
Proceedings of the 17th International Conference on Natural Language Processing, pages 384–392
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

384

Abstract

Sentence completion detection (SCD) is an

important task for various downstream

Natural Language Processing (NLP) based

applications. For NLP based applications,

which use the Automatic Speech

Recognition (ASR) from third parties as a

service, SCD is essential to prevent

unnecessary processing. Conventional

approaches for SCD operate within the

confines of sentence boundary detection

using language models or sentence end

detection using speech and text features.

These have limitations in terms of relevant

available data for training, performance

within the memory and latency constraints,

and the generalizability across voice

assistant domains. In this paper, we propose

a novel sentence completion detection

method with low memory footprint for On-

Device applications. We explore various

sequence-level and sentence-level

experiments using state-of-the-art Bi-

LSTM and BERT based models for English

language.

1 Introduction

Voice-intelligence enabled devices have

tremendous potential in providing near natural

human behavior based product experience to the

users (Dellaert et al. 2020). Such a potential has

primarily stemmed from Artificial Intelligence

based mimicking of speech recognition, question

answering, dialogues, conversations, and

command-induced actions. In order to meet user

expectations and cater towards product usage

satisfaction, knowing when the question, reply or

command is complete, i.e., sentence completion

detection, is a crucial task.

Voice assistants like Google Assistant, Alexa,

Cortana, Siri and Bixby etc. are becoming very

popular in modern world. These systems rely on

the text, predicted by a streaming speech

recognition (ASR) system. Streaming ASR

produces text continuously. It is computationally

efficient to execute downstream NLP tasks only

when a complete sentence is found in the text. This

makes SCD a crucial need in voice assistant system.

For a partial text received from ASR, the

application can wait relatively longer than a

complete sentence. Various downstream NLP

applications such as unsupervised dependency

parsing, ASR transcript readability, accurate

information retrieval, and summarization can

benefit from SCD.

Detection of sentence completion, has been

widely attempted on speech (Hasan, 2014) and text

(Azzi, 2019) using sentence boundary detection

(SBD) (Sanchez, 2019), end-of-utterance detection

(Treviso, 2017), sentence end detection (SED)

(Hasan, 2015) models. The techniques evolved

from rule-based using handcrafted heuristics

(Wang, 2004), to machine learning and more

recently, deep learning (Schweter, 2019) based

methods. State-of-the-art deep learning

architectures reported for SBD include Bi-LSTM

CRF (Du, 2019) , BERT (Du, 2019) etc. techniques.

On various test datasets, we found their

performance highly promising. Upon exploring at

further depth, we found that these models have

certain limitations with regards to their size, on

device platform compatibility and system coupling

On-Device detection of sentence completion for voice assistants

with low-memory footprint

Rahul Kumar Vijeta Gour Chandan Pandey Godawari Sudhakar Rao

Priyadarshini Pai Anmol Bhasin Ranjan Samal

Samsung R&D Institute India, Bangalore

{rahul.k4, vijeta.gour, chandan.p, g.sudhakar, priya.pai,
anmol.bhasin, ranjan.samal}@samsung.com

385

for on-device deployment. These limitations are

briefly described below:

 Size of the models were too big for

deployment on memory constrained

devices such as mobile phones and smart

televisions. MobileBERT 1 takes 100.5Mb

with 74ms latency.

 Broad-spectrum conversation data

availability, which is representative of a

wide range of domains and follows SCD

policies as mentioned in Section 4.2

 State-of-the-art architectures reported for

SBD lack in ease of modelling with

modifications, within the Tensor-flow lite

environment.

 Decoupling of SBD models that are a part

of bigger system like ASR is challenging

and not readily applicable.

 SBD makes use of punctuations and case

sensitive information which are missing

from immediate ASR output.

We propose that Sentence Completion Detection

(SCD) can be achieved by token-level and

sentence-level inferencing.

In this research, we explore both token-level and

sentence-level inferencing with state-of-the-art

language models within on-device deployment

constraints. We delve into the tailoring of data,

completion detection policies (Section 4.2, SCD

Policies), embedding size optimization for

achieving a light-weight SCD model that can work

on a wide range of domains in memory-

constrained environments.

2 Related work

Recent SCD and SBD works are primarily useful

for legal text, long lectures, pdf documents etc.

Consequently, the datasets used for relevant work

included clean texts such as WSJ corpus and

Brown Corpus (Francis, 1979), noisy unstructured

texts generated from PDFs (Azzi, 2019), (Tian,

2019), lecture (Hasan, 2014) and ASR transcripts

(Treviso, 2017), (Rehbein, 2020). For training a

model that is suitable for the multi-domain voice

assistant, we could not find broad-spectrum

domain data focused on commands.

Further, we felt that, essentially, a shift of

emphasis from formal, edited text towards more

1https://www.tensorflow.org/lite/models/bert_qa/overview

spontaneous language samples which represent

ASR output is required Conventional language

models are trained on long structured sentences

leading to large memory footprints that cannot be

supported for fast on-device applications. Various

techniques have been reported for downsizing,

such as quantization, modifications in vocabulary,

truncating input etc.

We expand our work based on modifications in

state-of-the-art architectures and extensive custom

training with custom loss on multi-domain

conversation data. We also experimented upon

Tensorflow Lite post training quantization. We

primarily looked at Bi-LSTM and BERT

architectures as described below.

3 Model

We defined our SCD models in two categories:

 Sequence-based

 Sentence-based

For each of these categories, we explored selected

state-of-the-art Bi-LSTM based model and a

BERT-based model as described below. Bi-LSTM

is a sequence processing model that consists of two

LSTMs, one taking the input in a forward

direction, and the other in a backwards direction.

BERT stands for Bidirectional Encoder

Representations from Transformers. It is designed

to pre-train deep bidirectional representations from

unlabeled text.

3.1 Bi-LSTM and Attention based model for

sequence prediction [1.a]

We convert the text input sentence to a sequence

of tokens by splitting based on spaces. The model

(shown in Figure 1.a) contains an embedding layer

which gets trained along with the model and

generates vectors for the tokens present in the

sentence. For each of the generated tokens feature

labelling is done as either ‘0’ or ‘1’ based on the

method explained in 4.3. Example token features

for a sentence is shown below:

Utterance: “create an event at 5”

Create An Event At number

0 0 1 0 1

386

Tokens of the input sentence are converted into

token IDs. The sentence length used for prediction

is kept at 25 tokens, a considerable assumption for

sentences in voice assistant based systems. If the

sentence is larger than 25 tokens then only the last

25 tokens are used for prediction. So, the resultant

input dimensionality becomes 25x1. This resultant

vector is then passed to embedding layer which

converts it into 25x100 vector followed by a Bi-

Directional LSTM (Hochreiter, 1997), (Graves,

2005). The output of the Bi-LSTM layer is passed

to dense layer in a time distributed manner. The

output of dense layer is passed through an attention

layer followed by soft-max activation which

predicts a label for every token as shown in Figure

1.a. The Loss is calculated using Equation (1) and

the inference is done using Equation (2).

3.2 BERT Tiny based model for sequence

prediction [1.b]

We convert the text input sentence to a sequence of

tokens using Sentence piece tokenizer (Kudo,

2018). For each of the generated tokens feature

labeling is done. The tokens generated are marked

as ‘0’ or ‘1’ based on method explained in 4.3.

The sequence length used for these models is 42

tokens. So, a sequence of 42 tokens are passed

through a pre-trained BERT (Turc, 2019) Tiny

model which has got 2 encoder layers with 128

hidden states. The output of the BERT Tiny layer

is passed through a dense layer with soft-max

activation which predicts a label for every token.

The Loss is calculated using the Equation (1) and

the inference is done using Equation (2). Figure 1.b

below shows the model architecture.

3.3 Bi-LSTM and Attentions based model

with hybrid (word + character)

embedding for sequence prediction [1.c]

The model 1.a is extended to improve the model

performance on sentences containing out of vocab

words. To meet that objective we introduced a

hybrid embedding strategy. For every token

present in the sentence we generate its embedding

using char embedding in conjunction with word

embedding. Every word is split into characters and

then converted into IDs. The maximum length of a

word is considered as 10 and first ten characters are

taken if the length exceeds the maximum length.

The IDs are fed into an embedding layer followed

by LSTM sequence. The 50 dimension sequence

output of LSTM is concatenated with 100

dimension vector of word embedding. The

combined input is passed through a spatial dropout

followed by Bi-LSTM. The output of the Bi-LSTM

layer is passed to dense layer in a time distributed

manner. The output of dense layer is passed

through an attention layer followed by soft-max

activation which predicts a label for every token.

The Loss is calculated using Equation (1) and the

Figure 1.a Bi-LSTM and Attention based model for

sequence prediction

Figure 1.b BERT Tiny based model for sequence

prediction

387

inference is done using Equation (2), which uses

soft-max score of the last token.

𝐿 = 𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙 + 𝑊 ∗ 𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 (1)

Where 𝐿 is total loss and 𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙 and 𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒

are losses on partial and complete tokens in the

sentence respectively. 𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙 is calculated as the

sum of categorical cross entropy losses of all the

partial tokens. Similarly 𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 is calculated as

the sum of categorical cross entropy losses of all

the partial tokens. W is the ratio of total count of

partial tokens to the total count of complete tokens

in the training data.

𝑃𝑟𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑎𝑠𝑡_𝑇𝑜𝑘𝑒𝑛)) (2)

3.4 Bi-LSTM and Attention based model for

sentence classification [2.a]

 The input sequence is processed in a similar

way as mentioned in Section 3.1. The model

contains an embedding layer which gets trained

along with the model and generates embedding

vectors for the tokens present in the sentence. For

every sentence one label is assigned. For partial

sentences label ‘0’ is assigned and for complete

sentences label ‘1’ is assigned. Each token is

converted into IDs. The sentence length used for

prediction is kept at 25 tokens. If the sentence is

larger than 25 tokens then only the last 25 tokens

are used for prediction. So, the resultant input

dimensionality becomes 25x1. This resultant

vector is then passed to an embedding layer which

converts it into 25x100 vector followed by a Bi-

Directional LSTM (Hochreiter, 1997), (Graves,

2005). The output of the Bi-LSTM layer is passed

to dense layer followed by attention layer followed

by soft-max activation which predicts the label for

the entire sentence. Figure 2.a shows the model

architecture.

3.5 BERT based model for sentence

classification [2.b]

The sentence tokenization part is similar to the

model 1.b. However, this model treats this task as

classification. Each sentence is labelled as ‘1’ for

complete and ‘0’ for partial. The maximum

sequence length used as input is 42 tokens. The

tokenized utterance is passed through BERT Tiny

model which has got 2 encoder layers with 128

hidden state size. The output of the CLS token of

BERT Tiny layer is passed through a dense layer

with soft-max activation which predicts a label for

the sentence. Figure 2.b shows the model

architecture.

4 Experimental Setup

4.1 Datasets

For exploring various SCD modelling

architectures, we prepared an in-house dataset

containing partial and complete sentences

representing various domains such as phone call,

message, contacts, reminder, maps, accessibility,

calculator, clock, open domain, settings, apps, etc.

This dataset comprised of sentences of varied

Figure 2.a Bi-LSTM and Attention based model for

sentence classification

Figure 2.b BERT based model for sentence

classification

388

lengths as shown in Table 3. In addition to this,

based on our analysis of various available datasets,

we selected SNIPS (Coucke, 2018) for gaining

insights into model generalizability. The Snips

dataset on the other hand is collected from Snips

Personal Voice Assistant, spanning 14484 multiple

domain utterances. We split these utterances into

training, validation and test datasets. From the

original utterances present in the dataset we

generated partial and complete utterances by

generating pre-fixes. We omitted one word pre-

fixes from the newly generated utterances.

Table 1. Dataset details

A summary of the training and test data is

provided in 3 tables. Table 1 contains the details of

the original dataset. Table 2 contains the generated

utterances details of SNIPS dataset and Table 3

contains the details of the generated utterances of

in-house dataset.

Table 2. Generated utterances details of SNIPS

Table 3. Generated utterances details of In-House

dataset

4.2 SCD Policies

We aim to make this model highly suited to

understand the NLU component in voice assistants

for a variety of downstream applications. In each

of these aspects, a comprehensive policy formation

based on underlying information in relevant data is

very important. This, in fact, becomes the key

driving factor in determining user experience of the

voice assistants. Based on our analysis and

understanding, we outlined two main focus areas:

 Intent clarity

 Catchall phrases

We define all those sentences that can elicit an

actionable response from the downstream target

block in the voice assistant as complete. For

example –

“Create an event”

Further, sentences that end in open titles are

extremely dicey to handle. Any abrupt completion

would result in unsatisfactory experience at user’s

end as there could be multiple complete suffixes

for a given sentence. For example –

 “Create a reminder to buy milk”

In such a scenario, it is difficult to predict if the user

intends to continue after “buy milk” with “from a

nearby shop”. Consequently, strong allocation of

sentences with catch-all phrases into partial or

complete purely based on semantic understanding

will not yield us desirable results. We propose to

handle them separately by adopting system-

specific suitable behavior.

4.3 Data preprocessing

Before passing a sentence to the model, we

preprocessed it .Firstly, we removed punctuations

to make the input sentence similar to ASR output.

Secondly, we added acronym expansion, and

replaced integers with the term “number in order to

reduce Out Of Vocabulary (OOV) words. Lastly

we removed polite phrases to reduce sentence

length. We selected 25 token length for Bilstm

models and 42 for BERT models as 98% of the

tokenized sentences lengths are covered (Figure 3).

This reduces the inference time.

Dataset SNIPS In-House

Train Data 13084 300000

Test Data 700 48000

Validation Data 700 20000

Vocabulary Size 11241 72001

Max Sentence Length 36 89

Dataset
SNIPS

Total Partial Complete

Train 22213 9353 12860

Dev 1296 600 696

Test 1327 628 699

Dataset
In-House

Total Partial Complete

Train 2702376 1136745 1565631

Dev 50000 20000 30000

Test 79899 17433 62466

389

1. For Bi-LSTM Sequence Models

The tokens present in the sentence were assigned a

tag of 0 or 1 depending on whether the intermediate

sentence forming up to the current token was

already present in the dataset as complete.

This was done so as the model sees the sentence as

complete even if it is a part of another sentence. If

this is not taken care of then the model gets

confused for sub-sentences which are complete but

also part of a longer sentence. Every intermediate

substring of the sentence was checked if it was

already present as a complete sentence and the end

of the substring was marked as 1.

Utterance: “create a reminder”

create a reminder

0 0 1

Utterance: “create a reminder to buy”

create a reminder to buy

0 0 1 0 0

2. For BERT Sequence Model

The tokens generated by the Sentence Piece

Tokenizer were tagged according to strategy

mentioned in section 4.3(1). The root token and the

subsequent token for the word are both given the

same tag.

Utterance: “dont be so judgmental”

don ##t be so judgment ##al

0 0 0 0 1 1

4.4 Training and inferencing

We developed all the models described in section 3

using Tensorflow2.0 as it has a wide collection of

workflows, multiple language support and

deployment flexibility. We limited the size of the

vocabulary of the models- 1.a, 1.c and 2.a to 40000

for in-house dataset and 11000 for SNIPS dataset.

BERT tiny based models are initialized with pre

trained weights and fine-tuned using

recommended hyperparameters (batch size: 32,

learning rate: 3e-5, epochs: 3-5) during training.

We selected the best model based on best average

F1 score for both the classes of prediction (Partial

and Complete) as well as memory foot print.

𝐹1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (3)

Once the models were ready, we converted them to

TensorFlow Lite with post training quantization for

on-device deployment. TensorFlow Lite is

designed for efficient model execution on memory

constrained devices such as mobile phones. Some

of this efficiency reportedly comes from the use of

a special storage format that reduces model file size

and relevant optimizations that have very less

impact on the accuracy.

4.5 Testing

We tested our models on-device on three test

datasets as described in 4.1 and report model

performances at various inferencing levels,

architecture levels and sentence complete detection

levels. Further, we also checked the latency and

memory footprint to evaluate the feasibility of

using such a model on mobile devices.

5 Results and discussion

In the following, we present the results of our

performance assessment on various models, i.e.,

both token-level and sentence-level inferencing

using Bi-LSTM and BERT techniques on the three

test datasets.

5.1 Performance assessment of various

models

Among the BERT and Bi-LSTM models, as shown

in Table 4. The best performance is achieved by

BERT-Tiny sequence based SCD model. On an

average, on both the datasets, it is able to achieve

an overall F1-score of 90.95%. The next best

Figure 3 Occurrences of sentences of varied lengths in

training data

390

performing model was with Bi-LSTM, attention

and word embedding for sentence classification.

Model SNIPS In-House Data

C P C P

1.a 84.3 77.3 95.5 90.0

1.b 88.0 84.3 96.8 92.3

1.c 82.9 75.2 87.7 88.4

2.a 87.5 83.8 95.69 86.66

2.b 87.8 84.5 93.05 90.19

Table 4. Comparison of F1 scores for partial and

complete utterances

Analysis on the results suggests that the sentence

completion detection is relatively challenging on

very short length (1-5 word) sentences (Figure 4).

This might be the reason behind slightly decreased

prediction performance (86.87% correct

predictions on an average across in-house and

Snips test datasets) as compared to sentences with

lengths greater than 5 words. We saw most

consistent performance on sentence length of 16-

20 words at 94.82% average correct predictions

across datasets and above 92.62% correct

predictions across all model architectures. Possibly

a clearer understanding of partial and complete can

be achieved by the model in this sentence length

range. Further, although there were very few

sentences with length beyond 21 words, the models

were able to learn completion detection and predict

95.71 % of test data correctly.

5.2 Analytical insights into partial complete

sentences prediction

Among the partial and complete sentences tested

uisng BERT sequence-based model, we observed

that the F1 score for complete sentences was better

than partial sentences. We also noticed the same

trend in majority of the cases. This is a promising

scenario for user experience, where if sentence

completion prediction is better on complete

sentences, the wait time can be drastically

shortened. Consequently, the user experience is

also likely to improve.

5.3 Analytical insights into predictions on

various test datasets

We observed that in general, the models trained

and tested on in-house data performed better than

the models trained and tested on SNIPS. The OOV

failures were observed less in Word+Char Bi-lstm

sequence model and Bert Tiny sequence model.

The sequence models were able to generalize the

data better than the sentence models due to the

subsequence learning mentioned in Section 4.3.

5.4 Memory footprint of various models

The memory footprint of each of the models

developed is given in Table 5. Low memory

footprint enables it to be used in memory

constrained environment.

Model Memory (in MB)

SNIPS In-House Data

1.a 6.1 6.8

1.b 4.5 4.5

1.c 4 4.8

2.a 6.1 6.8

2.b 4.5 4.5

Table 5. Comparison of model memory footprint

5.5 On Device Latency of various models

The On Device latency for each of the developed

models is mentioned in Table 6. The devices used

for testing were Android devices with SDK version

10. The solution works in real time due to low

latency.

Figure 4. Performance assessment of various models

on sentences of different lengths. (A) Results on in-

house test data. (B) Results on Snips test data.

391

Model Latency(in ms)

1.a 22-34

1.b 20-30

1.c 25-37

2.a 15-25

2.b 15-25

Table 6. Comparison of On-device run time latency

6 Conclusion

Sentence completion detection is important for

various NLP applications on voice assistant

enabled devices. The existing solutions do not cater

to the challenges present in conversational ASR

output data and are not optimized to work on

memory and latency constrained devices. In this

paper, we tailored state-of-the-art Bi-LSTM and

BERT models for on-device solutions. Fine-tuned

BERT Tiny sequence model [1.b] outperforms all

other models on both the datasets. Our

experimental results show that the mentioned

solutions are highly promising for various real-

time on-device applications.

References

Du, J., Huang, Y. and Moilanen, K., 2019. IG

Investments. AI at the FinSBD Task: Sentence

Boundary Detection through Sequence

Labelling and BERT Fine-tuning.

In Proceedings of the First Workshop on

Financial Technology and Natural Language

Processing (pp. 81-87).

Azzi, A.A., Bouamor, H. and Ferradans, S., 2019.

The finsbd-2019 shared task: Sentence

boundary detection in pdf noisy text in the

financial domain. In Proceedings of the First

Workshop on Financial Technology and

Natural Language Processing (pp. 74-80).

Sanchez, G., 2019, June. Sentence boundary

detection in legal text. In Proceedings of the

Natural Legal Language Processing Workshop

2019 (pp. 31-38).

Xu, C., Xie, L. and Xiao, X., 2018. A bidirectional

lstm approach with word embeddings for

sentence boundary detection. Journal of Signal

Processing Systems, 90(7), pp.1063-1075.

Treviso, M.V., Shulby, C.D. and Aluisio, S.M.,

2017. Evaluating word embeddings for

sentence boundary detection in speech

transcripts. arXiv preprint arXiv:1708.04704.

Che, X., Luo, S., Yang, H. and Meinel, C., 2016.

Sentence Boundary Detection Based on

Parallel Lexical and Acoustic Models.

In Interspeech (pp. 2528-2532).

Ho, T.N., Chong, T.Y. and Chng, E.S., 2016,

March. Improving efficiency of sentence

boundary detection by feature selection.

In Asian Conference on Intelligent Information

and Database Systems (pp. 594-603). Springer,

Berlin, Heidelberg.

Schweter, S. and Ahmed, S., 2019. Deep-EOS:

General-Purpose Neural Networks for

Sentence Boundary Detection. In KONVENS.

Fatima, M. and Mueller, M.C., 2019. HITS-SBD

at the FinSBD Task: Machine Learning vs.

Rule-based Sentence Boundary Detection.

In Proceedings of the First Workshop on

Financial Technology and Natural Language

Processing (pp. 115-121).

Au, W., Chong, B., Azzi, A.A. and Valsamou-

Stanislawski, D., 2020, July. FinSBD-2020:

The 2nd Shared Task on Sentence Boundary

Detection in Unstructured Text in the Financial

Domain. In Proceedings of the Second

Workshop on Financial Technology and

Natural Language Processing (pp. 47-54).

Mathew, D. and Guggilla, C., 2019. Ai_blues at

finsbd shared task: Crf-based sentence

boundary detection in pdf noisy text in the

financial domain. In Proceedings of the First

Workshop on Financial Technology and

Natural Language Processing (pp. 130-136).

Tian, K. and Peng, Z.J., 2019. aiai at finsbd task:

Sentence boundary detection in noisy texts

from financial documents using deep attention

model. In Proceedings of the First Workshop

on Financial Technology and Natural

Language Processing (pp. 88-92).

Hirano, M., Sakaji, H., Izumi, K. and

Matsushima, H., 2019. mhirano at the finsbd

task: Pointwise prediction based on multi-layer

perceptron for sentence boundary detection.

In Proceedings of the First Workshop on

Financial Technology and Natural Language

Processing (pp. 102-107).

Zhang, R. and Zhang, C., 2020, July. Dynamic

Sentence Boundary Detection for

Simultaneous Translation. In Proceedings of

the First Workshop on Automatic Simultaneous

Translation (pp. 1-9).

392

Rehbein, I., Ruppenhofer, J. and Schmidt, T.,

2020. Improving sentence boundary detection

for spoken language transcripts.

Le, T.A., 2020, January. Sequence Labeling

Approach to the Task of Sentence Boundary

Detection. In Proceedings of the 4th

International Conference on Machine

Learning and Soft Computing (pp. 144-148).

Wang, D. and Narayanan, S.S., 2004, May. A

multi-pass linear fold algorithm for sentence

boundary detection using prosodic cues.

In 2004 IEEE International Conference on

Acoustics, Speech, and Signal Processing (Vol.

1, pp. I-525). IEEE.

Oba, T., Hori, T. and Nakamura, A., 2006.

Sentence boundary detection using sequential

dependency analysis combined with crf-based

chunking. In Ninth International Conference

on Spoken Language Processing.

Hasan, M., Doddipatla, R. and Hain, T., 2014.

Multi-pass sentence-end detection of lecture

speech. In Fifteenth Annual Conference of the

International Speech Communication

Association.

Hasan, M., Doddipatla, R. and Hain, T., 2015.

Noise-matched training of CRF based sentence

end detection models. In Sixteenth Annual

Conference of the International Speech

Communication Association.

Dellaert, B.G., Shu, S.B., Arentze, T.A., Baker, T.,

Diehl, K., Donkers, B., Fast, N.J., Häubl, G.,

Johnson, H., Karmarkar, U.R. and Oppewal,

H., 2020. Consumer decisions with artificially

intelligent voice assistants. Marketing Letters,

pp.1-13.

Kudo, T. and Richardson, J., 2018. Sentencepiece:

A simple and language independent subword

tokenizer and detokenizer for neural text

processing. arXiv preprint arXiv: 1808.06226.

Turc, Iulia and Chang, Ming-Wei and Lee, Kenton and

Toutanova, Kristina, 2019. Well-Read Students

Learn Better: On the Importance of Pre-training

Compact Models. arXiv preprint

arXiv:1908.08962v2.

Francis, W.N. and Kucera, H., 1979. Brown

corpus manual. Letters to the Editor, 5(2), p.7.

Hochreiter, S. and Schmidhuber, J., 1997. Long

short-term memory. Neural computation, 9(8),

pp.1735-1780.

Graves, A. and Schmidhuber, J., 2005. Framewise

phoneme classification with bidirectional

LSTM and other neural network

architectures. Neural networks, 18(5-6),

pp.602-610.

Coucke, A., Saade, A., Ball, A., Bluche, T.,

Caulier, A., Leroy, D., Doumouro, C.,

Gisselbrecht, T., Caltagirone, F., Lavril, T. and

Primet, M., 2018. Snips voice platform: an

embedded spoken language understanding

system for private-by-design voice

interfaces. arXiv preprint arXiv:1805.10190.

