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Abstract 

Sentence completion detection (SCD) is an 

important task for various downstream 

Natural Language Processing (NLP) based 

applications. For NLP based applications, 

which use the Automatic Speech 

Recognition (ASR) from third parties as a 

service, SCD is essential to prevent 

unnecessary processing. Conventional 

approaches for SCD operate within the 

confines of sentence boundary detection 

using language models or sentence end 

detection using speech and text features. 

These have limitations in terms of relevant 

available data for training, performance 

within the memory and latency constraints, 

and the generalizability across voice 

assistant domains. In this paper, we propose 

a novel sentence completion detection 

method with low memory footprint for On-

Device applications. We explore various 

sequence-level and sentence-level 

experiments using state-of-the-art Bi-

LSTM and BERT based models for English 

language. 

1 Introduction 

Voice-intelligence enabled devices have 

tremendous potential in providing near natural 

human behavior based product experience to the 

users (Dellaert et al. 2020). Such a potential has 

primarily stemmed from Artificial Intelligence 

based mimicking of speech recognition, question 

answering, dialogues, conversations, and 

command-induced actions. In order to meet user 

expectations and cater towards product usage 

satisfaction, knowing when the question, reply or 

command is complete, i.e., sentence completion 

detection, is a crucial task. 

Voice assistants like Google Assistant, Alexa, 

Cortana, Siri and Bixby etc. are becoming very 

popular in modern world. These systems rely on 

the text, predicted by a streaming speech 

recognition (ASR) system. Streaming ASR 

produces text continuously. It is computationally 

efficient to execute downstream NLP tasks only 

when a complete sentence is found in the text. This 

makes SCD a crucial need in voice assistant system. 

For a partial text received from ASR, the 

application can wait relatively longer than a 

complete sentence. Various downstream NLP 

applications such as unsupervised dependency 

parsing, ASR transcript readability, accurate 

information retrieval, and summarization can 

benefit from SCD.  

Detection of sentence completion, has been 

widely attempted on speech (Hasan, 2014) and text 

(Azzi, 2019) using sentence boundary detection 

(SBD) (Sanchez, 2019), end-of-utterance detection 

(Treviso, 2017), sentence end detection (SED) 

(Hasan, 2015) models. The techniques evolved 

from rule-based using handcrafted heuristics 

(Wang, 2004), to machine learning and more 

recently, deep learning (Schweter, 2019) based 

methods. State-of-the-art deep learning 

architectures reported for SBD include Bi-LSTM 

CRF (Du, 2019) , BERT (Du, 2019) etc. techniques. 

On various test datasets, we found their 

performance highly promising. Upon exploring at 

further depth, we found that these models have 

certain limitations with regards to their size, on 

device platform compatibility and system coupling 

On-Device detection of sentence completion for voice assistants  

with low-memory footprint  
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for on-device deployment. These limitations are 

briefly described below: 

 Size of the models were too big for 

deployment on memory constrained 

devices such as mobile phones and smart 

televisions. MobileBERT 1  takes 100.5Mb 

with 74ms latency. 

 Broad-spectrum conversation data 

availability, which is representative of a 

wide range of domains and follows SCD 

policies as mentioned in Section 4.2 

 State-of-the-art architectures reported for 

SBD lack in ease of modelling with 

modifications, within the Tensor-flow lite 

environment. 

 Decoupling of SBD models that are a part 

of bigger system like ASR is challenging 

and not readily applicable.  

 SBD makes use of punctuations and case 

sensitive information which are missing 

from immediate ASR output. 

 

We propose that Sentence Completion Detection 

(SCD) can be achieved by token-level and 

sentence-level inferencing. 

In this research, we explore both token-level and 

sentence-level inferencing with state-of-the-art 

language models within on-device deployment 

constraints. We delve into the tailoring of data, 

completion detection policies (Section 4.2, SCD 

Policies), embedding size optimization for 

achieving a light-weight SCD model that can work 

on a wide range of domains in memory-

constrained environments. 

2 Related work 

Recent SCD and SBD works are primarily useful 

for legal text, long lectures, pdf documents etc. 

Consequently, the datasets used for relevant work 

included clean texts such as WSJ corpus and 

Brown Corpus (Francis, 1979), noisy unstructured 

texts generated from PDFs (Azzi, 2019), (Tian, 

2019), lecture (Hasan, 2014) and ASR transcripts 

(Treviso, 2017), (Rehbein, 2020). For training a 

model that is suitable for the multi-domain voice 

assistant, we could not find broad-spectrum 

domain data focused on commands. 

Further, we felt that, essentially, a shift of 

emphasis from formal, edited text towards more 

                                                           
1https://www.tensorflow.org/lite/models/bert_qa/overview 

spontaneous language samples which represent 

ASR output is required Conventional language 

models are trained on long structured sentences 

leading to large memory footprints that cannot be 

supported for fast on-device applications. Various 

techniques have been reported for downsizing, 

such as quantization, modifications in vocabulary, 

truncating input etc. 

We expand our work based on modifications in 

state-of-the-art architectures and extensive custom 

training with custom loss on multi-domain 

conversation data. We also experimented upon 

Tensorflow Lite post training quantization. We 

primarily looked at Bi-LSTM and BERT 

architectures as described below. 

3 Model 

We defined our SCD models in two categories: 

 Sequence-based 

 Sentence-based  

For each of these categories, we explored selected 

state-of-the-art Bi-LSTM based model and a 

BERT-based model as described below. Bi-LSTM 

is a sequence processing model that consists of two 

LSTMs, one taking the input in a forward 

direction, and the other in a backwards direction. 

BERT stands for Bidirectional Encoder 

Representations from Transformers. It is designed 

to pre-train deep bidirectional representations from 

unlabeled text. 

3.1 Bi-LSTM and Attention based model for 

sequence prediction [1.a] 

We convert the text input sentence to a sequence 

of tokens by splitting based on spaces. The model 

(shown in Figure 1.a) contains an embedding layer 

which gets trained along with the model and 

generates vectors for the tokens present in the 

sentence. For each of the generated tokens feature 

labelling is done as either ‘0’ or ‘1’ based on the 

method explained in 4.3.  Example token features 

for a sentence is shown below: 

 

 

Utterance: “create an event at 5” 

Create An Event At number 

0 0 1 0 1 
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Tokens of the input sentence are converted into 

token IDs. The sentence length used for prediction 

is kept at 25 tokens, a considerable assumption for 

sentences in voice assistant based systems. If the 

sentence is larger than 25 tokens then only the last 

25 tokens are used for prediction. So, the resultant 

input dimensionality becomes 25x1. This resultant 

vector is then passed to embedding layer which 

converts it into 25x100 vector followed by a Bi- 

 

Directional LSTM (Hochreiter, 1997), (Graves, 

2005).  The output of the Bi-LSTM layer is passed 

to dense layer in a time distributed manner. The 

output of dense layer is passed through an attention 

layer followed by soft-max activation which 

predicts a label for every token as shown in Figure 

1.a. The Loss is calculated using Equation (1) and 

the inference is done using Equation (2). 

3.2 BERT Tiny based model for sequence 

prediction [1.b] 

We convert the text input sentence to a sequence of 

tokens using Sentence piece tokenizer (Kudo, 

2018). For each of the generated tokens feature 

labeling is done. The tokens generated are marked 

as ‘0’ or ‘1’ based on method explained in 4.3.  

The sequence length used for these models is 42 

tokens. So, a sequence of 42 tokens are passed 

through a pre-trained BERT (Turc, 2019) Tiny 

model which has got 2 encoder layers with 128 

hidden states. The output of the BERT Tiny layer 

is passed through a dense layer with soft-max 

activation which predicts a label for every token. 

The Loss is calculated using the Equation (1) and 

the inference is done using Equation (2). Figure 1.b 

below shows the model architecture. 

3.3 Bi-LSTM and Attentions based model 

with hybrid (word + character) 

embedding for sequence prediction [1.c] 

The model 1.a is extended to improve the model 

performance on sentences containing out of vocab 

words. To meet that objective we introduced a 

hybrid embedding strategy. For every token 

present in the sentence we generate its embedding 

using char embedding in conjunction with word 

embedding. Every word is split into characters and 

then converted into IDs. The maximum length of a 

word is considered as 10 and first ten characters are 

taken if the length exceeds the maximum length. 

The IDs are fed into an embedding layer followed 

by LSTM sequence. The 50 dimension sequence 

output of LSTM is concatenated with 100 

dimension vector of word embedding. The 

combined input is passed through a spatial dropout 

followed by Bi-LSTM. The output of the Bi-LSTM 

layer is passed to dense layer in a time distributed 

manner. The output of dense layer is passed 

through an attention layer followed by soft-max 

activation which predicts a label for every token. 

The Loss is calculated using Equation (1) and the 

Figure 1.a Bi-LSTM and Attention based model for 

sequence prediction 

Figure 1.b BERT Tiny based model for sequence 

prediction 



387

 

 

inference is done using Equation (2), which uses 

soft-max score of the last token. 

 

𝐿 = 𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙 + 𝑊 ∗ 𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒                            (1) 

 

Where 𝐿  is total loss and 𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙  and 𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  

are losses on partial and complete tokens in the 

sentence respectively. 𝑙𝑝𝑎𝑟𝑡𝑖𝑎𝑙 is calculated as the 

sum of categorical cross entropy losses of all the 

partial tokens. Similarly 𝑙𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 is calculated as 

the sum of categorical cross entropy losses of all 

the partial tokens. W is the ratio of total count of 

partial tokens to the total count of complete tokens 

in the training data. 

 

𝑃𝑟𝑒𝑑 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑎𝑠𝑡_𝑇𝑜𝑘𝑒𝑛))   (2) 

3.4 Bi-LSTM and Attention based model for 

sentence classification [2.a] 

 The input sequence is processed in a similar 

way as mentioned in Section 3.1. The model 

contains an embedding layer which gets trained 

along with the model and generates embedding 

vectors for the tokens present in the sentence. For 

every sentence one label is assigned. For partial 

sentences label ‘0’ is assigned and for complete 

sentences label ‘1’ is assigned. Each token is 

converted into IDs. The sentence length used for 

prediction is kept at 25 tokens. If the sentence is 

larger than 25 tokens then only the last 25 tokens 

 

 

 

 

are used for prediction. So, the resultant input 

dimensionality becomes 25x1. This resultant 

vector is then passed to an embedding layer which 

converts it into 25x100 vector followed by a Bi-

Directional LSTM (Hochreiter, 1997), (Graves, 

2005).    The output of the Bi-LSTM layer is passed 

to dense layer followed by attention layer followed 

by soft-max activation which predicts the label for 

the entire sentence. Figure 2.a shows the model 

architecture. 

3.5 BERT based model for sentence 

classification [2.b] 

 

The sentence tokenization part is similar to the 

model 1.b. However, this model treats this task as 

classification. Each sentence is labelled as ‘1’ for 

complete and ‘0’ for partial. The maximum 

sequence length used as input is 42 tokens. The 

tokenized utterance is passed through BERT Tiny 

model which has got 2 encoder layers with 128 

hidden state size. The output of the CLS token of 

BERT Tiny layer is passed through a dense layer 

with soft-max activation which predicts a label for 

the sentence. Figure 2.b shows the model 

architecture. 

 

 

4 Experimental Setup 

4.1 Datasets 

For exploring various SCD modelling 

architectures, we prepared an in-house dataset 

containing partial and complete sentences 

representing various domains such as phone call, 

message, contacts, reminder, maps, accessibility, 

calculator, clock, open domain, settings, apps, etc. 

This dataset comprised of sentences of varied 

Figure 2.a Bi-LSTM and Attention based model for 

sentence classification 

Figure 2.b BERT based model for sentence 

classification 
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lengths as shown in Table 3.  In addition to this, 

based on our analysis of various available datasets, 

we selected SNIPS (Coucke, 2018) for gaining 

insights into model generalizability. The Snips 

dataset on the other hand is collected from Snips 

Personal Voice Assistant, spanning 14484 multiple 

domain utterances.  We split these utterances into 

training, validation and test datasets. From the 

original utterances present in the dataset we 

generated partial and complete utterances by 

generating pre-fixes. We omitted one word pre-

fixes from the newly generated utterances.   

 

 
Table 1. Dataset details 

A summary of the training and test data is 

provided in 3 tables. Table 1 contains the details of 

the original dataset. Table 2 contains the generated 

utterances details of SNIPS dataset and Table 3 

contains the details of the generated utterances of 

in-house dataset. 

 
Table 2. Generated utterances details of SNIPS 

Table 3. Generated utterances details of In-House 

dataset 

 

 

 

 

4.2 SCD Policies 

We aim to make this model highly suited to 

understand the NLU component in voice assistants 

for a variety of downstream applications. In each 

of these aspects, a comprehensive policy formation 

based on underlying information in relevant data is 

very important. This, in fact, becomes the key 

driving factor in determining user experience of the 

voice assistants. Based on our analysis and 

understanding, we outlined two main focus areas: 

 Intent clarity 

 Catchall phrases 

We define all those sentences that can elicit an 

actionable response from the downstream target 

block in the voice assistant as complete. For 

example –  

“Create an event” 

 

Further, sentences that end in open titles are 

extremely dicey to handle. Any abrupt completion 

would result in unsatisfactory experience at user’s 

end as there could be multiple complete suffixes 

for a given sentence. For example – 

 

 “Create a reminder to buy milk” 

 

In such a scenario, it is difficult to predict if the user 

intends to continue after “buy milk” with “from a 

nearby shop”. Consequently, strong allocation of 

sentences with catch-all phrases into partial or 

complete purely based on semantic understanding 

will not yield us desirable results. We propose to 

handle them separately by adopting system-

specific suitable behavior.  

 

4.3 Data preprocessing 

Before passing a sentence to the model, we 

preprocessed it .Firstly, we removed punctuations 

to make the input sentence similar to ASR output. 

Secondly, we added acronym expansion, and 

replaced integers with the term “number in order to 

reduce Out Of Vocabulary (OOV) words. Lastly 

we removed polite phrases to reduce sentence 

length. We selected 25 token length for Bilstm 

models and 42 for BERT models as 98% of the 

tokenized sentences lengths are covered (Figure 3). 

This reduces the inference time. 

 

 

 

Dataset SNIPS In-House 

Train Data 13084 300000 

Test Data 700 48000 

Validation Data 700 20000 

Vocabulary Size 11241 72001 

Max Sentence Length 36 89 

Dataset 
SNIPS 

Total Partial Complete 

Train 22213 9353 12860 

Dev 1296 600 696 

Test 1327 628 699 

Dataset 
In-House 

Total Partial Complete 

Train 2702376 1136745 1565631 

Dev 50000 20000 30000 

Test 79899 17433 62466 
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1. For Bi-LSTM Sequence Models 

The tokens present in the sentence were assigned a 

tag of 0 or 1 depending on whether the intermediate 

sentence forming up to the current token was 

already present in the dataset as complete. 

This was done so as the model sees the sentence as 

complete even if it is a part of another sentence. If 

this is not taken care of then the model gets 

confused for sub-sentences which are complete but 

also part of a longer sentence. Every intermediate 

substring of the sentence was checked if it was 

already present as a complete sentence and the end 

of the substring was marked as 1. 

 

Utterance: “create a reminder” 

create a reminder 

0 0 1 
 

 

Utterance: “create a reminder to buy” 

create a reminder to buy 

0 0 1 0 0 
 

2. For BERT Sequence Model 

The tokens generated by the Sentence Piece 

Tokenizer were tagged according to strategy 

mentioned in section 4.3(1). The root token and the 

subsequent token for the word are both given the 

same tag. 

 

Utterance: “dont be so judgmental” 

don ##t be so judgment ##al 

0 0 0 0 1 1 

4.4 Training and inferencing 

We developed all the models described in section 3 

using Tensorflow2.0 as it has a wide collection of 

workflows, multiple language support and 

deployment flexibility. We limited the size of the 

vocabulary of the models- 1.a, 1.c and 2.a to 40000 

for in-house dataset and 11000 for SNIPS dataset. 

BERT tiny based models are initialized with pre 

trained weights and fine-tuned using 

recommended hyperparameters (batch size: 32, 

learning rate: 3e-5, epochs: 3-5) during training. 

 

We selected the best model based on best average 

F1 score for both the classes of prediction (Partial 

and Complete) as well as memory foot print.  

 

𝐹1 =  
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                   (3) 

 

Once the models were ready, we converted them to 

TensorFlow Lite with post training quantization for 

on-device deployment. TensorFlow Lite is 

designed for efficient model execution on memory 

constrained devices such as mobile phones. Some 

of this efficiency reportedly comes from the use of 

a special storage format that reduces model file size 

and relevant optimizations that have very less 

impact on the accuracy.  

4.5 Testing  

We tested our models on-device on three test 

datasets as described in 4.1 and report model 

performances at various inferencing levels, 

architecture levels and sentence complete detection 

levels. Further, we also checked the latency and 

memory footprint to evaluate the feasibility of 

using such a model on mobile devices.  

5 Results and discussion 

In the following, we present the results of our 

performance assessment on various models, i.e., 

both token-level and sentence-level inferencing 

using Bi-LSTM and BERT techniques on the three 

test datasets.   

5.1 Performance assessment of various 

models 

Among the BERT and Bi-LSTM models, as shown 

in Table 4. The best performance is achieved by 

BERT-Tiny sequence based SCD model. On an 

average, on both the datasets, it is able to achieve 

an overall F1-score of 90.95%. The next best 

Figure 3 Occurrences of sentences of varied lengths in 

training data 
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performing model was with Bi-LSTM, attention 

and word embedding for sentence classification.  

 

Model SNIPS In-House Data 

C P C P 

1.a 84.3 77.3 95.5 90.0 

1.b 88.0 84.3 96.8 92.3 

1.c 82.9 75.2 87.7 88.4 

2.a 87.5 83.8 95.69 86.66 

2.b 87.8 84.5 93.05 90.19 

Table 4. Comparison of F1 scores for partial and 

complete utterances 

 

 

Analysis on the results suggests that the sentence 

completion detection is relatively challenging on 

very short length (1-5 word) sentences (Figure 4). 

This might be the reason behind slightly decreased 

prediction performance (86.87% correct 

predictions on an average across in-house and 

Snips test datasets) as compared to sentences with 

lengths greater than 5 words. We saw most 

consistent performance on sentence length of 16-

20 words at 94.82% average correct predictions 

across datasets and above 92.62% correct 

predictions across all model architectures. Possibly 

a clearer understanding of partial and complete can 

be achieved by the model in this sentence length 

range. Further, although there were very few 

sentences with length beyond 21 words, the models 

were able to learn completion detection and predict 

95.71 % of test data correctly. 

5.2 Analytical insights into partial complete 

sentences prediction 

Among the partial and complete sentences tested 

uisng BERT sequence-based model, we observed 

that the F1 score for complete sentences was better 

than partial sentences. We also noticed the same 

trend in majority of the cases. This is a promising 

scenario for user experience, where if sentence 

completion prediction is better on complete 

sentences, the wait time can be drastically 

shortened. Consequently, the user experience is 

also likely to improve. 

5.3 Analytical insights into predictions on 

various test datasets 

We observed that in general, the models trained 

and tested on in-house data performed better than 

the models trained and tested on SNIPS. The OOV 

failures were observed less in Word+Char Bi-lstm 

sequence model and Bert Tiny sequence model. 

The sequence models were able to generalize the 

data better than the sentence models due to the 

subsequence learning mentioned in Section 4.3. 

5.4 Memory footprint of various models 

The memory footprint of each of the models 

developed is given in Table 5. Low memory 

footprint enables it to be used in memory 

constrained environment.  

Model Memory (in MB) 

SNIPS In-House Data 

1.a 6.1 6.8 

1.b 4.5 4.5 

1.c 4 4.8 

2.a 6.1 6.8 

2.b 4.5 4.5 

Table 5. Comparison of model memory footprint 

5.5 On Device Latency of various models 

The On Device latency for each of the developed 

models is mentioned in Table 6. The devices used 

for testing were Android devices with SDK version 

10. The solution works in real time due to low 

latency. 

 

 

Figure 4. Performance assessment of various models 

on sentences of different lengths. (A) Results on in-

house test data. (B) Results on Snips test data. 
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Model Latency(in ms) 

1.a 22-34 

1.b 20-30 

1.c 25-37 

2.a 15-25 

2.b 15-25 

Table 6. Comparison of On-device run time latency 

6 Conclusion 

Sentence completion detection is important for 

various NLP applications on voice assistant 

enabled devices. The existing solutions do not cater 

to the challenges present in conversational ASR 

output data and are not optimized to work on 

memory and latency constrained devices. In this 

paper, we tailored state-of-the-art Bi-LSTM and 

BERT models for on-device solutions. Fine-tuned 

BERT Tiny sequence model [1.b] outperforms all 

other models on both the datasets. Our 

experimental results show that the mentioned 

solutions are highly promising for various real-

time on-device applications.  
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