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Abstract

Current voice assistants typically use the best
hypothesis yielded by their Automatic Speech
Recognition (ASR) module as input to their
Natural Language Understanding (NLU) mod-
ule, thereby losing helpful information that
might be stored in lower-ranked ASR hypothe-
ses. We explore the change in performance
of NLU associated tasks when utilizing five-
best ASR hypotheses when compared to sta-
tus quo for two language datasets, German and
Portuguese. To harvest information from the
ASR five-best, we leverage extractive summa-
rization and joint extractive-abstractive sum-
marization models for Domain Classification
(DC) experiments while using a sequence-to-
sequence model with a pointer generator net-
work for Intent Classification (IC) and Named
Entity Recognition (NER) multi-task experi-
ments. For the DC full test set, we observe
significant improvements of up to 7.2% and
15.5% in micro-averaged F1 scores, for Ger-
man and Portuguese, respectively. In cases
where the best ASR hypothesis was not an
exact match to the transcribed utterance (mis-
matched test set), we see improvements of up
to 6.7% and 8.8% micro-averaged F1 scores,
for German and Portuguese, respectively. For
IC and NER multi-task experiments, when
evaluating on the mismatched test set, we see
improvements across all domains in German
and in 17 out of 19 domains in Portuguese
(improvements based on change in SeMER
scores). Our results suggest that the use of
multiple ASR hypotheses, as opposed to one,
can lead to significant performance improve-
ments in the DC task for these non-English
datasets. In addition, it could lead to signif-
icant improvement in the performance of IC
and NER tasks in cases where the ASR model
makes mistakes.

1 Introduction

Recent years have seen a dramatic increase in the
adoption of intelligent voice assistants such as
Amazon Alexa, Apple Siri and Google Assistant.
As use cases expand, these assistants are expected
to process ever more complex user utterances and
perform many different tasks. Some of the key com-
ponents that enable the performance of these tasks
are housed within the spoken language understand-
ing (SLU) system; one being the Automatic Speech
Recognition (ASR) module which transcribes the
users’ vocal sound wave into text and another be-
ing the Natural Language Understanding module
which performs a variety of downstream tasks that
help identify the actions requested by the user (Ram
et al., 2018; Gao et al., 2018). These modules per-
form in tandem and are crucial for the successful
processing of user utterances. Typical ASR models
generate multiple hypotheses for an input audio sig-
nal, that are ranked by their confidence scores (Li
et al., 2020). However, only the top ranked hy-
pothesis (referred to hereafter as the ASR 1-best)
is usually processed by the NLU module for down-
stream tasks (Li et al., 2020).

Three major tasks performed by the NLU mod-
ule are Domain Classification (DC), Intent Classifi-
cation (IC) and Named Entity Recognition (NER).
DC predicts the domain relevant to the utterance
(Weather, Shopping, Music etc.) and IC extracts
actions requested by users (some examples are, buy
an item, play a song or set a reminder). NER is
focused on identifying and extracting entities from
user requests (names, dates, locations, etc.). Cur-
rent NLU models usually take in the ASR 1-best
hypothesis as input to perform NLU recognition (Li
et al., 2020). However, the highest-scored ASR hy-
pothesis is not always correct and, at times, can lead
to downstream failures including incorrect NLU
hypotheses. These errors can be mitigated by uti-
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lizing multiple top-ranked ASR hypotheses (ASR
n-best hypotheses) in NLU modeling, which have a
higher likelihood of containing the correct hypothe-
sis. Even in the case of all n-best hypotheses being
incorrect, the NLU models may be capable of re-
covering the correct hypothesis by integrating the
information contained within the n-best hypothe-
ses. Hence, the use of multiple hypotheses should
help obtain firmer predictions from ASR modules
for their corresponding NLU module and result in
improved performance.

In this study we focus on two non-English inter-
nal datasets, German and Portuguese, and evaluate
the use of ASR n-best hypotheses for improving
NLU modeling within these contexts. Given that
the ASR models we use in this experiment pro-
duce a maximum of five (or less) hypotheses per
input utterance, we utilize all available hypotheses
(referred to hereafter as the ASR 5-best) for our
work. We leverage two BERT-based summariza-
tion models (Devlin et al., 2019; Liu, 2019; Liu and
Lapata, 2019) and a sequence-to-sequence model
with a pointer generator network (Rongali et al.,
2020) to extract the information from the ASR
5-best hypotheses. We show that using multiple hy-
potheses, as opposed to just one, can significantly
improve the overall performance of DC, and the
performance of IC and NER in cases where the
ASR model makes mistakes. We describe relevant
work in Section 2 and present a description of our
data set and opportunity cost analysis in Section 3.
In Section 4 we describe the architecture of our
models. In Section 5, we present our experimental
results followed by our conclusions in Section 6.

2 Related work

Using deep learning models for summarization has
been an active area of research in the recent past.
Two popular types in current literature have been
extractive summarization and abstractive summa-
rization. Extractive summarization systems sum-
marize by identifying and concatenating the most
important sentences in a document whereas ab-
stractive summarization systems conceptualize the
task as a sequence-to-sequence problem and gen-
erate the summary by paraphrasing sections of the
source document. Extensive work has been done
on extractive summarization (Liu, 2019; Cheng
and Lapata, 2016; Nallapati et al., 2016a; Narayan
et al., 2018b; Dong et al., 2018; Zhang et al.,
2018; Zhou et al., 2018) and abstractive summa-

rization (Narayan et al., 2018a; See et al., 2017;
Rush et al., 2015; Nallapati et al., 2016b) used in
isolation. Furthermore, studies have shown im-
provement in summary quality when extractive and
abstractive objectives have been used in combina-
tion (Liu and Lapata, 2019; Gehrmann et al., 2018;
Li et al., 2018).

Liu (2019) proposed a simple, yet powerful,
variant of BERT for extractive summarization in
which they modified the input sequence of BERT
from its original two sentences to multiple sen-
tences. They used multiple classification tokens
([CLS]) combined with interval segment embed-
dings to distinguish multiple sentences within a
document. They appended several summarization
specific layers (either a simple classifier, a trans-
former or an LSTM) on top of the BERT outputs
to capture document level features relevant for ex-
tracting summaries. Following this work, Liu and
Lapata (2019) proposed a model that comprises
of the pre-trained BERT extractive summarization
model (Liu, 2019) as the encoder and a decoder
which consists of a 6-layered transformer (Vaswani
et al., 2017). The encoder was fine-tuned in two
stages, first on the extractive summarization task
and then again on an abstractive summarization
task resulting in a joint extractive-abstractive model
that showed improved performance on summariza-
tion tasks.

The utilization of multiple ASR hypotheses for
improved NLU model performance across DC, IC
tasks was first introduced by Li et al. (2020). They
proposed the use of 5-best ASR hypotheses to train
a BiLSTM language model, instead of using a sin-
gle 1-best hypothesis selected using either majority
vote, highest confidence score or a reranker. They
explored two methods to integrate the n-best hy-
pothesis: a basic concatenation of hypotheses text
and a hypothesis embedding concatenation using
max/avg pooling. The results show 14%-25% rela-
tive gains in both DC and IC accuracy.

In our work, we explore the performance im-
provement offered by utilizing the ASR 5-best hy-
potheses in previously unexplored languages, Ger-
man and Portuguese. We also differ from previ-
ous studies due to our use of the superior BERT-
based extractive (Liu, 2019) and joint extractive-
abstractive (Liu and Lapata, 2019) summarization
models to extract a summary hypothesis for the DC
task, from the ASR 5-best.

Voice assistants traditionally handle IC and NER
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tasks using semantic parsing components which
typically comprise of statistical slot-filling systems
for simple queries and, in more recent time, shift-
reduce parsers (Gupta et al., 2018; Einolghozati
et al., 2019) for more complex utterances. Rongali
et al. (2020) proposed a unified architecture based
on sequence-to-sequence models and pointer gen-
erator networks to handle both simple and complex
IC and NER tasks with which they achieve state-
of-the-art results. In this work, we use a model
that expands this approach to consume the 5-best
ASR hypotheses and evaluate its performance on
IC/NER tasks for the two language datasets consid-
ered.

3 Data

Our experiments focus on two non-English inter-
nal datasets; German and Portuguese. We run all
utterances in each language through one language-
specific ASR model and take the top-ranked ASR
hypothesis for each utterance as ASR 1-best and
all available hypotheses for each utterance (a max-
imum of five in our models) as ASR 5-best. In
addition, we also obtain a human transcribed ver-
sion of each utterance. For German, we use 1.48
million utterances from 21 domains for training and
validation. We split the data randomly within each
domain, with 85% used for training and 15% for
validation. An independent set of 193K utterances
are used for testing. Within the independent test
set we find 17K utterances where the ASR 1-best
did not match the transcribed utterance exactly and
mark them as the “mismatched” test set. (Table 1).
For Portuguese, we use 890K utterances from 19
domains for training and validation, split the same
way as with German. Another 247K utterances are
used for testing. We find 41K utterances within
test, where the ASR 1-best did not match the tran-
scribed utterance exactly, and mark them as the
mismatched test set (Table 1).

3.1 Opportunity Cost Measurement

Li et al. (2020) showed improvement in NLU
model performance on English (en-US) upon uti-
lizing the ASR 5-best hypotheses instead of only
ASR 1-best. However, the impact of this on non-
English languages has not yet been explored. To
understand the opportunity of improvement that
the ASR 5-best hypotheses can lend to NLU model
performance in German and Portuguese datasets,
we analyze the ASR 5-best hypotheses in compar-

ison to the ground-truth human transcribed data
for each of the considered language datasets. First,
we calculate the number of exact matches to the
transcribed utterance occurring in each of the top 5-
best hypotheses. It should be mentioned that each
ASR hypothesis is different from the others and
only one hypothesis (if at all) can match the tran-
scribed utterance. Next we compute the amount of
exact matches found in the nth-best hypothesis set,
as a fraction of the volume of exact matches found
at 1-best. The results are shown in Table 2. We
find that the amount of exact matches that occur
in 2-5 best hypotheses, compared to the volume of
exact matches that occur in the top-ranked hypoth-
esis, is large for Portuguese (30.16%) and German
(20.83%) (see Table 2). This gives an indication of
the opportunity present in using hypotheses beyond
ASR 1-best for each language dataset.

In Table 3, we further illustrate the use of the
ASR 5-best hypotheses by showing three possi-
ble cases of stored information that we want our
NLU model to extract; selecting the best matching
hypothesis (first and second rows) and combining
hypotheses (third row).

4 Experimental Setup

4.1 DC models
For our DC experiments, we compare performance
across the following classification models:

• Baseline – A BERT-based classification base-
line model with MLP classifier trained on the
transcribed utterance and tested on the ASR
1-best

• BSUMEXT– A BERT-based extractive sum-
marization model trained and tested on the
ASR 5-best

• BSUMEXTABS– A BERT-based joint ex-
tractive and abstractive summarization model
trained and tested on the ASR 5-best

Standard testing on transcribed utterances under-
estimates the combined ASR and NLU errors. In
order to avoid this our test sets exclude transcribed
utterances and thus reflect the real situation.

In Section 3, we described the simple extractive
summarization model proposed by Liu (2019). We
adapt their extractive summarization model to take
the ASR 5-best hypotheses as input and output a
probability score per domain based on a summa-
rized hypothesis. Figure 1 shows the architecture
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Table 1: Total data set sizes in terms of utterance counts

Language Train Validation Test (full) Test (mismatched)
German 1,255,402 221,543 192,697 16,672
Portuguese 756,148 133,438 246,638 40,896

Table 2: Exact Matches to the transcribed utterance
found in ASR n-best as a percentage of Exact Matches
found in ASR 1-best

n Portuguese (%) German (%)
2 16.55 10.26
3 7.1 5.01
4 3.92 3.33
5 2.59 2.23
total 30.16 20.83

of BSUMEXT with ASR 5-best input. The task
of the BSUMEXT model is to create an extractive
summary by picking from the class assigned to
each hypothesis. This summary is then fed into a
multi-layer perceptron classifier to perform the DC
task. As in the case of Liu (2019), vanilla BERT is
modified to include multiple [CLS] symbols. Each
symbol is used to obtained features of each of the
ASR n-best hypotheses preceding it. Alternating
hypotheses fed into the model are assigned a seg-
ment embedding (E A or E B), based on whether
it is an even or odd numbered hypothesis. For ex-
ample for a sentence “play music” :

1 ASR 1-best: play muse [E_A]
2 ASR 2-best: play mu chick [E_B]
3 ASR 3-best: play news [E_A]
4 ASR 4-best: play mus [E_B]
5 ASR 5-best: play my sick [E_A]

The model then takes the [CLS] representation
of each ASR 5-best utterance and performs multi-
headed attention to obtain the summary hypothesis.

For the BSUMEXTABS model, the BERT en-
coder is fine-tuned on an abstractive summarization
task and then further fine-tuned on the extractive
summarization task. In this model the summary
hypothesis fed into the multi-layer perceptron clas-
sifier, is generated token by token in a sequence-to-
sequence fashion. Similar to Liu and Lapata (2019),
a decoupled fine-tuning schedule which separates
the optimizers of the encoder and the decoder is
used.

We trained each of our models for up to 30
epochs and use the best performing model, based
on validation metrics, for evaluating the indepen-
dent test set.

4.2 IC/NER models

We compare the following models for the IC and
NER tasks:

• Baseline – A BERT-based classification base-
line model trained on the transcribed utter-
ance and tested on the ASR 1-best

• BERT S2S NBEST PTR – A BERT-based
sequence-to-sequence model which employs
a pointer generator network, trained on the
ASR 5-best + transcribed utterance and tested
on ASR 5-best

Instead of a typical sequence tagging prob-
lem, Rongali et al. (2020) propose a unified ar-
chitecture to handle IC and NER tasks as a se-
quence generation problem. We build upon that
approach. BERT S2S NBEST PTR is a sequence-
to-sequence model augmented with a pointer gen-
erator network which functions as a self-attention
mechanism. We expand the architecture proposed
by Rongali et al. (2020) to include multiple in-
put queries. The model task is to generate target
words which can be either intent or slot delimiters
or words that are from the source sequences. The
pointer generator network enables the model to
generate pointers to the source sequences (instead
of using a large vocabulary of tokens) within the
target sequence. An example of a source sequence
with two ASR hypotheses and a target sequence
looks as follows (we use spaces to delimit hypothe-
ses and & to delimit separate tokens within an
utterance):

1 Source: ply_&_madonna play_&_mad_&_owner
2 Target: PlaySongIntent( @ptr1_0

ArtistName( @ptr0_1 )ArtistName )
PlaySongIntent

where @ptr0 1, for example, is a pointer to the
second word “madonna” in the first utterance of
the source query. One advantage of using pointers
instead of the actual tokens is the smaller target
vocabulary required for the decoder, resulting in a
more light-weight model.

The architecture consists of a pre-trained BERT
encoder and a transformer decoder (Devlin et al.,
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Table 3: Illustrative examples in English that compares the 3-best ASR hypotheses to the transcribed utterance

Transcription 1- best hypothesis 2-best hypothesis 3-best hypothesis
buy movie mystery buy movie mystery buy my tree but move my tree
who is nelson how is my son who is nelson how samsung
play music pull music pull news play my muse

[CLS] ASR 1-best [CLS] ASR 2-best[SEP] [SEP] [CLS] ASR 5-best [SEP]ASR n-best

E[CLS]Embedding E[ASR] E[1-best] E[SEP] E[CLS] E[ASR] E[2-best] E[SEP] E[CLS] EASR E5-best E[SEP]

E[A] E[A] E[A] E[A] E[A] E[A] E[A] E[A]E[B] E[B] E[B] E[B]

E1 E2 E3 E4 E5 E6 E7 E8 E17 E18 E19 E20

+

+

………

………

………

………

T1 T2 T5

Summarization Layers

Segment 
Embedding

Position
Embedding

BERT

T3

Y

T4

MLP

Probability per domain

Figure 1: A schematic of the architecture of the BSUMEXT

2019; Vaswani et al., 2017). The decoder is aug-
mented with a pointer generator network that func-
tions as a self-attention mechanism. Figure 2 shows
the high-level architecture. The Bert encoder pro-
cesses each ASR hypothesis separately. The en-
coder hidden states over all ASR hypotheses are
then concatenated and passed to the decoder. The
decoder hidden states are used to update the atten-
tion mechanism and the tagging vocabulary and
pointer distributions (see Rongali et al. (2020) for
detailed descriptions). These probability distribu-
tions of tags and pointers are used to determine the
next word and tag that is output by the decoder.
The model is trained by minimizing sequence cross
entropy loss over the training set.

These models are domain-specific multi-task
models which handle both IC and NER tasks si-
multaneously. We trained one model per domain
with all models trained for up to 50 epochs. The
best performing model based on validation metrics
was used for evaluating the independent test set.

5 Results and Discussion

5.1 Evaluation
We measure the success of our DC experiments
by comparing both micro- and macro-averaged F1

scores of our experimental models to those of the
baseline model. Micro- and macro-averaged F1
scores are defined as

F1micro = 2×P×R
P+R (1)

F1macro = 1
n

∑
i F1i = 1

n

∑
i
2×Pi×Ri
Pi+Ri

(2)

where P and R are overall precision and recall
respectively and Pi and Ri are the within class pre-
cisions and recalls respectively. We also calculate
the relative change in error of each experimental
model run with respect to baseline as shown in
equation 3. Note that “lower-is-better” for this met-
ric. In addition to these metrics calculated on the
full test data set, we also calculate these metrics on
the mismatched test set utterances where the ASR
1-best did not match the transcribed utterance.

∆err = 100× ((100−F1experiment)−(100−F1baseline))
(100−F1baseline))

(3)
For the IC and NER experiments, we use Se-

mantic Error Rate (SemER) (Su et al., 2018) as our
metric of choice. SemER is defined as follows:

SemER = D+I+S
C+D+S (4)
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@ptr0_1
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Figure 2: A schematic of the sequence-to-sequence model with attention. Each ASR hypothesis is encoded sepa-
rately. The encoder hidden states are then concatenated and passed to the decoder to have a cross-attention between
encoder and decoder outputs over all ASR hypotheses.

Table 4: Evaluation on the full and mismatched test sets
for DC. Relative change in error rate (∆err) measured
against baseline for each metric is shown in each suc-
ceeding column (negative is good).

Full set Mismatched set
Model f1 micro

(∆err)
f1 macro
(∆err)

f1 micro
(∆err)

f1 macro
(∆err)

German
BSUMEXT -1.60% -4% -5.40% -12%
BSUMEXTABS -7.20% -3.90% -6.70% -2.30%

Portuguese
BSUMEXT -12.60% 4.90% -6.30% -0.30%
BSUMEXTABS -15.50% -7.30% -8.80% -7.40%

where D=deletion, I=insertion, S=substitution
and C=correct-slots. The Intent is treated as a slot
in this metric and Intent error, considered as a sub-
stitution. We use the relative change in SemER
with respect to the baseline model (equation 5),
both overall and per domain in order to evaluate the
success of our models. Note that “lower-is-better”
for relative change in SemER as well.

∆sem = 100× (SemERexperiment−SemERbaseline)
SemERbaseline

(5)

5.2 DC experiments
Table 4 describes the performance of all the mod-
els defined in Section 4.1 on the full test set and
the mismatched test set (see Section 3 and Table 1).
The full test set enables us to understand the general
performance improvement that can be achieved by
using summarization models. Although utilizing
the full ASR 5-best hypotheses might offer some

improvement even in cases where the ASR 1-best
hypothesis is an exact match to the transcribed ut-
terance, much more value-add is expected when
using the ASR 5-best hypotheses in cases where
there is a mismatch between the transcribed utter-
ance and ASR 1-best. To study this use case, we
use the mismatched test set.

We observed that a majority of F1 scores across
all models for German exceeded their correspond-
ing values in Portuguese. Our opportunity cost anal-
ysis showed that exact matches between the tran-
scribed utterance and ASR 2-5-best for Portuguese
are higher than for German (see Section 3.1). This
suggests that the German ASR model tends to per-
form better than the Portuguese ASR model. In
this light, the smaller gains in relative change in
error observed for German when compared to Por-
tuguese are likely due to the German ASR model
being superior and therefore leaving smaller room
for improvement.

Figure 3 displays the relative changes of each
model against the baseline for each dataset.
When considering micro-averaged F1 scores, the
BSUMEXT and BSUMEXTABS models out-
perform the baseline in all cases, with the later
out-performing the former. This shows that the
use of ASR 5-best hypotheses can significantly
improve overall classification for both language
datasets. The BSUMEXTABS models also consis-
tently out-perform the baseline on macro-averaged
F1 scores, showing improvement in mean within-
class classification scores as well. This suggests
that BSUMEXTABS with additional fine-tuning
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on the abstractive task, is in general more success-
ful at creating a firmer hypothesis for DC than
the pure extractive summarization of BSUMEXT.
For Portuguese, even with the relatively large
percentage of exact matches available for extrac-
tion within its ASR 2-5 hypotheses (see Sec-
tion 3), BSUMEXTABS consistently outperforms
BSUMEXT across all metrics and datasets.

5.3 IC and NER experiments

Table 5 describes the performance of all the models
defined in Section 4.2 on domain-level data from
the full test set and the mismatched test set. As
with the DC experiments, we use the full test set
to understand the general overall performance im-
provement, and use the mismatched test set to iden-
tify improvement in cases where the ASR 1-best
hypothesis is not an exact match to the transcribed
utterance.

When evaluating the BERT S2S NBEST PTR
model, we find that it tends improve performance
specifically on the mismatched test set. For Ger-
man, we find improved performance across every
domain on the mismatched test set (see Table 5)
with an overall SemER improvement of 11.6%
against baseline. However, we only observe im-
provement in three domains on the full set, while
other domains show degradation in SemER. It is
also interesting to note that the domains that im-
prove also had low utterance counts. For Por-
tuguese, testing on the mismatched test set yields
improved performance across 17 out of 19 domains
(see Table 5) with an overall SemER improvement
of 8.1% against baseline, while we see only three
domains show improvement on the full test set.
Our results suggest that the ASR 1-best hypothesis
works well for IC/NER tasks. The noise added by
additional hypotheses seem to degrade results in
the general use case. However, the additional hy-
potheses tend to be very helpful in cases where the
ASR model makes mistakes (i.e. mismatched set
data where the ASR 1-best is not an exact match to
the transcribed utterance).

Our full test set results show that the baseline
model appears to be a better choice for the IC/NER
tasks. However, if we could detect user utterances
where the ASR model might have made a mistake
in its top hypothesis, the ASR outputs (i.e. the
set of all hypotheses) of these utterances could
be channeled to a separate NLU model such as
BERT S2S NBEST PTR, that could build a better

Table 5: Joint evaluation on full and mismatched test
sets for IC/NER tasks. ∆sem (%) is the relative change
in SemER against baseline for each domain (negative
is good).

German
S2S NBEST PTRDomain Full Set ∆sem (%) Mismatched Set ∆sem (%)

domain A 14.79 -14.16
domain B 30.33 -10.27
domain C 25.25 -5.83
domain D 95.41 -7.3
domain E 16.38 -12.68
domain F 12.54 -18.9
domain G -33.51 -23.2
domain H 7.41 -14.2
domain I 12.96 -25.2
domain J 15.27 -3.72
domain K 32.02 -7.42
domain L 89.45 -18.63
domain M 643.85 -15.95
domain N 1.06 -7.21
domain O -34.8 -25.02
domain P 26.52 -8.74
domain Q 8.47 -6.13
domain R 69.35 -13.76
domain S 19.07 -2.12
domain T -4.25 -10.93
domain U 1.92 -7.33
Overall 19.17 -11.64
Portuguese

S2S NBEST PTRDomain Full Set ∆sem (%) Mismatched Set ∆sem (%)
domain A 2.89 -14.11
domain B 18.88 -7.94
domain C 46.86 -14.7
domain D 4.3 3.16
domain E -12.54 -30.65
domain F 5.87 -18.89
domain G 6.56 -3.7
domain H 24.64 -2.57
domain I 71.12 -24.42
domain J -7.69 -10.03
domain K 19.16 -5.45
domain L 11.15 -9.97
domain M 3.54 -10.58
domain N 48.85 -10.15
domain O -30.38 -59.98
domain P 6.84 -12.29
domain Q 0.11 -15.66
domain R 20.49 -8.94
domain V 1533.33 47.62
Overall 106.58 -8.09
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Figure 3: Relative change in error rate measured against baseline for each metric on full and unmatched test sets
for DC experiments.

hypothesis than the baseline and improve overall
IC/NER performance.

We analyzed the confidence scores of our ASR
models on the full and mismatched test set hy-
potheses to explore the possibility of detecting a
mismatched set ASR output. For each ASR out-
put we obtain the mean confidence score across
all available hypotheses. We then compare the
frequency distributions of the mean confidence
scores in the full and mismatched test sets. Fig-
ure 4 shows the resulting distributions for two ex-
ample domains for each language dataset. We find
that the full set shows a strong peak at high con-
fidence scores while the mismatched set shows a
more uniform distribution. The pronounced differ-
ence in distribution shape suggests that a thresh-
olding mechanism based on the confidence score
output by the ASR model (or a simple classi-
fier trained on ASR outputs and scores) might be
used to predict mismatched test set outputs with
good confidence. Leveraging such a mechanism
might enable the use of a second model such as
BERT S2S NBEST PTR to improve performance
in these mismatched cases, and in turn improve
overall IC/NER performance.

6 Conclusions and future work

In this study, we explore the benefits of using ASR
5-best hypotheses for the NLU tasks in the German
and Portuguese datasets. We explore several mod-
els to perform DC and IC/NER tasks and evaluate
their performance against baseline models that use
ASR 1-best. We find significant overall improve-
ment in performance for the DC task. We also
find significant improvement in performance of the
jointly evaluated IC/NER tasks in cases where the
ASR 1-best hypothesis is not an exact match to

the transcribed utterance. For the DC task, our
results suggest that the use of ASR 5-best helps
produce better hypotheses and thereby greater im-
provements in the case of slight lower quality ASR
models.

Our next steps will include exploring how dif-
ferent data splits based on ASR confidence scores
might affect the sequence-to-sequence model per-
formance. Furthermore, we will explore perfor-
mance improvements in IC and NER tasks, using
different model architectures and training sched-
ules. We will also expand our study to a larger
set of languages in order to understand how the
use of multiple ASR hypotheses might affect lan-
guages with different lexical distributions. Lan-
guages which use multiple scripts (Japanese, Hindi,
Arabic etc.) or which are more opaque and likely to
have heterographs (e.g., “serial, “cereal”) and those
that have less standardized spelling systems (Hindi
etc) are more likely to have ASR errors. They may
have different levels of improvement with the use
of ASR 5-best hypotheses and we hope to analyze
this in our future work.
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