, 2019). ESIM with SuBiL-
STM (Ensemble) and ESIM with SuBiLSTM-
Tied (Ensemble) approaches (Brahma, 2018) per-
formed well on the Stanford Sentiment Treebank
dataset (Socher et al., 2013), both in its binary
(SST-2) and fine-grained (SST-5) forms. A sim-
ilar approach is applied to the question classifi-
cation i.e TREC dataset (Voorhees, 2006), both
in its 6 class(TREC-6) and 50 class (TREC-50)
forms. Bidirectional dilated LSTM with atten-
tion (Schoene et al., 2020) used for another fine-
grained dataset (Klinger et al., 2018). (Melamud
et al., 2016) proposed a BiLSTM neural network
architecture based on Word2vec’s CBOW archi-
tecture. Some very old approach on domain clas-
sification (Bernier-Colborne et al., 2017). (Zhang,
2019) is based on accident causes classification
with the approach deep learning and Word2Vec,
they compare their model with others where bi-
gram, n-gram was used for text representation. In
(Xie et al., 2019), author added attention layer
with BiLSTM for short text fine-grained sentiment
classification to get a better accuracy.

2 Methodology

In this section, dataset, data preprocessing, word
embedding and the structure of the BiLSTM with
Word2Vec model will be discussed. Approached
architechture of BiLSTM with Word2Vec is
shown in Figure 1

21

Figure 1: Architechture of BiLSTM + Word2Vec with
ReLU and Softmax on the top

2.1 Dataset

Here, Technical Domain Identification dataset2 in
its Coarse-grained Domain Classification - En-
glish (Subtask-1a) form and Fine-grained Domain
Classification - Computer Science (Subtask-2a)
form has been used. Table 1 shows the details of
the dataset for the shared task. In case of Coarse-
grained Domain Classification, a piece of text
which provides information about specific Coarse-
grained domain like computer science domain.
No of domains or classes are: Computer Sci-
ence (cse), Chemistry (che), Physics (phy), Law
(law), Math (math). In case of Fine-grained Do-
main Classification, no of subdomains or classes
from Computer Science are: Computer Architec-
ture (ca), Software Engineering (se), Algorithm
(algo), Computer Networks (cn), Programming
(pro), Artificial Intelligence (ai), Database Man-
agement system (dbms). Table 2 shows the de-
tails of the domains and subdomains distribution
in traning and dev dataset. For prediction purpose
test set has been provided without labelling of do-
mains or sub domains. So, later in this paper, dev
set is used to evaluate the accuracy.

2.2 Preprocessing of the Data

Based on the analysis from previous studies, deep
learning needs text data in numeric form. To en-

2https://ssmt.iiit.ac.in/techdofication.html

code text data into a numeric vector, lots of en-
coding techniques like Bag of words, Bi-gram, n-
gram, TF-IDF, Word2Vec etc are used. So, before
encoding, text data need to be cleaned, noise-free
to increase the classification performance. Figure
2 shows all the intermediate steps of preprocess-
ing.

Figure 2: Text preprocessing steps used in this study

Cleaning or preprocessing of the data is as im-
portant as model building. Text preprocessing pro-
cedure can be different depending on the task and
dataset we use. In our case, we used following
steps:

Convert the text into lowercase: All words
should be either in lower or uppercase to avoid
redundancy. Suppose there are two words “arti-
ficial” and “Artificial”, machine will treat them as
separate word if we avoid this step.

Removing punctuation and number: Punctu-
ation and numbers often doesn’t add extra mean-
ing to the text. This text has several punctuation
() , ; . etc and numbers (0-9). String library
which has 32 punctuation, is used to remove all
these punctuation from text to get better result.

Removing stopwords: The most common
words in a language like “the”, “a”, “have”, “is”,
“to” etc are called stopwords. As these words do
not add any important meaning, these can be re-
moved.

Remove frequent word: Some words which
are frequently used in text but not listed in stop-
words has been removed.

Word tokenization: To break the long sentence
into words, we applied tokenization.

22

Dataset Training Dev Test label Length(Max) Vocabulary size
Subtask-1a 23,959 4,850 2,500 5 74 10,722
Subtask-2a 13,580 1,360 1,930 7 266 7,397

Table 1: Data set

Dataset Domain Train Dev

cse 4,770 970

che 4,733 970
Subtask-1a physics 4,787 970

law 4,829 970

Math 4,840 970

ca 1,947 180

se 1,940 200

algo 1,951 200
Subtask-2a cn 1,940 180

pro 1,922 200

ai 1,940 200

dbms 1,940 200

Table 2: Dataset statistics

Lemmatization: Stemming and lemmatization
both processes have almost the same goal i.e. to
reduce inflectional forms of each word and convert
those to a common root form but both are differ-
ent in the sense of result we get. Stemming simply
chop off the inflections of each word but some-
times the resultant word may not carry any valid
meaning but lemmatization does it properly with
the use of language’s full vocabulary to apply a
morphological analysis to the words and return the
base or dictionary form of a word, which is known
as the lemma so the words can be analyzed as a
single item.

Here, the effectiveness of lemmatization pro-
cess has been applied on the text to get the desired
result.

Remove short string: After performing all the
required processes in text processing, still, some
words are in the text which is very short in length.
So, it required to remove the words having a length
less than or equal to 2.

Label encoding: As labelled domains and the
subdomains on the texts, are words so, we need to
encode them into an unique number. Like, cse - 0,

che - 1, physics - 2, law - 3, math - 4 for subtask
1a and ca - 0, se - 1, algo - 2, cn - 3, pro - 4, ai - 5,
dbms - 6 for subtask 2a.

Here, we use Natural Language Toolkit
(NLTK)(Wagner, 2010) for tokenization, lemmati-
zation and removing stopwords. After these steps
we get the maximum length of a sentence i.e max-
imum number of words present in a sentence as
mentioned in Table 1.

2.3 Deep neural network with Word2Vec
In this study, deep neural network with Word2Vec
approach is applied. The entire methodology
of this approach has two phases: training of
Word2Vec skip-gram model on the datasets to get
the vocabulary and the text representation, then
deep neural network is used utilizing the learned
word embedding in the previous step.

2.3.1 Word Embedding
Any neural network model needs a vector repre-
sentation of a word. So, we need an embedding
layer before building a deep learning model.

Word2Vec models proposed by Thomas
Mikolov at google (Mikolov et al., 2013), are used

23

for learning word embedding. The advantage
of Word2Vec is that similarity and relationship
between words can be derived from the learned
vector (Khatua et al., 2019). It can be obtained
using two methods (both involve neural network):
Skip-gram and Common Bag of Words (CBOW).

As mentioned in (Mikolov et al., 2013), skip-
gram works great with a small amount of data and
does well to represent rare words. On the other
hand, CBOW is faster and has better representa-
tion for more frequent words.

TechinalDOfication dataset has some rare
words like “streptococcus”, “polymerization”,“
hessian”, “kyoto” as these words are related to
specific technical domain. So, to represent these
words well we are using Word2Vec here.

The training dataset consisting of p numbers of
texts is denoted as

D = {T1, T2, T3, .., Ti,Tp}

where Ti is the ith number of text and p is equal
to the total numbers of texts present in a training
dataset e.g. 23,959 in Subtask-1a and 13,580 in
Subtask-2a. Given a text Ti, the text having m
words i.e length of the text is denoted as

Ti = {wi,1, wi,2, wi,3, ..., wi,k, .., wi,m},

where wi,k denotes the kth word in the ith text.
Now, Word2Vec skip-gram model is trained using
the training dataset used for this study. To train
word embedding, we fit the parameters as embed-
ding dimension = 300, window = 10 and saved the
trained Word2Vec model for the next step.

We embed each word wi,k to our pre-trained
word vector after loading the model into mem-
ory i.e each word in the text is converted into a
d-dimension embedding vector, where wv

i,k ∈ Rd

is d-dimension embedding vector of kth word. The
word level embedding as

T v
i = {wv

i,1, w
v
i,2, w

v
i,3, ..., w

v
i,k, ..., w

v
i,m}.

Figure 3 shows the Word2Vec architecture, where
H = H1, H2, H3, ..Hn is a hidden layer.

2.3.2 Classification model
LSTM is an extension of Recurrent Neural Net-
work (RNN) (Hochreiter and Schmidhuber, 1997),
capable of learning long dependencies. They were
introduced by (Sulehria and Zhang, 2007).

In this section, deep neural network BiLSTM
is used for the classification. Now, we give T v

i

Figure 3: Word2Vec architechture

as input to BiLSTM for feature extraction, namely
FBiLSTM
i in equation

FBiLSTM
i = BiLSTM(T v

i) (1)

In Bidirectional LSTM, sequence data is pro-

Figure 4: The architecture of basic BiLSTM

cessed in both directions with forward LSTM and
backward LSTM layer and these two hidden layer
connected to the same output layer. The LSTM
neural networks contain three gates and a cell
memory state. For a single LSTM cell, it can be
computed as

X =
ht − 1

wv
i,k

(2)

ft = σ(Wf .X + bf) (3)

it = σ(Wi.X + bi) (4)

ot = σ(Wo.X + bo) (5)

ct = ft ∗ ct−1 + it ∗ tanh(Wc.X + bc) (6)

ht = ot ∗ tanh(ct) (7)

24

where Wf ,Wi,W0 are the weight matrices and
bf , bi, b0 are the bias of LSTM cell during training.
σ denotes the sigmoid function. wv

i,k is the word
embedding vector as input unit to LSTM, ht is the
hidden vector, So, hm can denote a text. Simple
BiLSTM architecture is shown in Figure 4. In the
architecture {wv

i,1, w
v
i,2, w

v
i,3, ..., w

v
i,k, ..., w

v
i,m}

denotes the word vector, m is the length of a text.
{fh1, fh2, ..., fhm} and {bh1, bh2, ..., bhm}
represent the forward hidden vector and
the backward hidden vector respectively.
{h1, h2, h3, .., ht, .., hm} represents final hid-
den layer. the final hidden vector ht of the
BiLSTM is shown as following equation:

ht = [fht, bht] (8)

In the BiLSTM layer, 20% dropout is used.
After feeding input to BiLSTM layer, time Dis-
tributed wrapper is used along with dense layer
where the activation function is rectified linear
unit (ReLU) and on the top of the layers dense
is applied with softmax activation function after
Flatten the output generated from the previous
layer.

3 Result and conclusion

Domain Precision Recall f1-score
cse 0.26 0.33 0.29
che 0.17 0.21 0.19

physics 0.23 0.19 0.21
law 0.22 0.16 0.19

math 0.16 0.15 0.16

Table 3: Result of CITK (our team) on Subtask-1a
dataset (dev set)

Domain Precision Recall f1-score
ca 0.29 0.23 0.26
se 0.16 0.17 0.16

algo 0.11 0.14 0.13
cn 0.14 0.14 0.14
pro 0.18 0.17 0.18
ai 0.18 0.20 0.19

dbms 0.23 0.20 0.22

Table 4: Result of CITK (our team) on Subtask-2a
dataset (dev set)

As, it was a prediction task on test dataset and
presently, we don’t have labeled test dataset, dev
dataset is used here to evaluate the model perfor-
mance. From the Table 3 and Table 4, we can
see that BiLSTM with Word2Vec didn’t produce

any good Precision, Recall, f1-score and accurecy
22% on both cases which are also very low. To
evaluate the model performance, F1 score pro-
posed by Buckland and Gey (Buckland and Gey,
1994) has been widely used in literature.

Team Name Accuracy Precision Recall f1-score
ICON2020 0.8156 0.8155 0.8156 0.8143

CITK 0.2204 0.2264 0.2204 0.2204

Table 5: comparison between highest score and our
score(CITK) on Subtask-1a dataset (test set)

Team Name Accuracy Precision Recall f1-score
fineapples 0.8252 0.8265 0.8252 0.8244

CITK 0.2306 0.2344 0.2302 0.2307

Table 6: comparison between highest score and our
score(CITK) on Subtask-2a dataset (test set)

Table 5 and Table 6 shows the result on test
dataset published by ICON2020. Here, we only
include highest score along with our score to
show the comparison of the performances. In
case of Subtask-1a dataset, “ICON2020” team
produced good accuracy, precision, recall and
f1-score compared to other teams including our
“CITK” team. “Fineapples” team produced best
result for Subtask-2a dataset.

After applying preprocessing on the texts of
Subtask 2a dataset, we get maximum sentence
length is 266 but other texts are not that long ex-
cept one. Here, we trained Word2Vec model only
with the given training dataset which is very small
dataset to perform good embedding. Word em-
bedding training gives us 10,722 unique words in
subtask 1a and 7,397 in subtask 2a. Quite obvi-
ous, dealing with Fine grained dataset compare to
Coarse grained dataset is somehow challenging as
vocabulary size is very small.

Word embedding seems very important here,
In most of the cases pre-trained word embed-
ding such as Google News dataset3 (about
100 billion words) is used, which contains
300-dimensional vectors for 3 million words
and phrases. The archive is available here:
GoogleNews-vectors-negative300.
bin.gz. but in our case, some words like
“streptococcus”, “poly-merization”,“ hessian”,
“kyoto” are missing from the large Google News
dataset. Those words are very important to

3https://code.google.com/archive/p/word2vec/

25

identify the specific domains, so, those words
can’t be ignored. Combining Google News
dataset and ICON2020 shared task dataset with
can be a solution that needs some experiments
such as concatenating them removing possible
correlations by performing Principal component
analysis (PCA)(Basirat, 2018).

References
M. S. Akhtar, A. Ekbal, and E. Cambria. 2020. How

intense are you? predicting intensities of emotions
and sentiments using stacked ensemble [application
notes]. IEEE Computational Intelligence Magazine,
15(1):64–75.

Ali Basirat. 2018. A generalized principal component
analysis for word embedding.

Gabriel Bernier-Colborne, Caroline Barrière, and
Pierre André Ménard. 2017. Fine-grained domain
classification of text using termium plus.

Siddhartha Brahma. 2018. Improved sentence model-
ing using suffix bidirectional lstm. arXiv: Learning.

Michael Buckland and Fredric Gey. 1994. The rela-
tionship between recall and precision. J. Am. Soc.
Inf. Sci., 45(1):12–19.

Keith Cortis, Andre Freitas, Tobias Daudert, Manuela
Hurlimann, Manel Zarrouk, Siegfried Handschuh,
and Brian Davis. 2017. Semeval-2017 task 5: Fine-
grained sentiment analysis on financial microblogs
and news.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Aparup Khatua, Apalak Khatua, and Erik Cambria.
2019. A tale of two epidemics: Contextual
word2vec for classifying twitter streams during out-
breaks. Information Processing Management,
56:247–257.

Roman Klinger, Orphee de clercq, Saif Mohammad,
and Alexandra Balahur. 2018. Iest: Wassa-2018 im-
plicit emotions shared task.

Oren Melamud, Jacob Goldberger, and Ido Dagan.
2016. context2vec: Learning generic context em-
bedding with bidirectional lstm. pages 51–61.

Tomas Mikolov, Ilya Sutskever, Kai Chen, G.s Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. Advances in Neural Information Processing
Systems, 26.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
Wassa-2017 shared task on emotion intensity. pages
34–49.

Mehmet Salur and Ilhan Aydin. 2020. A novel hy-
brid deep learning model for sentiment classifica-
tion. IEEE Access, 8:58080 – 58093.

Annika Marie Schoene, Alexander P. Turner, and Nina
Dethlefs. 2020. Bidirectional dilated lstm with
attention for fine-grained emotion classification in
tweets. In AffCon@AAAI.

Richard Socher, A. Perelygin, J.Y. Wu, J. Chuang, C.D.
Manning, A.Y. Ng, and C. Potts. 2013. Recursive
deep models for semantic compositionality over a
sentiment treebank. EMNLP, 1631:1631–1642.

Humayun Karim Sulehria and Ye Zhang. 2007. Hop-
field neural networks: A survey. In Proceedings
of the 6th Conference on 6th WSEAS Int. Conf. on
Artificial Intelligence, Knowledge Engineering and
Data Bases - Volume 6, AIKED’07, page 125–130,
Stevens Point, Wisconsin, USA. World Scientific
and Engineering Academy and Society (WSEAS).

Ellen Voorhees. 2006. The trec question answering
track. Nat. Lang. Eng, 7:361–378.

Wiebke Wagner. 2010. Natural language process-
ing with python, analyzing text with the natural
language toolkit by steven bird; ewan klein; ed-
ward loper. Language Resources and Evaluation,
44:421–424.

Jun Xie, Bo Chen, Xinglong Gu, Fengmei Liang,
and Xinying Xu. 2019. Self-attention-based bilstm
model for short text fine-grained sentiment classifi-
cation. IEEE Access, 7:1–1.

Fan Zhang. 2019. A hybrid structured deep neural
network with word2vec for construction accident
causes classification. International Journal of Con-
struction Management, pages 1–21.

26

Proceedings of the 17th International Conference on Natural Language Processing: TechDOfication 2020 Shared Task, pages 27–30
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Automatic Technical Domain Identification

Hema Ala
LTRC, IIIT-Hyderabad, India

hema.ala@research.iiit.ac.in

Dipti Misra Sharma
LTRC, IIIT-Hyderabad, India
dipti@iiit.ac.in

Abstract

In this paper we present two Machine Learn-
ing algorithms namely Stochastic Gradient De-
scent and Multi Layer Perceptron to Identify
the technical domain of given text as such
text provides information about the specific
domain. We performed our experiments on
Coarse-grained technical domains like Com-
puter Science, Physics, Law, etc for English,
Bengali, Gujarati, Hindi, Malayalam, Marathi,
Tamil, and Telugu languages, and on fine-
grained sub domains for Computer Science
like Operating System, Computer Network,
Database etc for only English language. Us-
ing TFIDF as a feature extraction method we
show how both the machine learning models
perform on the mentioned languages.

1 Introduction

We can frame Automatic Domain Identification of
given text as a text classification problem where
one needs to assign predefined categories to given
texts. Text classification is a classic topic for Natu-
ral Language Processing (NLP), the range of text
classification research goes from designing the best
features to choosing the best possible machine
learning classifiers. Therefore we use Term Fre-
quency & Inverse Document Frequency (TFIDF)
to represent our text in terms of vectors, so that
the machine learning algorithms will find the re-
lationships between them and classifies the given
text. Many machine learning algorithms showed
the best performances on text classification , but
very limited number studies have explored techni-
cal domains like computer science, chemistry, man-
agement, etc that too on Indian languages (Kaur
and Saini, 2015). There are numerous applications
of text classification in Natural Language Process-
ing Tasks like Machine Translation,etc. For these
tasks technical domain identification would be the
first process. It determines the domain for a given

input text, subsequently Machine Translation can
choose its resources as per the identified domain.
The task can also be viewed at the coarse-grained
or fine-grained level based on the requirement. We
did our experiments on data provided by ICON
TechDOfication-2020 shared task, for English, Ben-
gali, Gujarati, Hindi , Malayalam , Marathi, Tamil
and Telugu languages for coarse grained domain
classification . For fin-grained classification we
have Computer Science domain in English.

2 Related Work

We treat Automatic Technical Domain Identifica-
tion as a text classification task where we assign
predefined categories like chem for chemistry, cs
for computer science for the given text. Text classi-
fication is a fundamental task in NLP applications
and it is a crucial technology in many applications,
such as web search, ads matching, and sentiment
analysis. Many researchers found variety of algo-
rithms to solve the text classification problem.

The algorithms will vary based on the langauge
of text and domain of the text as well. McCal-
lum et al. (1998) compared the theory and prac-
tice of two different first-order probabilistic classi-
fiers, both of which make the naive Bayes assump-
tion. The multinomial model is found to be almost
uniformly better than the multi-variate Bernoulli
model. Joachims (1999) introduced Transduc-
tive Support Vector Machine for text classification.
While general Support Vector Machines (SVMs)
try to produce a general decision function for a
learning task, Transductive Support Vector Ma-
chines take a particular test set into account and
try to minimize misclassification of just those par-
ticular samples. Nigam et al. (1999) used maxi-
mum entropy for text classification by computing
the conditional distribution of the class given the
text, and compared accuracy to naive Bayes and

27

showed that maximum entropy is sometimes sig-
nificantly better, but also sometimes worse. Lodhi
et al. (2002) proposed a novel approach for catego-
rizing text documents based on the use of a special
kernel called string subsequence kernel. Machine
learning for text classification is the foundation of
document categorization, news filtering, document
routing, and personalization.

In text domains, effective feature selection is cru-
cial to make the learning task efficient and more
accurate, based on this point Forman (2003) pre-
sented an extensive comparative study of twelve
feature selection metrics like Document Frequency,
etc for the high-dimensional domain of text classi-
fication, focusing on support vector machines and
2-class problems, typically with high class skew.
In social media such as Twitter, Facebook the users
may become overwhelmed by the raw data. One
solution to this problem is the classification of short
text, In Sriram et al. (2010) they did the same, they
proposed an approach to use a small set of domain-
specific features extracted from the author’s profile
and text to classify the text to a predefined set of
generic classes such as News, Events, Opinions,
Deals, and Private Messages. Apart from machine
learning algorithms there are some deep learning
techniques as well for text classification. In con-
trast to traditional methods,Lai et al. (2015) intro-
duced a recurrent convolutional neural network for
text classification without human designed features.
In their model, they apply a recurrent structure to
capture contextual information as far as possible
when learning word representations, which may
introduce considerably less noise compared to tra-
ditional window-based neural networks.

Conneau et al. (2016) presented a new architec-
ture (VD-CNN) for text processing which operates
directly at the character level and uses only small
convolutions and pooling operations. Joulin et al.
(2016) used fasttext for word features and then
averaged to get a sentence representation for text
classification. Yao et al. (2019)proposed a novel
approach for text clasiification termed as Graph
Convolutional Networks termed as Text-GCN, it
can capture global co-occurence information and
uses limited labelled texts/documents well. Though
there exists a lot of work on text classification, very
few works are done for technical domains and on
Indian languages like ours. Therefore we present
our approach on the provided Indian Languages
along with technical domains.

3 Approach

We evaluate our two models namely, Stochas-
tic Gradient Decent and Multi Layer Perceptron
on technical domains(Chemistry,Communication
Technology, Computer Science, Law , Math and
Physics,Bio-Chemistry, Management) for coarse
grained technical domain classification for all
above mentioned languages(though the number of
domains may differ from language to language).
For fine grained technical domain classification we
have only Computer science in which sub-domains
include AI, Algorithm , Computer Architecture,
Computer Networks , Database Management sys-
tem , Programming and Software Engineering for
English. We used TFIDF for all experiments.

3.1 Term Frequency & Inverse Document
Frequency (TF-IDF)

We use TF-IDF as our feature extraction method in
our experiments, The most basic form of weighted
word feature extraction is Term frequency (Salton
and Buckley, 1988) TF, where each word is mapped
to a number corresponding to the number of occur-
rences of that word in the whole corpora. Methods
that extend the results of TF generally use word
frequency as a boolean or logarithmically scaled
weighting.

W (d, t) = TF (d, t) ∗ log(N

df(t)
) (1)

(Jones, 1972) proposed Inverse Document Fre-
quency (IDF) as a method to be used along with
term frequency in order to lessen the effect of im-
plicitly common words in the corpus. IDF assigns
a higher weight to words with either high or low
frequency term in the document. This combination
of TF and IDF is well known as Term Frequency-
Inverse document frequency (TF-IDF). The mathe-
matical representation of the weight of a term in a
document by TF-IDF is given in Equation 1. Here
N is the number of documents and df(t) is the
number of documents containing the term t in the
corpus. The first term in equation 1 improves the
recall while the second term improves the preci-
sion.

3.2 Stochastic Gradient Decent (SGD)

We used SGD classifier from scikit-learn (Pe-
dregosa et al., 2011). SGD has been successfully
applied to large-scale and sparse machine learning
problems often encountered in text classification

28

and natural language processing. Though SGD
is an optimizer it’s alone can be used as a classi-
fier for text classification using different loss func-
tions. The class SGDClassifier implements a plain
stochastic gradient descent learning routine which
supports different loss functions and penalties for
classification. We performed our experiments with
hinge loss which is equivalent to linear Support
Vector Machine (SVM).

3.3 Multi Layer Perceptron

For Multi Layer Perceptron classifier which in the
name itself connects to a Neural Network. Unlike
other classification algorithms such as Support Vec-
tors or Naive Bayes Classifier, MLPClassifier relies
on an underlying Neural Network to perform the
task of text classification. MLPClassifier trains it-
eratively, at each time step the partial derivatives of
the loss function with respect to the model parame-
ters are computed to update the parameters. It can
also have a regularization term added to the loss
function that shrinks model parameters to prevent
overfitting. In our experiments we used MLPClas-
sifier from (Pedregosa et al., 2011).

4 Experiments & Results

We evaluate two machine learning algorithms on
Data provided by ICON TechDOfication-2020
shared task. The data statistics in terms of number
of sentences for all languages is mentioned in table
1. We are provided with various technical domains
like physics chemistry etc by ICON TechDOfica-
tion 2020 shared task for mentioned languages,
however the domains in each language are differ-
ent. We have Physics(phy), Maths(math), Chem-
istry(che), Law(law) and Computer Science(cse)
n English. Similarly Bengali and Gujarathi
have BioChemistry(bioche), cse, Communication
Technology(com-tech), Management(mgmt) and
phy. Hindi and Telugu have bioche,cse , phy, mgmt,
com-tech and other, where Hindi has extra math
domain. Malayalam has cse, bioche, com-tech do-
mains, and for Marathi we have bioche, com-tech,
phy and cse. In fine-grained domain identification
like identifying sub-domain of Computer Science,
we have AI (ai),Algorithm (algo),Computer Archi-
tecture (ca), Computer Networks (cn), Database
Management system (dbms),Programming (pro)
and Software Engineering (se) subdomains.

As mentioned in section 3.1 we used TFIDF for
all experiments in this paper. For SGD classifier

we used hinge loss, and we took alpha as 0.00001,
it is a constant that multiplies the regularization
term. The higher the value, the stronger the regu-
larization. Maximum number of iterations taken
for this algorithm is 15. In MLPClassifier we used
relu activation function, solver as sgd which used
to find the gradients and optimize the loss function.
We adopted the same alpha as SGD Classifier. As
MLP is neural network based classifier, there is a
need to give hidden layer sizes, we used [100,90]
for two hidden layers apart from input and output
layer.

Lang. Train Dev Test
English 23962 4850 2500
Bengali 58500 5843 1923
Gujarati 36009 5724 2683
Hindi 148445 14338 4212

Malayalam 40669 3390 1515
Marathi 41997 3780 1789
Tamil 72483 6190 2071
Telugu 68865 5920 2612

English(CS) 13580 1360 1930

Table 1: Data Statistics (no. of sentences)
English(CS) is fine-grained classification task for Com-
puter Science Domain in English

Lang. Acc. P R F1
English 0.76 0.76 0.76 0.76
Bengali 0.66 0.71 0.68 0.66
Gujarati 0.58 0.57 0.58 0.57
Hindi 0.43 0.44 0.41 0.40

Malayalam 0.44 0.47 0.4 0.37
Marathi 0.48 0.5 0.47 0.43
Tamil 0.44 0.43 0.45 0.36
Telugu 0.55 0.6 0.56 0.57

English(CS) 0.70 0.70 0.70 0.70

Table 2: Classification Report for SGD Classfier
English(CS) is fine-grained classification task for Com-
puter Science Domain in English
Acc:Accuracy P:Precision R:Recall F1:F1-score

We present Accuracy, Precision, Recall and F1-
score for all the tasks(for all mentioned languages)
as shown in table 2 and table 3 for SGD classi-
fier and for MLP classifier respectively. If we ob-
serve the results both the models performed well
on English compared to other languages. Moti-
vated from this our future work will be to improve
the accuracy on Indian languages. MLP classifier
outperformed SGD in almost all tasks. If we talk

29

Lang. Acc. P R F1
English 0.77 0.77 0.77 0.77
Bengali 0.66 0.70 0.68 0.66
Gujarati 0.60 59 0.6 0.58
Hindi 0.43 0.5 0.42 0.43

Malayalam 0.44 0.47 0.38 0.36
Marathi 0.5 0.5 0.48 0.44
Tamil 0.45 0.44 0.5 0.39
Telugu 0.54 0.6 0.51 0.52

English(CS) 0.62 0.64 0.62 0.63

Table 3: Classification Report for MLP Classfier
English(CS) is fine-grained classification task for Com-
puter Science Domain in English
Acc:Accuracy P:Precision R:Recall F1:F1-score

about fine grained technical domain identification,
SGD outperformed MLP classifier. Comparatively
Malayalam and Tamil got less scores in both the
algorithms. From all the experiments we can con-
clude that we can use MLP classifier for Technical
Domain Identification but still there is a huge need
of improving or coming up with new algorithms
for morphologically rich Indian languages.

5 Conclusion & Future Work

we are in the process of exploring many different
algorithms for Technical Domain Identification. In
the future we want to work on other possible lan-
guages for possible technical domains. In this paper
we showed two machine learning algorithms(SGD
and MLP). TFIDF doesn’t depend on any language
or domain specific resources hence, we preferred
TFIDF as feature extraction method for both the
ML algorithms presented in the experiments. From
the results we can conclude that Multi Layer Per-
ceptron is performing better on these technical do-
mains for the provided languages.

References
Alexis Conneau, Holger Schwenk, Loı̈c Barrault,

and Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781.

George Forman. 2003. An extensive empirical study
of feature selection metrics for text classification.
Journal of machine learning research, 3(Mar):1289–
1305.

Thorsten Joachims. 1999. Transductive inference for
text classification using support vector machines. In
Icml, volume 99, pages 200–209.

Karen Sparck Jones. 1972. A statistical interpretation
of term specificity and its application in retrieval.
Journal of documentation.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Jasleen Kaur and Jatinderkumar R Saini. 2015. A study
of text classification natural language processing al-
gorithms for indian languages. The VNSGU Journal
of Science Technology, 4(1):162–167.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In Twenty-ninth AAAI conference on
artificial intelligence.

Huma Lodhi, Craig Saunders, John Shawe-Taylor,
Nello Cristianini, and Chris Watkins. 2002. Text
classification using string kernels. Journal of Ma-
chine Learning Research, 2(Feb):419–444.

Andrew McCallum, Kamal Nigam, et al. 1998. A com-
parison of event models for naive bayes text classi-
fication. In AAAI-98 workshop on learning for text
categorization, volume 752, pages 41–48. Citeseer.

Kamal Nigam, John Lafferty, and Andrew McCallum.
1999. Using maximum entropy for text classifica-
tion. In IJCAI-99 workshop on machine learning for
information filtering, volume 1, pages 61–67. Stock-
holom, Sweden.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Gerard Salton and Christopher Buckley. 1988. Term-
weighting approaches in automatic text retrieval. In-
formation processing & management, 24(5):513–
523.

Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Fer-
hatosmanoglu, and Murat Demirbas. 2010. Short
text classification in twitter to improve information
filtering. In Proceedings of the 33rd international
ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 841–842.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 7370–7377.

30

Proceedings of the 17th International Conference on Natural Language Processing: TechDOfication 2020 Shared Task, pages 31–34
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

Fine-grained domain classification using Transformers

Akshat Gahoi Akshat Chhajer Dipti Mishra Sharma

Language Technologies Research Center
International Institute of Information Technology, Hyderabad, India

{akshat.gahoi,akshat.chhajer}@research.iiit.ac.in
dipti@iiit.ac.in

Abstract

The introduction of transformers in 2017 and
successively BERT in 2018 brought about a
revolution in the field of natural language pro-
cessing. Such models are pretrained on vast
amounts of data, and are easily extensible to be
used for a wide variety of tasks through trans-
fer learning. Continual work on transformer
based architectures has led to a variety of new
models with state of the art results. RoBERTa
(Liu et al., 2019) is one such model, which
brings about a series of changes to the BERT
(Devlin et al., 2018) architecture and is capa-
ble of producing better quality embeddings at
an expense of functionality. In this paper, we
attempt to solve the well known text classifi-
cation task of fine-grained domain classifica-
tion using BERT and RoBERTa and perform
a comparative analysis of the same. We also
attempt to evaluate the impact of data prepro-
cessing specially in the context of fine-grained
domain classification.
The results obtained outperformed all the other
models at the ICON TechDOfication 2020
(subtask-2a) Fine-grained domain classifica-
tion task and ranked first. This proves the ef-
fectiveness of our approach.

1 Introduction

The transformer-based language models have been
showing promising progress on a number of differ-
ent natural language processing (NLP) benchmarks.
The combination of transfer learning methods with
large-scale transformer language models is becom-
ing a standard in modern NLP and has resulted in
many state-of-the-art models.
Compared to LSTMs(Greff et al., 2015), the main
limitations of bidirectional LSTMs is their sequen-
tial nature, which makes training in parallel very
difficult. The transformer architecture solves that
by completely replacing LSTMs by the so-called
attention mechanism (Vaswani et al., 2017). With

attention, we are seeing an entire sequence as a
whole, therefore it is much easier to train in paral-
lel.
Text classification is a well-known task in Natural
Language Processing, which aims at automatically
providing additional document-level metadata (e.g.
domain, genre, author).

One of text classification tasks: domain classifi-
cation can be divided into two categories:-

• Course-grained domain classification

• Fine-grained domain classification

Course-grained domain classification aims to
classify the input into varied and unrelated domains
such as chemistry, law, computer science etc. On
the other hand, fine-grained domain classification
aims to classify the input into closely related sub-
domains under a higher level domain. Example
includes classification of text on physics into dif-
ferent topics like relativity, mechaincs, or quantum
mechanics. The latter is found to be a significantly
more challenging task due to the similarity and lack
of distinction between the inputs attributed to the
fact that they are under an umbrella of a common
domain.
Although there is substantive work done on domain
classification in general (Young-Bum Kim, 2018),
there has been less emphasis on fine-grained do-
main classification and the various augmentations
to data that can be done to achieve higher perfor-
mances in that task. This paper looks at the task
of fine-grained domain classification in context of
transformers. It paper will provide a comparison
between the widely used BERT and RoBERTa
embeddings for the task as well as attempt to ob-
serve the impact of data pre-processing in the con-
text of fine-grained domain classification.
On blind test corpora of 1929 text samples, the
proposed model in this paper led to F1 score of

31

0.824 at the ICON TechDOfication 2020 shared
task (subtask-2a). This result helped us bag the
leading position on the leaderboard.

2 Dataset

For the study, dataset from the ICON TechDOfica-
tion 2020 (subtask-2a) was used. The entire col-
lection consisted of 14910 text samples from En-
glish spanning across 7 sub-domains of Computer
Science. Table 1 shows the sub-domains and the
distribution of data.

Sub-domain Code Samples
Artificial Intelligence ai 2140
Algorithm algo 2131
Computer Architecture ca 2127
Computer Networks cn 2140
Database Management
System dbms 2140

Programming pro 2122
Software Engineering se 2140

Table 1: Dataset distribution across domains

The average number of characters in the text
samples was 177.6 and the average number of to-
kens observed in the same was 36.3.

A collection of 1929 text samples served as the
blind test set for this task.

3 BERT vs RoBERTa

BERT is a bi-directional transformer for pre-
training over huge amount of unlabeled textual
data to learn a language representation. It can be
then used to fine-tune for specific machine learn-
ing tasks like text classification. BERT outper-
formed the NLP state-of-the-art on several chal-
lenging tasks, attributed to the bidirectional trans-
former, novel pre-training tasks of Masked Lan-
guage Model(Song et al., 2019) and Next Sentence
Prediction(Shi and Demberg, 2019).

RoBERTa has a very similar architecture as com-
pared to BERT with improved training method-
ology and more data. To improve the training,
RoBERTa removes the Next Sentence Prediction
task from BERT’s pre-training and introduces dy-
namic masking so that the masked token changes
during the training epochs. Originally BERT is
trained for 1M steps with a batch size of 256 se-
quences. RoBERTa on the other hand is trained
with 125 steps of 2K sequences and 31K steps with
8K sequences of batch size. Large batches are also
easier to parallelize via distributed parallel training.

(a) BERT with no preprocessing

(b) RoBERTa with no preprocessing

Figure 1: Confusion matrices for dev set without pre-
processing

4 System Overview

The section presents an overview of the system
which was used to evaluate the scores described in
the Results section of the paper.

4.1 Pre-Processing
In the first approach, only one-hot-encoding for the
labels was done and the raw text was fed as it is to
both the transformers.
In the second approach the raw data was pre-
processed keeping in mind the nature of fine-
grained domain classification task. First, tokeniza-
tion was done on the text using spaCy and the stop
words were filtered out. Next, the tokens were
passed through a counter and the top 20 tokens
from the entire corpus were identified and then re-
moved. As domain classification relies more on the
keywords than the sentence structures, the data was
cleaned. Lastly, the text was reconstructed from
the remaining tokens. This was done to reduce the
generalization amongst the sub-domains as the text
had a lot of common terms from the higher level
computer science domain itself.

4.2 Training
In total, 4 models were trained using
BERT/RoBERTa and with/without pre-processing.

32

(a) BERT with preprocessing

(b) RoBERTa with preprocessing

Figure 2: Confusion matrices for dev set with prepro-
cessing

The training was done using the concept of transfer
learning. The pretrained bert-base-uncased and
roberta-bert were taken and further fine tuning on
it was done using the training dataset. The learning
rate used was 4e-5 with 128 batch size. Each of
the models were trained for 4 epochs.

5 Results and Evaluation

All the models were evaluated on the dev dataset
and the results are presented in Table 2. It is clear
that pre-processing indeed increases the f1 score
and makes a substantive difference in fine-grained
domain classification. This is because the common
terms from the higher level common domains are
removed and more distinction is created in the text
samples for sub-domains.

In Figure 1 (results on dev set without prepro-
cessing), we can see that RoBERTa miss classifies
only slightly a less number text samples compared
to BERT with both performing very similar. How-
ever, there is difference seen when preprocessing
is done and frequent words are removed. In Fig-
ure 2 (results on dev set with preprocessing), we
can see that BERT miss-classifies 91 text samples
as ’Database Management System’ which reduces
to 48 when using RoBERTa. Similarly, 87 miss-

classifications done by BERT as ’Programming’
are corrected to 54 by RoBERTa. However it is
seen that RoBERTa tends to miss-classify text sam-
ples as ’Software Engineering’ often.

In both the cases, RoBERTa performed better
than BERT however, with a small margin. The best
performing model (RoBERTa with preprocessing)
was then evaluated using the ICON TechDOfica-
tion 2020 (subtask-2a) test dataset. The results
obtained are shown in Table 3. It was observed
that for different models also documents gets
misidentified between a common pair of domains
hence defining a close relation between the two
domains. So this experiment can also be done to
determine two closely related domains among a
huge variety of domains.

Transformer Pre-
processed Precision Recall F1

bert-base-
uncased no 0.761 0.752 0.756

roberta-base no 0.788 0.783 0.781
bert-base-
uncased yes 0.832 0.812 0.810

roberta-base yes 0.842 0.837 0.835

Table 2: Results for the dev set

Transformer Accuracy Precision Recall F1
RoBERTa 0.825 0.826 0.825 0.824

Table 3: Final model results on the test dataset

6 Conclusion

In this paper, we did a comparative analysis of
BERT and RoBERTa in the context of fine-grained
domain classification. Furthermore, the impact of
pre-processing was also explored. It was found that
pre-processing and removal of common terms from
data helps the model perform better as more dis-
tinction is created between the sub-domains. The
results indicate that RoBERTa performs slightly
better than BERT in all the cases.

The model proposed in this paper ranked first in
the ICON TechDOfication 2020 (subtask-2a) with
an F1 score of 0.824.

7 Future Work

This paper shows how good transformers can per-
form for the task of multi class text classification.
The main difference in the results comes from the

33

embeddings being used. Thus, a very high perform-
ing multilingual model can be created if enough
data and pre-trained language models are available
for Indian languages. Hence, the goal can be to
create BERT embeddings for other languages and
extend the work done by AI4Bharat/IndicBERT
(Kakwani et al., 2020). This can then not only
be used for text classification tasks but also any
other multi-lingual state-of-the-art natural process-
ing task.

References
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and

Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k,
Bas R. Steunebrink, and Jürgen Schmidhuber.
2015. LSTM: A search space odyssey. CoRR,
abs/1503.04069.

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, Gokul N.C., Avik Bhattacharyya, Mitesh M.
Khapra, and Pratyush Kumar. 2020. IndicNLPSuite:
Monolingual corpora, evaluation benchmarks and
pre-trained multilingual language models for Indian
languages. In Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pages 4948–
4961, Online. Association for Computational Lin-
guistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. CoRR, abs/1907.11692.

Wei Shi and Vera Demberg. 2019. Next sentence pre-
diction helps implicit discourse relation classifica-
tion within and across domains. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5790–5796, Hong Kong,
China. Association for Computational Linguistics.

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-
Yan Liu. 2019. MASS: masked sequence to se-
quence pre-training for language generation. CoRR,
abs/1905.02450.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. CoRR, abs/1706.03762.

Anjishnu Kumar Ruhi Sarikaya Young-Bum Kim,
Dongchan Kim. 2018. Efficient large-scale neural
domain classification with personalized attention.

34

Proceedings of the 17th International Conference on Natural Language Processing: TechDOfication 2020 Shared Task, pages 35–39
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

TechTexC: Classification of Technical Texts using Convolution and
Bidirectional Long Short Term Memory Network

Omar Sharif†, Eftekhar Hossain*, and Mohammed Moshiul Hoque†

†Department of Computer Science and Engineering
*Department of Electronics and Telecommunication Engineering

Chittagong University of Engineering and Technology, Bangladesh
†{omar.sharif, moshiul 240}@cuet.ac.bd

*eftekhar.hossain@cuet.ac.bd

Abstract

This paper illustrates the details description
of technical text classification system and
its results that developed as a part of
participation in the shared task TechDofication
2020. The shared task consists of two
sub-tasks: (i) first task identify the coarse-
grained technical domain of given text in
a specified language and (ii) the second
task classify a text of computer science
domain into fine-grained sub-domains. A
classification system (called ’TechTexC’) is
developed to perform the classification task
using three techniques: convolution neural
network (CNN), bidirectional long short term
memory (BiLSTM) network, and combined
CNN with BiLSTM. Results show that CNN
with BiLSTM model outperforms the other
techniques concerning task-1 of sub-tasks (a,
b, c and g) and task-2a. This combined
model obtained f1 scores of 82.63 (sub-task
a), 81.95 (sub-task b), 82.39 (sub-task c),
84.37 (sub-task g), and 67.44 (task-2a) on the
development dataset. Moreover, in the case
of test set, the combined CNN with BiLSTM
approach achieved that higher accuracy for
the subtasks 1a (70.76%), 1b (79.97%), 1c
(65.45%), 1g (49.23%) and 2a (70.14%).

1 Introduction

Due to the substantial growth and effortless access
to the Internet in recent years, an enormous amount
of unstructured textual contents have generated. It
is a crucial task to organize or structure such a
voluminous unstructured text in manually. Thus,
automatic classification can be useful to manipulate
a huge amount of texts, and extract meaningful
insights which save a lot of time and money.
Text categorization is a classical NLP problem
which aims to categorize texts into organized
groups. It has a wide range of applications
like machine translation, question answering,

summarization, and sentiment analysis. There
are several approaches available to classify texts
according to their labels. However, deep learning
method outperforms the rule-based and machine
learning-based models because of their ability to
capture sequential and semantic information from
texts (Minaee et al., 2020). We propose a classifier
using CNN (Jacovi et al., 2018), and BiLSTM
(Zhou et al., 2016) to classify technical texts in
the computer science domain. Furthermore, by
sequentially adding these networks, remarkable
accuracy in several shared classification tasks can
be obtained. The rest of the paper is organized as
follows: related work given in section 2. Section 3
describes the dataset. The framework described in
section 4. The findings presented in section 5.

2 Related Work

CNN and LSTM have achieved great success in
various NLP tasks such as sentence classification,
document categorization, sentiment analysis, and
summarization. Kim (2014) used convolution
neural network to classify sentences. A method
used contents and citations to classify scientific
document (Cao and Gao). Zhou et al. (2016)
used 2-D max pooling and bidirectional LSTM
to classify texts. Zhou et al. (2015) combined
CNN and LSTM to classify sentiment and question
type. Their system achieved superior accuracy
than CNN and LSTM individually. Hossain et al.
(2020) used LSTM to classify sentiment of Bengali
text documents. Their system got maximum
accuracy with one layer of LSTM followed by
three dense layers. Ranjan et al. (2017) proposed
a document classification framework using LSTM
and feature selection algorithms. Ameur et al.
(2020) combined CNN and RNN methods to
categorize Arabic texts. They used dynamic, fine-
tuned words embedding to get effective result on

35

open-source Arabic dataset.

3 Dataset

To develop the classifier model, we used the
dataset provided by the organizers of the shared
task1. This shared task consists of two subtasks:
subtask-1 and subtask-2. Subtask-1 aims to
the identification of coarse-grained domain for a
piece of text. Organizers provided data including
eight different languages (English, Bangla, Hindi,
Gujarati, Malayalam, Marathi, Tamil, Telugu)
each having a different number of classes for this
task. In subtask-2, the goal is to find the fine-
grained sub domain of a text from the computer
science domains. Seven classes such as artificial
intelligence, algorithm, computer architecture,
computer networks, database management systems,
programming, software engineering are available in
this subtask-2. The number of training, validation
and test texts for each of the task is different.
Summary of the dataset presents in table 1.

Task No. of
classes Train Dev Test

task-1a 5 23962 4850 2500
task-1b 5 58500 5842 1923
task-1c 5 36009 5724 2682
task-1d 7 148445 14338 4211
task-1e 3 40669 3390 1514
task-1f 4 41997 3780 1788
task-1g 6 72483 6190 2070
task-1h 6 68865 5920 2611
task-2a 7 13580 1360 1929

Table 1: Dataset description

4 System Overview

Figure 1 shows the schematic diagram of the
proposed system. The system has four major parts:
preprocessing, feature extraction, classifier model
and prediction. After processing the raw texts,
Word2Vec word embedding technique is applied
on the processed texts to extract features. After
exploiting inherent features of the texts, the model
trained with CNN, BiLSTM and combination of
CNN & BiLSTM.. Finally, the trained model will
use to predict the class on the development set.

1https://ssmt.iiit.ac.in/techdofication.html

4.1 Preprocessing

In this step, all the punctuation’s (,.;:”!) and
flawed characters (#,$, %,*,@) removed from the
input texts. Texts are having a length of fewer
than two words also discarded. Deep learning
algorithms could not possibly learn from the raw
texts. Thus, a numeric mapping of the input texts
is created. A vocabulary of K unique words is
developed and each input text encoded into numeric
sequences based on word index in vocabulary. By
applying the pad sequence method, each sequence
converted into fixed-length vector. We choose
optimal sequence length 100 as most of the length
of the text ranges between 30-70 words. In order to
maintain a fixed length of inputs, zero paddings are
used with the short text, and extra values discarded
from the long sequences.

4.2 Feature Extraction

To extract features from texts and capture semantic
property of a word Word2Vec (Mikolov et al.,
2013) embedding technique is used. Embedding
maps textual data into a dense vector by solving the
sparsity problem. We use the default embedding
layer of Keras to produce embedding matrix.
Embedding layer has three parameters: vocabulary
size, embedding dimension and length of texts.
Embedding dimension determine the size of the
dense word vector. The entire corpus is fitted into
the embedding layer for a specific subtask and
choose 100 as embedding dimension for all the
subtasks. Features extracted from the embedding
layer propagated the rest of the network.

4.3 Classifier Model

In this work, CNN and BiLSTM are used for
initial model building. However, after combining
these methods, we get superior results in several
subtasks (Zhou et al., 2015). A description of the
proposed architecture illustrates in the subsequent
paragraphs.

CNN: In CNN, convolution filters capture the
inherent syntactic and semantic features of the
texts. The proposed classifier considers two layers,
one dimensional CNN. In each layer, there are
128 filters with kernel size 5. To downsample the
features on CNN max-pooling technique is utilized
where pool size is 1×5. We have used a non-linear
activation function ‘relu’ with CNN.

36

Figure 1: Schematic diagram of our system

BiLSTM: We use Bidirectional LSTM network
to capture the sequential features from the input
text and to avoid vanishing/exploding gradient
problems of simple RNN. We use two layers of
BiLSTM on top of each other, where each layer has
128 LSTM cells. In order to reduce the overfitting
on training data, the dropout technique is used with
a dropout rate of 0.2. After achieving the hidden
representation form, the LSTM layer output passed
to the softmax layer for classification.

CNN+BiLSTM: In this approach, we merge
CNN and BiLSTM models with marginal
modification in network architecture. Previously,
we used two layers of CNN and BiLSTM, whereas
in this technique, discard one layer from each
network and combine them sequentially. Word
embedding features is feed to the CNN, which has
128 filters. After max pooling with a window of
size 5, features of CNN propagated to the LSTM
layer. It has 128 bidirectional cells to capture
the sequential information. In order to mitigate
overfitting, a dropout layer is added with a dropout
rate of 0.2. Finally, the softmax layer gets input
from the LSTM and perform classification.

4.4 Prediction

The goal of the prediction module is to determine
the technical domain of an input text that it
has never seen before. For the prediction,
sample instances are processed and converted into
numerical sequences by the tokenizer. Trained
model use this sequence to predict the associated
class of the input text.

5 Experiments

Google co-laboratory platform is used to conduct
experiments. Deep learning model developed with
Keras=2.4.0 framework with tensorflow=2.3.0 in

the backend. For data preparation and evaluation,
we use python=3.6.9 and secikit-learn=0.22.2.

5.1 Hyperparameter Settings
Performance of deep learning models heavily
depends on the hyperparameters used in training.
To choose the optimal hyperparameters for
the proposed model, we played with different
combinations. We choose parameter values based
on its effect on the output. Table 2 exhibits the
values of different hyperparameters considered to
train the proposed model. Adam optimizer is used

Hyperparameters Optimum value
Embedding dimension 100
Padding length 100
Filters 128
Kernel size 5
Pooling type max
Window size 5
LSTM cell 128
Dropout rate 0.2
Optimizer ‘adam’
Learning rate 0.001
Batch size 128

Table 2: Hyperparameter Settings

with a learning rate of 0.001. The model trained
with a batch size of 128 until a training accuracy
of 98% reached. We use Keras callbacks to save
the intermediate model during training with best
validation accuracy. The trained model used to
predict on the instances of development set.

5.2 Results
We determine the superiority of the models based
on their weighted f1 score on the development set
of different tasks. Table 3 shows the evaluation
results of CNN, BiLSTM and CNN+BiLSTM.

37

Task CNN Bi-LSTM CNN+Bi-LSTM
P R F P R F P R F

task-1a (English) 81.48 81.36 81.4 82.81 82.52 82.52 82.9 82.54 82.63
task-1b (Bangla) 81.96 81.94 81.91 81.49 81.38 81.39 82.04 81.97 81.95
task-1c (Gujarati) 82.63 82.39 82.38 82.79 82.05 82.06 82.58 82.41 82.39
task-1d (Hindi) 79.46 79.0 79.07 79.86 79.54 79.52 79.65 79.44 79.48
task-1e (Malayalam) 91.51 91.53 91.52 91.87 91.89 91.86 91.38 91.36 91.32
task-1f (Marathi) 85.93 85.93 85.84 86.47 86.53 86.48 86.57 86.51 86.38
task-1g (Tamil) 84.26 84.07 84.02 84.36 84.34 84.3 84.56 84.63 84.37
task-1h (Telegu) 86.85 86.82 86.78 87.64 87.34 87.41 87.17 87.14 87.13
task-2a (English) 64.36 63.82 63.83 66.45 65.51 65.72 67.86 67.35 67.44

Table 3: Evaluation results of three models on different tasks where P, R, F denotes precision, recall and weighted
f1 score.

Task Method A P R F
task-1a (English) CNN+BiLSTM 70.76 71.50 70.76 70.63
task-1b (Bangla) CNN+BiLSTM 79.97 81.50 82.41 80.25
task-1c (Gujarati) CNN+BiLSTM 65.45 1.95 1.81 1.86
task-1d (Hindi) BiLSTM 57.28 57.13 55.99 54.57
task-1e (Malayalam) BiLSTM 31.37 0.32 0.18 0.19
task-1f (Marathi) BiLSTM 63.09 65.98 61.38 59.81
task-1g (Tamil) CNN+BiLSTM 49.23 48.38 61.34 43.70
task-1h (Telegu) BiLSTM 52.82 0.76 0.64 0.68
task-2a (English) CNN+BiLSTM 70.14 71.51 70.19 70.40

Table 4: Evaluation results on the test set. Here A, P, R, F denotes accuracy, precision, recall and weighted f1
score respectively.

The results revealed that BiLSTM model achieved
the higher f1 score of 79.52%, 91.86%, 86.48%
and 87.41% for tasks 1d, 1e, 1f and 1h. It
outperforms CNN model for all tasks. The reason
behind the superior results of LSTM because of
its capability to capture long-range dependencies.
However, combined CNN and BiLSTM provide
interesting insights. It outdoes previous BiLSTM
model in tasks 1a, 1b, 1c, 1g and 2a by obtaining
82.63%, 81.95%, 82.39%, 84.37% and 67.4%4 f1
scores. The model achieved 2% rise in f1 score
concerning task-2a where the fine-grained domain
of a text is identified. In all the cases, there exists
a small difference (< 0.5%) between the result of
BiLSTM and CNN+BiLSTM. By analyzing the
results, it observed that for a task with less number
of classes, all models achieved quite similar
performance. However, when the number of
classes increased, the BiLSTM and CNN+BiLSTM
models performed better than CNN. It is because
the CNN model could not capture sequential
feature as well compare to LSTM.

Table 4 shows the output of the best run

on the test set for each tasks. Based
on the performance of the development set,
methods are selected to predict on the test
set. Therefore, we use CNN+BiLSTM model
to predict on the tasks 1a, 1b, 1c, 1g and 2a.
Model achieved 70.63%, 80.25%, 1.86%, 43.70%
and 70.4% weighted f1 scores on these tasks
respectively. Unlike other tasks, precision, recall,
and f1 score are much lower for task 1c compare
to the validation results. This lower score might
happen due to some mistake during evaluation.
Task 2a get better f1 score on the test set to
compare to the development set. For other cases,
the performance of the methods degraded on the
development set.

BiLSTM method used to get the outputs for tasks
1d, 1e, 1f and 1h. Model obtained 57.13%, 0.32%,
65.98% and 0.76% weighted f1 scores on these
tasks. It suspected that some errors might occur
during evaluation for tasks 1e and 1h. The model
achieved 91.86% and 87.41% f1 scores on these
tasks for the validation set but got an implausible
result on the test set. This error might occur due to

38

Unicode issues of different languages. Our system
also encountered an error when data read from the
text file. The performance of BiLSTM method
decreased in the test set than the validation set for
all tasks.

Precision, recall and f1 score have fallen for
each task in the test set except task 2a. Weighted
f1 score has increased by 2.5% in the test set. For
all the tasks, we observed a substantial variation
between the development set and test set results.
There might be two possible reasons behind this
unpredictable nature of the models. First one,
model is overfitted on the training set. Thus, it
gets better results on training and validation set but
poor results on the test set. The second one, test
data are more diverse than training data. Suppose
significant overlap does not exist between the train
and test features. In that case, the model indeed
performs poor on the test data since the models
learn from the characteristics of training data.

6 Conclusion

This paper presents a detail description of the
proposed system and its evaluation for the technical
texts classification in different languages. As the
baseline method, we used CNN and BiLSTM, and
compare these methods with the proposed model
(combined CNN and BiLSTM). Each model is
trained, tuned and evaluated separately for subtasks
1 and 2. The proposed method showed better
performance in terms of accuracy for subtasks (a,
b, c, g) of task 1 and task 2a on development
set. However, in the case of test set, the system
performed better for the subtasks 1a, 1b, 1c, 1g
and 2a. More dataset can be included for improved
performance. In future, the attention mechanism
may be explored to observe its effects on text
classification tasks.

References
Mohamed Seghir Hadj Ameur, Riadh Belkebir, and

Ahmed Guessoum. 2020. Robust arabic text
categorization by combining convolutional and
recurrent neural networks. ACM Transactions
on Asian and Low-Resource Language Information
Processing (TALLIP), 19(5):1–16.

Minh Duc Cao and Xiaoying Gao. Combining contents
and citations for scientific document classification.
In Int. Conf. on Advances in Artificial Intelligence.

Eftekhar Hossain, Omar Sharif, Mohammed Moshiul
Hoque, and Iqbal H Sarker. 2020. Sentilstm:

A deep learning approach for sentiment
analysis of restaurant reviews. arXiv preprint
arXiv:2011.09684.

Alon Jacovi, Oren Sar Shalom, and Yoav Goldberg.
2018. Understanding convolutional neural
networks for text classification. arXiv preprint
arXiv:1809.08037.

Yoon Kim. 2014. Convolutional neural networks
for sentence classification. arXiv preprint
arXiv:1408.5882.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S
Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their
compositionality. In Advances in neural information
processing systems, pages 3111–3119.

Shervin Minaee, Nal Kalchbrenner, Erik Cambria,
Narjes Nikzad, Meysam Chenaghlu, and Jianfeng
Gao. 2020. Deep learning based text classification:
A comprehensive review. arXiv preprint
arXiv:2004.03705.

Mr Nihar M Ranjan, YR Ghorpade, GR Kanthale,
AR Ghorpade, and AS Dubey. 2017. Document
classification using lstm neural network. Journal of
Data Mining and Management, 2(2):1–9.

Chunting Zhou, Chonglin Sun, Zhiyuan Liu, and
Francis Lau. 2015. A c-lstm neural network for text
classification. arXiv preprint arXiv:1511.08630.

Peng Zhou, Zhenyu Qi, Suncong Zheng, Jiaming
Xu, Hongyun Bao, and Bo Xu. 2016. Text
classification improved by integrating bidirectional
lstm with two-dimensional max pooling. arXiv
preprint arXiv:1611.06639.

39

Proceedings of the 17th International Conference on Natural Language Processing: TechDOfication 2020 Shared Task, pages 40–46
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

An Attention Ensemble Approach for Efficient Text Classification of
Indian Languages

Atharva Kulkarni1, Amey Hengle1, and Rutuja Udyawar2

1Department of Computer Engineering, PVG’s COET, Savitribai Phule Pune University, India.
2Optimum Data Analytics, India.

1{atharva.j.kulkarni1998, ameyhengle22}@gmail.com
2rutuja.udyawar@odaml.com

Abstract

The recent surge of complex attention-based
deep learning architectures has led to extraor-
dinary results in various downstream NLP
tasks in the English language. However, such
research for resource-constrained and morpho-
logically rich Indian vernacular languages has
been relatively limited. This paper proffers
team SPPU AKAH’s solution for the TechD-
Ofication 2020 subtask-1f: which focuses on
the coarse-grained technical domain identifica-
tion of short text documents in Marathi, a De-
vanagari script-based Indian language. Avail-
ing the large dataset at hand, a hybrid CNN-
BiLSTM attention ensemble model is pro-
posed that competently combines the inter-
mediate sentence representations generated by
the convolutional neural network and the bidi-
rectional long short-term memory, leading to
efficient text classification. Experimental re-
sults show that the proposed model outper-
forms various baseline machine learning and
deep learning models in the given task, giving
the best validation accuracy of 89.57% and f1-
score of 0.8875. Furthermore, the solution re-
sulted in the best system submission for this
subtask, giving a test accuracy of 64.26% and
f1-score of 0.6157, transcending the perfor-
mances of other teams as well as the baseline
system given by the organizers of the shared
task.

1 Introduction

The advent of attention-based neural networks and
the availability of large labelled datasets has re-
sulted in great success and state-of-the-art perfor-
mance for English text classification (Yang et al.,
2016; Zhou et al., 2016; Wang et al., 2016; Gao
et al., 2018). Such results, however, for Indian lan-
guage text classification tasks are far and few as
most of the research employ traditional machine
learning and deep learning models (Joshi et al.,

2019; Tummalapalli et al., 2018; Bolaj and Gov-
ilkar, 2016a,b; Dhar et al., 2018). Apart from
being heavily consumed in the print format, the
growth in the Indian languages internet user base
is monumental, scaling from 234 million in 2016
to 536 million by 2021 1. Even so, just like most
other Indian languages, the progress in NLP for
Marathi has been relatively constrained, due to fac-
tors such as the unavailability of large-scale train-
ing resources, structural un-similarity with the En-
glish language, and a profusion of morphological
variations, thus, making the generalization of deep
learning architectures to languages like Marathi
difficult.

This work posits a solution for the TechDOfica-
tion 2020 subtask-1f: coarse-grained domain clas-
sification for short Marathi texts. The task provides
a large corpus of Marathi text documents spanning
across four domains: Biochemistry, Communica-
tion Technology, Computer Science, and Physics.
Efficient domain identification can potentially im-
pact, and improve research in downstream NLP
applications such as question answering, transliter-
ation, machine translation, and text summarization,
to name a few. Inspired by the works of (Er et al.,
2016; Guo et al., 2018; Zheng and Zheng, 2019),
a hybrid CNN-BiLSTM attention ensemble model
is proposed in this work. In recent years, Convo-
lutional Neural Networks (Kim, 2014; Conneau
et al., 2016; Zhang et al., 2015; Liu et al., 2020;
Le et al., 2017) and Recurrent Neural Networks
(Liu et al., 2016; Sundermeyer et al., 2015) have
been used quite frequently for text classification
tasks. Quite different from one another, the CNNs
and the RNNs show different capabilities to gener-
ate intermediate text representation. CNN models
an input sentence by utilizing convolutional filters
to identify the most influential n-grams of differ-

1https://home.kpmg/in/en/home/insights/2017/04/indian-
language-internet-users.html

40

ent semantic aspects (Conneau et al., 2016). RNN
can handle variable-length input sentences and is
particularly well suited for modeling sequential
data, learning important temporal features and long-
term dependencies for robust text representation
(Hochreiter and Schmidhuber, 1997). However,
whilst CNN can only capture local patterns and
fails to incorporate the long-term dependencies and
the sequential features, RNN cannot distinguish
between keywords that contribute more context to
the classification task from the normal stopwords.
Thus, the proposed model hypothesizes a potent
way to subsume the advantages of both the CNN
and the RNN using the attention mechanism. The
model employs a parallel structure where both the
CNN and the BiLSTM model the input sentences
independently. The intermediate representations,
thus generated, are combined using the attention
mechanism. Therefore, the generated vector has
useful temporal features from the sequences gener-
ated by the RNN according to the context generated
by the CNN. Results attest that the proposed model
outperforms various baseline machine learning and
deep learning models in the given task, giving the
best validation accuracy and f1-score.

2 Related Work

Since the past decade, the research in NLP has
shifted from a traditional statistical standpoint to
complex neural network architectures. The CNN
and RNN based architectures have emerged greatly
successful for the text classification task. Yoon
Kim was the first one who applied a CNN model
for English text classification. In this work, a series
of experiments were conducted with single as well
as multi-channel convolutional neural networks,
built on top of randomly generated, pretrained, and
fine-tuned word vectors (Kim, 2014). This success
of CNN for text classification led to the emergence
of more complex CNN models (Conneau et al.,
2016) as well as CNN models with character level
inputs (Zhang et al., 2015). RNNs are capable of
generating effective text representation by learn-
ing temporal features and long-term dependencies
between the words (Hochreiter and Schmidhuber,
1997; Graves and Schmidhuber, 2005). However,
these methods treat each word in the sentences
equally and thus cannot distinguish between the
keywords that contribute more to the classification
and the common words. Hybrid models proposed
by (Xiao and Cho, 2016) and (Hassan and Mah-

mood, 2017) succeed in exploiting the advantages
of both CNN and RNN, by using them in combina-
tion for text classification.

Since the introduction of the attention mecha-
nism (Vaswani et al., 2017), it has become an effec-
tive strategy for dynamically learning the contribu-
tion of different features to specific tasks. Needless
to say, the attention mechanism has expeditiously
found its way into NLP literature, with many works
effectively leveraging it to improve the text classi-
fication task. (Guo et al., 2018) proposed a CNN -
RNN attention-based neural network (CRAN) for
text classification. This work illustrates the effec-
tiveness of using the CNN layer as a context of
the attention model. Results show that using this
mechanism enables the proposed model to pick the
important words from the sequences generated by
the RNN layer, thus helping it to outperform many
baselines as well as hybrid attention-based models
in the text classification task. (Er et al., 2016) pro-
posed an attention pooling strategy, which focuses
on making a model learn better sentence represen-
tations for improved text classification. Authors
use the intermediate sentence representations pro-
duced by a BiLSTM layer in reference with the
local representations produced by a CNN layer to
obtain the attention weights. Experimental results
demonstrate that the proposed model outperforms
state-of-the-art approaches on a number of bench-
mark datasets for text classification. (Zheng and
Zheng, 2019) combine the BiLSTM and CNN with
the attention mechanism for fine-grained text clas-
sification tasks. The authors employ a method in
which intermediate sentence representations gener-
ated by BiLSTM are passed to a CNN layer which
is then max pooled to capture the local features of a
sentence. The local feature representations are fur-
ther combined by using an attention layer to calcu-
late the attention weights. In this way, the attention
layer can assign different weights to features ac-
cording to their importance to the text classification
task.

The literature in NLP focusing on the resource-
constrained Indian languages has been fairly re-
strained. (Tummalapalli et al., 2018) evaluated the
performance of vanilla CNN, LSTM, and multi-
Input CNN for the text-classification of Hindi and
Telugu texts. The results indicate that CNN based
models perform surprisingly better as compared
to LSTM and SVM using n-gram features. (Joshi
et al., 2019) have compared different deep learn-

41

Label Training Data Validation Data
bioche 5,002 420
com tech 17,995 1,505
cse 9,344 885
phy 9,656 970
Total 41,997 3,780

Table 1: Data distribution.

ing approaches for Hindi sentence classification.
The authors have evaluated the effect of using pre-
trained fasttext Hindi embeddings on the sentence
classification task. The finest classification per-
formance is achieved by the Vanilla CNN model
when initialized with fasttext word embeddings
fine-tuned on the specific dataset.

3 Dataset

The TechDOfication-2020 subtask-1f dataset con-
sists of labelled Marathi text documents, each be-
longing to one of the four classes, namely: Bio-
chemistry (bioche), Communication Technology
(com tech), Computer Science (cse), and Physics
(phy). The training data has a mean length of 26.89
words with a standard deviation of 25.12.

Table 1 provides an overview of the distribution
of the corpus across the four labels for training and
validation data. From the table, it is evident that
the dataset is imbalanced, with the class Commu-
nication Technology and Biochemistry having the
most and the least documents, respectively. It is,
therefore, reasonable to postulate that this data im-
balance may lead to the overfitting of the model
on some classes. This is further articulated in the
Results section.

4 Proposed Model

This section describes the proposed multi-input
attention-based parallel CNN-BiLSTM. Figure 1
depicts the model architecture. Each component is
explained in detail as follows:

4.1 Word Embedding Layer

The proposed model uses fasttext word embeddings
trained on the unsupervised skip-gram model to
map the words from the corpus vocabulary to a
corresponding dense vector. Fasttext embeddings
are preferred over the word2vec (Mikolov et al.,
2013) or glove variants (Pennington et al., 2014),
as fasttext represents each word as a sequence

Figure 1: Model Architecture.

of character-n-grams, which in turn helps to cap-
ture the morphological richness of languages like
Marathi. The embedding layer converts each word
wi in the document T = {w1, w2, ..., wn} of n
words, into a real-valued dense vector ei using the
following matrix-vector product:

ei =Wvi (1)

where W ∈ Rd×|V | is the embedding matrix, |V |
is a fixed-sized vocabulary of the corpus and d
is the word embedding dimension. vi is the one-
hot encoded vector with the element ei set to 1
while the other elements set to 0. Thus, the doc-
ument can be represented as real-valued vector
e = {e1, e2, ..., en}.

4.2 Bi-LSTM Layer
The word embeddings generated by the embed-
dings layer are fed to the BiLSTM unit step by
step. A Bidirectional Long-short term memory (Bi-
LSTM) (Graves and Schmidhuber, 2005) layer is
just a combination of two LSTMs (Hochreiter and
Schmidhuber, 1997) running in opposite directions.

42

This allows the networks to have both forward and
backward information about the sequence at ev-
ery time step, resulting in better understanding and
preservation of the context. It is also able to counter
the problem of vanishing gradients to a certain ex-
tent by utilizing the input, the output, and the forget
gates. The intermediate sentence representation
generated by Bi-LSTM is denoted as h.

4.3 CNN Layer
The discrete convolutions performed by the CNN
layer on the input word embeddings, help to extract
the most influential n-grams in the sentence. Three
parallel convolutional layers with three different
window sizes are used so that the model can learn
multiple types of embeddings of local regions, and
complement one another. Finally, the sentence rep-
resentations of all the different convolutions are
concatenated and max-pooled to get the most dom-
inant features. The output is denoted as c.

4.4 Attention Layer
The linchpin of the model is the attention block
that effectively combines the intermediate sentence
feature representation generated by BiLSTM with
the local feature representation generated by CNN.
At each time step t, taking the output ht of the
BiLSTM, and ct of the CNN, the attention weights
αt are calculated as:

ut = tanh(W1ht +W2ct + b) (2)

αt = Softmax(ut) (3)

Where W1 and W2 are the attention weights, and
b is the attention bias learned via backpropagation.
The final sentence representation s is calculated as
the weighted arithmetic mean based on the weights
α = {α1, α2, ..., αn}, and output of the BiLSTM
h = {h1, h2, ..., hn}. It is given as:

s =
n∑

t=1

αt ∗ ht (4)

Thus, the model is able to retain the merits of both
the BiLSTM and the CNN, leading to a more robust
sentence representation. This representation is then
fed to a fully connected layer for dimensionality
reduction.

4.5 Classification Layer
The output of the fully connected attention layer is
passed to a dense layer with softmax activation to
predict a discrete label out of the four labels in the
given task.

5 Experimental Setup

Each text document is tokenized and padded to a
maximum length of 100. Longer documents are
truncated. The work of (Kakwani et al., 2020) is
referred for selecting the optimal set of hyperpa-
rameters for training the fasttext skip-gram model.
The 300-dimensional fasttext word embeddings are
trained on the given corpus for 50 epochs, with a
minimum token count of 1, and 10 negative exam-
ples, sampled for each instance. The rest of the
hyperparameter values were chosen as default (Bo-
janowski et al., 2017). After training, an average
loss of 0.6338. was obtained over 50 epochs. The
validation dataset is used to tune the hyperparam-
eters. The LSTM layer dimension is set to 128
neurons with a dropout rate of 0.3. Thus, the BiL-
STM gives an intermediate representation of 256
dimensions. For the CNN block, we employ three
parallel convolutional layers with filter sizes 3, 4,
and 5, each having 256 feature maps. A dropout
rate of 0.3 is applied to each layer. The local repre-
sentations, thus, generated by the parallel CNNs are
then concatenated and max-pooled. All other pa-
rameters in the model are initialized randomly. The
model is trained end-to-end for 15 epochs, with the
Adam optimizer (Kingma and Ba, 2014), sparse
categorical cross-entropy loss, a learning rate of
0.001, and a minibatch size of 128. The best model
is stored and the learning rate is reduced by a factor
of 0.1 if validation loss does not decline after two
successive epochs.

6 Baseline Models

The performance of the proposed model is com-
pared with a host of machine learning and deep
learning models and the results are reported in ta-
ble 3. They are as follows:

Feature Based models: Multinomial Naive
Bayes with bag-of-words input (MNB + BoW),
Multinomial Naive Bayes with tf-idf input (MNB
+ TF-IDF), Linear SVC with bag-of-words input
(LSVC + BoW), and Linear SVC with tf-idf input
(LSVC + TF-IDF).

Basic Neural Networks: Feed forward Neural
network with max-pooling (FFNN), CNN with
max-pooling (CNN), and BiLSTM with maxpool-
ing (BiLSTM)

Complex Neural Networks: BiLSTM +atten-
tion (Zhou et al., 2016) , serial BiLSTM-CNN

43

Metrics bioche com tech cse phy
Precision 0.9128 0.8831 0.9145 0.8931
Recall 0.7976 0.9342 0.8949 0.8793
F1-Score 0.8513 0.9079 0.9046 0.8862

Table 2: Detailed performance of the proposed model
on the validation data.

(Chen et al., 2017), and serial BiLSTM-CNN +
attention.

7 Results and Discussion

The performance of all the models is listed in Ta-
ble 3. The proposed model outperforms all other
models in validation accuracy and weighted f1-
score. It achieves better results than standalone
CNN and BiLSTM, thus reasserting the impor-
tance of combining both the structures. The BiL-
STM with attention model is similar to the pro-
posed model, but the context is ignored. As the
proposed model outperforms the BiLSTM with
attention model, it proves the effectiveness of the
CNN layer for providing context. Stacking a convo-
lutional layer over a BiLSTM unit results in lower
performance than the standalone BiLSTM. It can
be thus inferred that combining CNN and BiLSTM
in a parallel way is much more effective than just se-
rially stacking. Thus, the attention mechanism pro-
posed is able to successfully unify the CNN and the
BiLSTM, providing meaningful context to the tem-
poral representation generated by BiLSTM. Table 2
reports the detailed performance of the proposed
model for the validation data. The precision and
recall for communication technology (com tech),
computer science (cse), and physics(phy) labels are
quite consistent. Biochemistry (bioche) label suf-
fers from a high difference in precision and recall.
This can be traced back to the fact that less amount
of training data is available for the label, leading to
the model overfitting on it.

8 Conclusion and Future work

While NLP research in English is achieving new
heights, the progress in low resource languages is
still in its nascent stage. The TechDOfication task
paves the way for research in this field through
the task of technical domain identification for texts
in Indian languages. This paper proposes a CNN-
BiLSTM based attention ensemble model for the
subtask-1f of Marathi text classification. The par-
allel CNN-BiLSTM attention-based model unifies

Label Validation Validation
Accuracy F1-Score

MNB + Bow 86.74 0.8352
MNB + TF-IDF 77.16 0.8010
Linear SVC + Bow 85.76 0.8432
Linear SVC + TF-IDF 88.17 0.8681
FFNN 76.11 0.7454
CNN 86.67 0.8532
BiLSTM 89.31 0.8842
BiLSTM + Attention 88.14 0.8697
Serial BiLSTM-CNN 88.99 0.8807
Serial BiLSTM-CNN
+ Attention 88.23 0.8727
Ensemble CNN-BiLSTM
+ Attention 89.57 0.8875

Table 3: Performance comparison of different models
on the validation data.

the intermediate representations generated by both
the models successfully using the attention mech-
anism. It provides a way for further research in
adapting attention-based models for low resource
and morphologically rich languages. The perfor-
mance of the model can be enhanced by giving
additional inputs such as character n-grams and
document-topic distribution. More efficient atten-
tion mechanisms can be applied to further consoli-
date the amalgamation of CNN and RNN.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

Pooja Bolaj and Sharvari Govilkar. 2016a. A survey
on text categorization techniques for indian regional
languages. International Journal of computer sci-
ence and Information Technologies, 7(2):480–483.

Pooja Bolaj and Sharvari Govilkar. 2016b. Text clas-
sification for marathi documents using supervised
learning methods. International Journal of Com-
puter Applications, 155(8):6–10.

Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang.
2017. Improving sentiment analysis via sentence
type classification using bilstm-crf and cnn. Expert
Systems with Applications, 72:221–230.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault,
and Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781.

44

Ankita Dhar, Himadri Mukherjee, Niladri Sekhar Dash,
and Kaushik Roy. 2018. Performance of classifiers
in bangla text categorization. In 2018 International
Conference on Innovations in Science, Engineering
and Technology (ICISET), pages 168–173. IEEE.

Meng Joo Er, Yong Zhang, Ning Wang, and Mahard-
hika Pratama. 2016. Attention pooling-based convo-
lutional neural network for sentence modelling. In-
formation Sciences, 373:388–403.

Shang Gao, Arvind Ramanathan, and Georgia Tourassi.
2018. Hierarchical convolutional attention net-
works for text classification. In Proceedings of
The Third Workshop on Representation Learning for
NLP, pages 11–23.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural net-
works, 18(5-6):602–610.

Long Guo, Dongxiang Zhang, Lei Wang, Han Wang,
and Bin Cui. 2018. Cran: a hybrid cnn-rnn attention-
based model for text classification. In International
Conference on Conceptual Modeling, pages 571–
585. Springer.

A. Hassan and A. Mahmood. 2017. Efficient deep
learning model for text classification based on recur-
rent and convolutional layers. In 2017 16th IEEE
International Conference on Machine Learning and
Applications (ICMLA), pages 1108–1113.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Ramchandra Joshi, Purvi Goel, and Raviraj Joshi. 2019.
Deep learning for hindi text classification: A com-
parison. In International Conference on Intelli-
gent Human Computer Interaction, pages 94–101.
Springer.

Divyanshu Kakwani, Anoop Kunchukuttan, Satish
Golla, NC Gokul, Avik Bhattacharyya, Mitesh M
Khapra, and Pratyush Kumar. 2020. inlpsuite:
Monolingual corpora, evaluation benchmarks and
pre-trained multilingual language models for indian
languages. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing: Findings, pages 4948–4961.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Hoa T Le, Christophe Cerisara, and Alexandre De-
nis. 2017. Do convolutional networks need to
be deep for text classification? arXiv preprint
arXiv:1707.04108.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang.
2016. Recurrent neural network for text classi-
fication with multi-task learning. arXiv preprint
arXiv:1605.05101.

Zhenyu Liu, Haiwei Huang, Chaohong Lu, and
Shengfei Lyu. 2020. Multichannel cnn with at-
tention for text classification. arXiv preprint
arXiv:2006.16174.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Martin Sundermeyer, Hermann Ney, and Ralf Schlüter.
2015. From feedforward to recurrent lstm neural net-
works for language modeling. IEEE/ACM Transac-
tions on Audio, Speech, and Language Processing,
23(3):517–529.

Madhuri Tummalapalli, Manoj Chinnakotla, and Rad-
hika Mamidi. 2018. Towards better sentence classi-
fication for morphologically rich languages. In Pro-
ceedings of the International Conference on Compu-
tational Linguistics and Intelligent Text Processing.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Yequan Wang, Minlie Huang, Xiaoyan Zhu, and
Li Zhao. 2016. Attention-based lstm for aspect-
level sentiment classification. In Proceedings of the
2016 conference on empirical methods in natural
language processing, pages 606–615.

Yijun Xiao and Kyunghyun Cho. 2016. Efficient
character-level document classification by combin-
ing convolution and recurrent layers.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchi-
cal attention networks for document classification.
In Proceedings of the 2016 conference of the North
American chapter of the association for computa-
tional linguistics: human language technologies,
pages 1480–1489.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in neural information pro-
cessing systems, pages 649–657.

Jin Zheng and Limin Zheng. 2019. A hybrid bidi-
rectional recurrent convolutional neural network
attention-based model for text classification. IEEE
Access, 7:106673–106685.

45

Peng Zhou, Wei Shi, Jun Tian, Zhenyu Qi, Bingchen Li,
Hongwei Hao, and Bo Xu. 2016. Attention-based
bidirectional long short-term memory networks for
relation classification. In Proceedings of the 54th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
207–212.

46

Author Index

Ala, Hema, 27
Anusha, M D, 1

Balouchzahi, Fazlourrahman, 1

Chhajer, Akshat, 31

Das, Ayan, 6
Dowlagar, Suman, 16

Gahoi, Akshat, 31
Ghosh, Koyel, 21
Gundapu, Sunil, 11

Hengle, Amey, 40
Hoque, Mohammed Moshiul, 35
Hossain, Eftekhar, 35

Kuila, Alapan, 6
Kulkarni, Atharva, 40

Maity, Dr. Ranjan, 21
Mamidi, Radhika, 11, 16
Mishra Sharma, Dipti, 31

Sarkar, Sudeshna, 6
Senapati, Dr. Apurbalal, 21
Sharif, Omar, 35
Sharma, Dipti, 27
Shashirekha, H L, 1

Udyawar, Rutuja, 40

47

	Program
	MUCS@TechDOfication using FineTuned Vectors and n-grams
	A Graph Convolution Network-based System for Technical Domain Identification
	Multichannel LSTM-CNN for Telugu Text Classification
	Multilingual Pre-Trained Transformers and Convolutional NN Classification Models for Technical Domain Identification
	Technical Domain Identification using word2vec and BiLSTM
	Automatic Technical Domain Identification
	Fine-grained domain classification using Transformers
	TechTexC: Classification of Technical Texts using Convolution and Bidirectional Long Short Term Memory Network
	An Attention Ensemble Approach for Efficient Text Classification of Indian Languages

