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Abstract

Coarse-grained and Fine-grained classification
tasks are mostly based on sentiment or basic
emotion analysis. Now, switching from emo-
tion and sentiment analysis to another domain,
in this paper, we are going to work on technical
domain identification. The task is to identify
the technical domain of a given English text.
In the case of Coarse-grained domain classi-
fication, such a piece of text provides infor-
mation about specific Coarse-grained techni-
cal domains like Computer Science, Physics,
Math, etc, and in Fine-grained domain clas-
sification, Fine-grained subdomains for Com-
puter science domain, it can be like Artificial
Intelligence, Algorithm, Computer Architec-
ture, Computer Networks, Database Manage-
ment system, etc. To do the task, Word2Vec
skip-gram model is used for word embed-
ding, later, applied the Bidirectional Long
Short Term memory (BiLSTM) model to clas-
sify Coarse-grained domains and Fine-grained
sub-domains. To evaluate the performance of
the approached model accuracy, precision, re-
call, and F1-score have been applied.

1 Introduction

ICON20201 has organized a shared task, de-
tails here: https://ssmt.iiit.ac.in/
techdofication.html where they share
some DATASETs for the Shared Task on Identi-
fication of a Technical Domain from Text. Among
them, here, we are working with Subtask-1a
Coarse-grained Domain Classification - English
and Subtask-2a Fine-grained Domain Classifica-
tion - Computer Science datasets. In this pa-
per, system description of our approached model
on identification of a technical domain from text
and the result of this approach has been dis-
cussed. There are lots of work already have done

1https://www.iitp.ac.in/ai-nlp-
ml/icon2020/sharedtasks.html

successfully (Akhtar et al., 2020) in the coarse-
grained and fine-grained classification with sen-
timent (Cortis et al., 2017) and emotion analysis
(Mohammad and Bravo-Marquez, 2017) dataset.
Often, in the classification task, Word2Vec or fast-
text or GloVe or all-combined approach (Salur and
Aydin, 2020) is used to utilize the effectiveness
of different word embedding algorithms. To get a
better result on a domain specific corpus Occupa-
tional Safety and Health Administration(OSHA),
a hybrid deep neural network with Word2Vec
was used (Zhang, 2019). ESIM with SuBiL-
STM (Ensemble) and ESIM with SuBiLSTM-
Tied (Ensemble) approaches (Brahma, 2018) per-
formed well on the Stanford Sentiment Treebank
dataset (Socher et al., 2013), both in its binary
(SST-2) and fine-grained (SST-5) forms. A sim-
ilar approach is applied to the question classifi-
cation i.e TREC dataset (Voorhees, 2006), both
in its 6 class(TREC-6) and 50 class (TREC-50)
forms. Bidirectional dilated LSTM with atten-
tion (Schoene et al., 2020) used for another fine-
grained dataset (Klinger et al., 2018). (Melamud
et al., 2016) proposed a BiLSTM neural network
architecture based on Word2vec’s CBOW archi-
tecture. Some very old approach on domain clas-
sification (Bernier-Colborne et al., 2017). (Zhang,
2019) is based on accident causes classification
with the approach deep learning and Word2Vec,
they compare their model with others where bi-
gram, n-gram was used for text representation. In
(Xie et al., 2019), author added attention layer
with BiLSTM for short text fine-grained sentiment
classification to get a better accuracy.

2 Methodology

In this section, dataset, data preprocessing, word
embedding and the structure of the BiLSTM with
Word2Vec model will be discussed. Approached
architechture of BiLSTM with Word2Vec is
shown in Figure 1

https://ssmt.iiit.ac.in/techdofication.html
https://ssmt.iiit.ac.in/techdofication.html
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Figure 1: Architechture of BiLSTM + Word2Vec with
ReLU and Softmax on the top

2.1 Dataset

Here, Technical Domain Identification dataset2 in
its Coarse-grained Domain Classification - En-
glish (Subtask-1a) form and Fine-grained Domain
Classification - Computer Science (Subtask-2a)
form has been used. Table 1 shows the details of
the dataset for the shared task. In case of Coarse-
grained Domain Classification, a piece of text
which provides information about specific Coarse-
grained domain like computer science domain.
No of domains or classes are: Computer Sci-
ence (cse), Chemistry (che), Physics (phy), Law
(law), Math (math). In case of Fine-grained Do-
main Classification, no of subdomains or classes
from Computer Science are: Computer Architec-
ture (ca), Software Engineering (se), Algorithm
(algo), Computer Networks (cn), Programming
(pro), Artificial Intelligence (ai), Database Man-
agement system (dbms). Table 2 shows the de-
tails of the domains and subdomains distribution
in traning and dev dataset. For prediction purpose
test set has been provided without labelling of do-
mains or sub domains. So, later in this paper, dev
set is used to evaluate the accuracy.

2.2 Preprocessing of the Data

Based on the analysis from previous studies, deep
learning needs text data in numeric form. To en-

2https://ssmt.iiit.ac.in/techdofication.html

code text data into a numeric vector, lots of en-
coding techniques like Bag of words, Bi-gram, n-
gram, TF-IDF, Word2Vec etc are used. So, before
encoding, text data need to be cleaned, noise-free
to increase the classification performance. Figure
2 shows all the intermediate steps of preprocess-
ing.

Figure 2: Text preprocessing steps used in this study

Cleaning or preprocessing of the data is as im-
portant as model building. Text preprocessing pro-
cedure can be different depending on the task and
dataset we use. In our case, we used following
steps:

Convert the text into lowercase: All words
should be either in lower or uppercase to avoid
redundancy. Suppose there are two words “arti-
ficial” and “Artificial”, machine will treat them as
separate word if we avoid this step.

Removing punctuation and number: Punctu-
ation and numbers often doesn’t add extra mean-
ing to the text. This text has several punctuation
( ) , ; . etc and numbers (0-9). String library
which has 32 punctuation, is used to remove all
these punctuation from text to get better result.

Removing stopwords: The most common
words in a language like “the”, “a”, “have”, “is”,
“to” etc are called stopwords. As these words do
not add any important meaning, these can be re-
moved.

Remove frequent word: Some words which
are frequently used in text but not listed in stop-
words has been removed.

Word tokenization: To break the long sentence
into words, we applied tokenization.
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Dataset Training Dev Test label Length(Max) Vocabulary size
Subtask-1a 23,959 4,850 2,500 5 74 10,722
Subtask-2a 13,580 1,360 1,930 7 266 7,397

Table 1: Data set

Dataset Domain Train Dev

cse 4,770 970

che 4,733 970
Subtask-1a physics 4,787 970

law 4,829 970

Math 4,840 970

ca 1,947 180

se 1,940 200

algo 1,951 200
Subtask-2a cn 1,940 180

pro 1,922 200

ai 1,940 200

dbms 1,940 200

Table 2: Dataset statistics

Lemmatization: Stemming and lemmatization
both processes have almost the same goal i.e. to
reduce inflectional forms of each word and convert
those to a common root form but both are differ-
ent in the sense of result we get. Stemming simply
chop off the inflections of each word but some-
times the resultant word may not carry any valid
meaning but lemmatization does it properly with
the use of language’s full vocabulary to apply a
morphological analysis to the words and return the
base or dictionary form of a word, which is known
as the lemma so the words can be analyzed as a
single item.

Here, the effectiveness of lemmatization pro-
cess has been applied on the text to get the desired
result.

Remove short string: After performing all the
required processes in text processing, still, some
words are in the text which is very short in length.
So, it required to remove the words having a length
less than or equal to 2.

Label encoding: As labelled domains and the
subdomains on the texts, are words so, we need to
encode them into an unique number. Like, cse - 0,

che - 1, physics - 2, law - 3, math - 4 for subtask
1a and ca - 0, se - 1, algo - 2, cn - 3, pro - 4, ai - 5,
dbms - 6 for subtask 2a.

Here, we use Natural Language Toolkit
(NLTK)(Wagner, 2010) for tokenization, lemmati-
zation and removing stopwords. After these steps
we get the maximum length of a sentence i.e max-
imum number of words present in a sentence as
mentioned in Table 1.

2.3 Deep neural network with Word2Vec
In this study, deep neural network with Word2Vec
approach is applied. The entire methodology
of this approach has two phases: training of
Word2Vec skip-gram model on the datasets to get
the vocabulary and the text representation, then
deep neural network is used utilizing the learned
word embedding in the previous step.

2.3.1 Word Embedding
Any neural network model needs a vector repre-
sentation of a word. So, we need an embedding
layer before building a deep learning model.

Word2Vec models proposed by Thomas
Mikolov at google (Mikolov et al., 2013), are used
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for learning word embedding. The advantage
of Word2Vec is that similarity and relationship
between words can be derived from the learned
vector (Khatua et al., 2019). It can be obtained
using two methods (both involve neural network):
Skip-gram and Common Bag of Words (CBOW).

As mentioned in (Mikolov et al., 2013), skip-
gram works great with a small amount of data and
does well to represent rare words. On the other
hand, CBOW is faster and has better representa-
tion for more frequent words.

TechinalDOfication dataset has some rare
words like “streptococcus”, “polymerization”,“
hessian”, “kyoto” as these words are related to
specific technical domain. So, to represent these
words well we are using Word2Vec here.

The training dataset consisting of p numbers of
texts is denoted as

D = {T1, T2, T3, .., Ti, ....Tp}

where Ti is the ith number of text and p is equal
to the total numbers of texts present in a training
dataset e.g. 23,959 in Subtask-1a and 13,580 in
Subtask-2a. Given a text Ti, the text having m
words i.e length of the text is denoted as

Ti = {wi,1, wi,2, wi,3, ..., wi,k, .., wi,m},

where wi,k denotes the kth word in the ith text.
Now, Word2Vec skip-gram model is trained using
the training dataset used for this study. To train
word embedding, we fit the parameters as embed-
ding dimension = 300, window = 10 and saved the
trained Word2Vec model for the next step.

We embed each word wi,k to our pre-trained
word vector after loading the model into mem-
ory i.e each word in the text is converted into a
d-dimension embedding vector, where wv

i,k ∈ Rd

is d-dimension embedding vector of kth word. The
word level embedding as

T v
i = {wv

i,1, w
v
i,2, w

v
i,3, ..., w

v
i,k, ..., w

v
i,m}.

Figure 3 shows the Word2Vec architecture, where
H = H1, H2, H3, ..Hn is a hidden layer.

2.3.2 Classification model
LSTM is an extension of Recurrent Neural Net-
work (RNN) (Hochreiter and Schmidhuber, 1997),
capable of learning long dependencies. They were
introduced by (Sulehria and Zhang, 2007).

In this section, deep neural network BiLSTM
is used for the classification. Now, we give T v

i

Figure 3: Word2Vec architechture

as input to BiLSTM for feature extraction, namely
FBiLSTM
i in equation

FBiLSTM
i = BiLSTM(T v

i ) (1)

In Bidirectional LSTM, sequence data is pro-

Figure 4: The architecture of basic BiLSTM

cessed in both directions with forward LSTM and
backward LSTM layer and these two hidden layer
connected to the same output layer. The LSTM
neural networks contain three gates and a cell
memory state. For a single LSTM cell, it can be
computed as

X =
ht − 1

wv
i,k

(2)

ft = σ(Wf .X + bf ) (3)

it = σ(Wi.X + bi) (4)

ot = σ(Wo.X + bo) (5)

ct = ft ∗ ct−1 + it ∗ tanh(Wc.X + bc) (6)

ht = ot ∗ tanh(ct) (7)
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where Wf ,Wi,W0 are the weight matrices and
bf , bi, b0 are the bias of LSTM cell during training.
σ denotes the sigmoid function. wv

i,k is the word
embedding vector as input unit to LSTM, ht is the
hidden vector, So, hm can denote a text. Simple
BiLSTM architecture is shown in Figure 4. In the
architecture {wv

i,1, w
v
i,2, w

v
i,3, ..., w

v
i,k, ..., w

v
i,m}

denotes the word vector, m is the length of a text.
{fh1, fh2, ..., fhm} and {bh1, bh2, ..., bhm}
represent the forward hidden vector and
the backward hidden vector respectively.
{h1, h2, h3, .., ht, .., hm} represents final hid-
den layer. the final hidden vector ht of the
BiLSTM is shown as following equation:

ht = [fht, bht] (8)

In the BiLSTM layer, 20% dropout is used.
After feeding input to BiLSTM layer, time Dis-
tributed wrapper is used along with dense layer
where the activation function is rectified linear
unit (ReLU) and on the top of the layers dense
is applied with softmax activation function after
Flatten the output generated from the previous
layer.

3 Result and conclusion

Domain Precision Recall f1-score
cse 0.26 0.33 0.29
che 0.17 0.21 0.19

physics 0.23 0.19 0.21
law 0.22 0.16 0.19

math 0.16 0.15 0.16

Table 3: Result of CITK (our team) on Subtask-1a
dataset (dev set)

Domain Precision Recall f1-score
ca 0.29 0.23 0.26
se 0.16 0.17 0.16

algo 0.11 0.14 0.13
cn 0.14 0.14 0.14
pro 0.18 0.17 0.18
ai 0.18 0.20 0.19

dbms 0.23 0.20 0.22

Table 4: Result of CITK (our team) on Subtask-2a
dataset (dev set)

As, it was a prediction task on test dataset and
presently, we don’t have labeled test dataset, dev
dataset is used here to evaluate the model perfor-
mance. From the Table 3 and Table 4, we can
see that BiLSTM with Word2Vec didn’t produce

any good Precision, Recall, f1-score and accurecy
22% on both cases which are also very low. To
evaluate the model performance, F1 score pro-
posed by Buckland and Gey (Buckland and Gey,
1994) has been widely used in literature.

Team Name Accuracy Precision Recall f1-score
ICON2020 0.8156 0.8155 0.8156 0.8143

CITK 0.2204 0.2264 0.2204 0.2204

Table 5: comparison between highest score and our
score(CITK) on Subtask-1a dataset ( test set )

Team Name Accuracy Precision Recall f1-score
fineapples 0.8252 0.8265 0.8252 0.8244

CITK 0.2306 0.2344 0.2302 0.2307

Table 6: comparison between highest score and our
score(CITK) on Subtask-2a dataset ( test set )

Table 5 and Table 6 shows the result on test
dataset published by ICON2020. Here, we only
include highest score along with our score to
show the comparison of the performances. In
case of Subtask-1a dataset, “ICON2020” team
produced good accuracy, precision, recall and
f1-score compared to other teams including our
“CITK” team. “Fineapples” team produced best
result for Subtask-2a dataset.

After applying preprocessing on the texts of
Subtask 2a dataset, we get maximum sentence
length is 266 but other texts are not that long ex-
cept one. Here, we trained Word2Vec model only
with the given training dataset which is very small
dataset to perform good embedding. Word em-
bedding training gives us 10,722 unique words in
subtask 1a and 7,397 in subtask 2a. Quite obvi-
ous, dealing with Fine grained dataset compare to
Coarse grained dataset is somehow challenging as
vocabulary size is very small.

Word embedding seems very important here,
In most of the cases pre-trained word embed-
ding such as Google News dataset3 (about
100 billion words) is used, which contains
300-dimensional vectors for 3 million words
and phrases. The archive is available here:
GoogleNews-vectors-negative300.
bin.gz. but in our case, some words like
“streptococcus”, “poly-merization”,“ hessian”,
“kyoto” are missing from the large Google News
dataset. Those words are very important to

3https://code.google.com/archive/p/word2vec/

GoogleNews-vectors-negative300.bin.gz
GoogleNews-vectors-negative300.bin.gz
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identify the specific domains, so, those words
can’t be ignored. Combining Google News
dataset and ICON2020 shared task dataset with
can be a solution that needs some experiments
such as concatenating them removing possible
correlations by performing Principal component
analysis (PCA)(Basirat, 2018).
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