
Proceedings of the 17th International Conference on Natural Language Processing, pages 15–21
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

15

Abstract

Pāṇini in his Aṣṭādhyāyī has written the

grammar of Sanskrit in an extremely

concise manner in the form of about 4000

sūtras. We have attempted to

mathematically remodel the data produced

by these sūtras. The mathematical

modelling is a way to show that the

Pāṇinian approach is a minimal method of

capturing the grammatical data for

Sanskrit which is a natural language. The

sūtras written by Pāṇini can be written as

functions, that is for a single input the

function produces a single output of the

form y=f(x), where x and y is the input

and output respectively. However, we

observe that for some input dhātus, we get

multiple outputs. For such cases, we have

written multivalued functions that is the

functions which give two or more outputs

for a single input. In other words,

multivalued function is a way to represent

optional output forms which are expressed

in Pāṇinian grammar with the help of 3

terms i.e. vā, vibhaṣā, and anyatarasyām.

Comparison between the techniques

employed by Pāṇini and our notation of

functions helps us understand how

Pāṇinian techniques ensure brevity and

terseness, hence illustrating that Pāṇinian

grammar is minimal.

1 Introduction

Pāṇini’s Aṣṭādhyāyī is ‘almost an exhaustive

grammar for any human language with

meticulous details yet small enough to memorize

it’ (Kulkarni, 2016). Such an exhaustive grammar

is ideal to be used for artificial language

processing. Briggs (Briggs, 1985) even

demonstrated in his article the salient feature of

Sanskrit language that can make it serve as an

artificial language. Although, this is not a new

concept, various efforts in mathematical

modelling of Indian languages have been done

before. Joseph Kallrath in his book ‘Modeling

Languages in Mathematical Optimization’ says

that ‘a modeling language serves the need to pass

data and a mathematical model description to a

solver in the same way that people especially

mathematicians describe those problems to each

other’ (Kallrath, 2013). Mathematical modelling

of languages also impacts our understanding of

the language and its grammar. As scholars are

delving into the question of formalizing various

natural languages, it is also having an impact on

how we understand the language itself. Recent

work in theoretical and computational linguistics

has influenced the interpretation of grammar

(Scharf, 2008). We have followed a similar

approach, wherein we have modelled the

Pratyayas in Sanskrit in the form of functions

with the help of Pāṇinian sūtras.

Similar to mathematical functions which can be

expressed as f(x)=y where x is the input and y is

the output of function f; ‘the sūtras too look for

their preconditions in an input environment. The

effects produced by sūtras become part of an

ever-evolving environment which may trigger

other’ (Sohoni & Kulkarni, 2018). For the

grammar to fit mathematical functions, we ‘need

a strong and unambiguous grammar which is

provided by Maharishi Pāṇini in the form of

Aṣṭādhyāyī’ (Agrawal, 2013).

Statistical analysis of a language is a vital part

of natural language processing (Goyal, 2011).

According to how components of the target

linguistic phenomenon are realized

Treatment of optional forms in Mathematical modelling of Pāṇini

Anupriya Aggarwal, Malhar Kulkarni

Indian Institute of Technology Bombay, Mumbai
anupriya@iitb.ac.in, malharku@hss.iitb.ac.in

mailto:anupriya@iitb.ac.in

16

mathematically, available models of language

evolution can be classified as rule-based and

equation-based models. Equation-based models

tend to transform linguistic and relevant behaviors

into mathematical equations (Tao Gong, 2013),

which is what we have attempted in this paper.

Ambiguity is inherent in the Natural Language

sentences (Tapaswi & Jain, 2012), and hence

Sanskrit being a natural language also has certain

ambiguities. The ambiguity that we are dealing

with in this paper is that a single dhātu combined

with a single pratyaya can result in two or more

optional forms. Mathematical modelling of such

natural languages can help to remove this

ambiguity. Traditionally too, there have been

attempts by various scholars like Kātyāyana,

Patanjali and Bhartṛhari to provide extensive

commentaries which contain explanations for

various aspects of the grammar. They do not

question Pāṇini’s basic model, but rather explain

it, refine it and complete it (Huet, 2003).

Explanations and clarifications in the form of

various vārtikas also come handy while dealing

with ambiguities. However, here we are diverging

from the traditional approach and writing

functions in order to model the grammatical data.

To account for more than two forms of a word,

Pāṇini uses optional form rules to state that

alternate forms are also possible. For example,

sūtra (rule) 1.2.3 vibhaṣorṇoḥ states that ‘After

the verb ūrṇa 'to cover', the affix beginning with

the augment iṭ is regarded optionally like ṅit

(Source, 2020)’. We have used multivalued

functions to denote such optional forms in our

system of representing the pratyayas as functions.

2 Methodology

We are here attempting to mathematically model

the data produced by the sūtras for which we

started with compiling the list of dhātus and their

respective derived dhātus with different pratyayas

like from the Kridantkosh of Pushpa Dikhshita

Vol.1 (Dikshita, 2014), sanskritworld.in (Dhaval

Patel, n.d.), Siddhananta Kaumudi of Bhattoji

Dikshita (S.C.Vasu, 1905), The Madhaviya

DhātuVritti (Sayanacarya, 1964) and the roots,

verb-forms and primary derivatives of the

Sanskrit Language by W.D.Whitney (Whitney,

1885). The list of dhātus without the application

of any pratyaya are considered as x, after the

application of the concept of anubandhas.

Anubandhas have a very prominent role to play in

the Pāṇinian system of Sanskrit grammar. It

literally means ‘what is attached to’. It has been

used by all ancient authorities on Sanskrit

grammar who have come after Pāṇini, right from

Kātyāyana to Nageśa. However, Pāṇini has used

the term ‘it’ to describe the anubandhas. M.

Williams dictionary (Williams, 2008 revised)

defines anubandhas as an indicatory letter or

syllable attached to roots etc., marking some

peculiarity in their inflection e.g. an ‘i’ attached to

roots denotes the insertion of a nasal before their

final consonant. According to Nyāyakosa,

anubandha is a letter that is attached to the stem

(prakṛti), termination (pratyaya), augment

(āgama) or a substitute (ādesha) to indicate the

occurrence of some special modifications such as

vikaraṇa, āgama, guṇa or vṛddhi, accent etc. But

it is dropped from the finished word i.e. pada. The

use of anubandha is one of the crucial steps

Pāṇini has taken to ensure the brevity and

terseness of his work. We can say that

anubandhas do form part of the pratyayas etc. to

which they are found appended (Devasthali,

1967). But before we directly start writing our

functions, we need to define the input set which

comprises of dhātus from the Dhātupatha as well

as the derived dhātus without anubandhas.

Let A be a set of all the dhātus after the

anubandhas have been removed. These primary

dhātus are 1943 in total. However, the input

dhātus are not limited to these dhātus in set A. We

can also derive a new dhātu set B by adding a san

pratyaya to the dhātus of set A. The items in set B

can be called dhātus by following the grammatical

rule laid down by Pāṇini, ‘3.1.32 sanādyantāḥ

dhātavaḥ’ which says that ‘all roots ending with

Sūtra numbers Pratyaya

3.1.5 san

3.1.8 kyac

3.1.9 kāmyac

3.1.11 kyaṅ

3.1.13 kyaṣ

3.1.20 ṇiṅ

3.1.21 ṇic

3.1.22 yaṅ

3.1.27 yak

3.1.28 āy

3.1.29 īyaṅ

Table 1: List of San pratyayas in Aṣhṭādhyāyī

with their respective sūtra numbers

17

the pratyayas starting with san are called dhātu.

Hence the input x is defined as,

x є (A ∪ B)

In this paper we will focus on the multivalued

functions that give two or more outputs for the

same input dhātu of the form f(x)=

 if there are

two optional forms; f(x)=

 if there are three

optional forms and so on.

3 Notation

Let x be the input dhātu. For the purpose of

writing these functions, we start enumerating the

syllables from left to right or from right to left

depending upon that particular function. We can

denote x as, x= (….,x(2),x(1))= (x’(1),x’(2),….).

x can be a consonant (C) or a vowel (V) and they

are denoted by

C’(i)= i
th
 consonant from left;

V’(i)= i
th
 vowel from left;

C(i)= i
th
 consonant from right,

V(i)= i
th
 vowel from right.

For example: If x = cura, then

Conversion are denoted by a right arrow with a

number on the top. The number denotes the

location of the conversion.

For example, x[a

 ā] denotes that in the dhātu x,

a which is at the 2nd place from the right is

getting replaced with ā.

We also define a ‘+ operator’ to explain the

change of syllables when two syllables combine.

In Sanskrit language when two syllables come

closer, for the ease of pronunciation (in most

cases) it gets replaced by another syllable or a

combination of syllables. For example: ū+i=vi,

e+i=ayi, o+i=avi, d+ta=tta, ch+t= ṣṭa, j+ta=kta,

dh+ta=dhda, bh+ta=bdha, h+ta= ṇḍha. Note

that although the ‘+ operator’ may look similar to

the concept of Sandhi in Sanskrit, it is totally

based on our need to fit our dataset and does not

encompass the broad concept of Sandhi.

4 A function p(x)

This function is not a pratyaya function, but it is

required to write the pratyaya function. Thus, it

would be helpful to define it here. The dhātus

which have two or more vowels are called udātta,

and when a suffix is added to them an additional

‘i’ comes. Such dhātus are called seṭ (literally

meaning ‘with iṭ’). For dhātus which have one

vowel, we need to see the instructions given in the

Dhātupaṭha. They can either be seṭ or aniṭ

depending upon the given instructions given.

Example of one such instruction is ‘bhu sattayām|

‘udāttḥ parasmaibhāṣḥ’| It says that ‘i’ will come

as the prayogsamavāyī svara is udāttḥ.

The function p(x) is defined by,

cura = c u r a

Right

to left

x(4) x(3) x(2) x(1)

Left to

right

x’(1) x’(2) x’(3) x’(4)

Table 2: The numbers 1, 2, 3,… signify the

position of the syllable. The notation x

(unprimed) is used when the syllables are

counted right to left, and the notation x’ is used

when the syllables are counted left to right.

Figure 1: Example of an Instruction given in the

Dhātupatha.

18

5 Multivalued functions

The words used for optionality by Pāṇini are

vā, vibhaṣā, anyatarasyām. vā appears 136 times,

vibhaṣā appears 258 times and, anyatarasyām

appears 161 times respectively in Aṣṭādhyāyī;

including the ones that occur in Anuvritti
1
. Pāṇini

and all the commentators have given us no

indication that they are supposed to be anything

but synonyms. But the modern scholar Paul

Kiparsky has wondered how could this be so,

because Pāṇini has vowed to eliminate every

needless extraneous syllable and there must be a

deeper reason to suggest the use of three different

terms. Hence, he has propounded the hypothesis

in his well-argued study Pāṇini as a ‘variationist’

that the three terms vā, vibhaṣā, anyatarasyām

refer respectively to three different kinds of

options: those that are preferable (vā), those that

are marginal (vibhaṣā) and those that are simple

options(anyatarasyām) (Sharma, 2018).

One such case which results in such optional

forms is represented in the table below where the

addition and absence of ‘i’ results in two forms

and the change of ‘h’ syllable to two different

syllables further results in two forms. Thus, we

end up with three forms of the same word.

Let us look at an example for this case for x =

muh:

tum(muh) =

=

1
 The number of times these words appear in Aṣṭādhyāyī;

including the ones that occur in Anuvritti have been

calculated by using the ‘Ashtadhyayi sUtra pAtha with

Anuvruttis’ done by Dr. V. Sheeba with the help of RSVP

Shabdabodha (2006-08).

 Program to generate the text from markings: Pawan Goyal,

Ph.D. Student, IIT Kanpur Version Dated: 18th August,

2008

6 Cases for multivalued functions

Some cases for multivalued functions are

displayed below
2
.

Some Multivalued functions for Tumun

Pratyaya

Case I:

If x є {svṛ sū dhū}, then

 tum(x) =

x

tum(x)

sū
svi

so

svitum

sotum

svṛ
svari

svar

svaritum

svartum

Case II:

If x has two syllables such that x(1)= ṝ, then

tum(x) =

x

 tum(x)

v
vari

varī

varitum

varītum

k
kari

karī

karitum

karītum

Case III:

If x є {gup}, then

tum(x) =

2
 An exhaustive list of cases for Tumun and san

pratyayas including the multivalued cases are given

in the appendix in Devanagari script.

Word Occurrence Usage

vā 136 times preferable

vibhaṣā 258 times marginal

anyatarasyām 161 times simple

options

Table 3: Words used for optionality by Pāṇini

Figure 2:Multivalued functions

iḍāgama iḍābhava

hgh hḍh

19

x

 tum(x)

gup

gopi

gop

gop

gopitum

goptum

gop tum

Case IV:

If x є {tṛp dṛp}, then

tum(x) =

x

 tum(x)

dṛp

darp

drap

darpi

darpatum

draptum

darpitum

Some Multivalued functions for San Pratyaya

Case I:

If x’(1)=c, x’(2)=v= i u, x’(3)=c in x(which has

exactly 3 letters), then

san(x)=

where, T(x)=

x san(x)

gud ju jugodiṣa

jugudiṣa

yut yu yuyotiṣa

yuyutiṣa

vith vi vivethiṣa

vivithiṣa

cit ci cicetiṣa

cicitiṣa

Case II:

If there is only one v in x, such that x(2)=v= i u

and starts with at least two consonants i.e x’(1)=c,

x’(2)=c, then

san(x)=

x san(x)

cyut cu cucyotiṣa

cucyutiṣa

kliś ci cicleśiṣa

cikliśiṣa

7 Conclusion

According to the mathematical definition of a

function, it generates a unique output for every

input. However, while mathematically modelling

Pratyayas in Sanskrit we came across several

instances where a single input was generating

multiple outputs, which have been represented by

multivalued functions.

To ensure brevity, Pāṇini has used several tools

which have been compared with their equivalent

tools in our functional approach.

What we are essentially denoting as x(2) in our

functions i.e. the penultimate term is nothing but

upadhā. Pāṇini by convention treats x(1) as the

end and calls it antya. This is clear from the

definition of upadhā given by Pāṇini in

Aṣṭādhyāyī sūtra ‘1.1.65 alontyāt pūrva upadhā’,

which means ‘The letter immediately preceding

the last letter of a word is called penultimate

(upadhā) (Creative Commons, 2020)’. As stated

before in the paper, the words vā, vibhaṣā, and,

anyatarasyam are used by Pāṇini to denote

optional forms that we have demoted by

multivalued functions.

Another important feature of Pāṇinian

grammar is anuvṛtti, which is a technique of

carrying some parts of the previous sūtras to the

next sūtras. Due to anuvṛtti, the order in which

various elements appear in the sūtra itself are very

important. However, we do not need to define any

such equivalent tool in our modeling as long as

Functions Pāṇinian tools

x(2) upadhā

c’1,c’2,…,v’1 if

x'1=consonant;

c’1,c’2,…,v’2 if

x'1=vowel

ekāc

Multivalued functions vā, vibhaṣā,

anyatarasyām

x(1) antya

- anuvṛtti

Table 1: Pāṇinian Techniques vs functions

20

we define some global functions and operators

such as p(x) and the ‘+’ operator.

By mathematically modeling pratyayas, the

reason behind use of these techniques employed

by Pāṇini to ensure brevity becomes very clear.

Mathematical modelling of Pāṇinian grammar

in this way helps identify some general patterns,

each of which is grouped separately as a case in

the functions. These patterns are mainly

dependent upon the occurrence of certain specific

syllables at certain places. However, we observed

that there are some dhātus which even after

fulfilling the conditions given in the cases, give an

output which is different from what is observed in

the literature. All such cases needed a separate

approach. Hence the for the treatment of such

cases input sets for those particular cases have

been defined.

The knowledge of Pāṇinian rules also helps us

reduce the number of individual cases that have

been constructed for each function. It helps group

certain cases together into a single generalized

case. For example: instead of writing three

individual functions for i→e, u→o, and ṛ→ar, the

knowledge of the rules in Aṣṭādhyāyī helps to

write a general case of the form i u ṛ → e o ar.

Writing such functions for all other pratyaya

functions may lead us towards a global function

for pratyayas and for other grammatical tools as

well. This technique of mathematical modelling is

extremely helpful to understand Sanskrit grammar

for people who are non-linguists or do not

understand the technicalities of Sanskrit grammar.

This mathematical model can also form a base for

further processing of the grammatical rules for

natural language processing of the language with

the help of well-defined input and output sets.

Acknowledgments

Our deepest regards to Prof Swapneel Mahajan

from the Department of Mathematics, IIT

Bombay whose guidance in terms of inputs and

ideas have helped shape the concept of these

functions.

References

Agrawal, S. S. (2013). Sanskrit as a Programming

Language and Natural Language Processing.

Global Journal of Management and Business

Studies. Volume 3.

Briggs, R. (1985). Knowledge Representation in

Sanskrit and artificial Intelligence. The AI

Magazine, 32-39.

Creative Commons. (2020, 1 4). Ashtadhyayi.

Retrieved from Paniniya Moolstrot:

https://ashtadhyayi.github.io/

Devasthali, G. V. (1967). Anubandhas of Panini.

Poona: W.H.Golay.

Dhaval Patel, D. (n.d.). Sanskrit Tool. Retrieved 12

16, 2019, from Sanskrit World:

https://www.sanskritworld.in/sanskrittool/Sanskrit

Verb/tiGanta.html

Dikshita, P. (2014). kavirasayanmityaparanama

kridantkoshah prathamo bhagah. pratibha

prakashan.

Goyal, L. (2011). Comparative analysis of printed

Hindi and Punjabi text based on statistical

parameters. Information systems for Indian

languages, communications in computer and

information science, Volume 139, Part 2. Berlin,

Heidelberg: Springer.

Huet, G. (2003). Lexicon-directed segmentation and

tagging in Sanskrit. (pp. 307-325). Helsinki,

Finland: In XIIth World Sanskrit Conference.

Kallrath, J. (2013). Modeling Languages in

Mathematical Optimization. Springer Science &

Business Media.

Kulkarni, A. (2016). Brevity in Pāṇini’s Aśṭādhyāyī.

In B. A. Joseph, The Interwoven World: Ideas and

Encounters in History. Common Ground

Publishing.

S.C.Vasu. (1905). The Siddhanta Kaumudi of Bhattoji

Dikshita. Allahabad, The Panini office.

Sayanacarya. (1964). The Madhaviya Dhatuvritti.

Prachya Bharati Prakashan.

Scharf, P. M. (2008). Modeling Paninian Grammar.

International Sanskrit Computational Linguistics

Symposium, (p. 97).

Sharma, D. N. (2018). Introduction To Panini's

Grammar. CC0 1.0 Universal.

Sohoni, S., & Kulkarni, M. (2018). A Functional Core

for the Computational Aṣṭādhyāyī. Computational

Sanskrit and Digital Humanities, Selected papers

presented at the 17th World Sanskrit Conference.

Source, O. (2020). १.२.३ विभाषोर्णोः. Retrieved from

Ashtadhyayimulstrota:

https://ashtadhyayi.github.io//sutra-

details/?sutra=1.2.3

Tao Gong, L. S. (2013). Modelling language

evolution: Examples and predictions. Elsivier, 2.

21

Tapaswi, N., & Jain, S. (2012). Treebank based deep

grammar acquisition and Part-Of-Speech Tagging

for Sanskrit sentences. IEEE.

Whitney, W. D. (1885). The roots, verb-forms, and

primary derivatives of the Sanskrit language. A

supplement to his Sanskrit grammar. Leipzig,

Breitkopf and Härtel.

Williams, M. (2008 revised). Monier Williams

Dictionary.

	Agrawal2013
	briggs
	creative
	devsthali
	dhaval
	dikshita
	goyal
	huet
	kallrath
	kulkarni
	vasu
	sayancarya
	scharf
	sharma
	sohoni
	source
	tao
	tapaswi
	whitney
	williams

