
Proceedings of the 17th International Conference on Natural Language Processing, pages 90–100
Patna, India, December 18 - 21, 2020. ©2020 NLP Association of India (NLPAI)

90

Self Attended Stack Pointer Networks for Learning Long Term
Dependencies

Salih Tuç
Hacettepe University

Department of Computer Engineering
Ankara, Turkey

salihtuc0@gmail.com

Burcu Can
University of Wolverhampton

Research Institute of
Information and Language Processing

Wolverhampton, UK
b.can@wlv.ac.uk

Abstract
We propose a novel deep neural architec-
ture for dependency parsing, which is built
upon a Transformer Encoder (Vaswani et al.,
2017) and a Stack Pointer Network (Ma et al.,
2018). We first encode each sentence using
a Transformer Network and then the depen-
dency graph is generated by a Stack Pointer
Network by selecting the head of each word
in the sentence through a head selection pro-
cess. We evaluate our model on Turkish and
English treebanks. The results show that our
trasformer-based model learns long term de-
pendencies efficiently compared to sequential
models such as recurrent neural networks. Our
self attended stack pointer network improves
UAS score around 6% upon the LSTM based
stack pointer (Ma et al., 2018) for Turkish sen-
tences with a length of more than 20 words.

1 Introduction

Dependency Parsing is the task of finding the gram-
matical structure of a sentence by identifying syn-
tactic and semantic relationships between words.
Dependency parsing has been utilized in many
other NLP tasks such as machine translation (Car-
reras and Collins, 2009; Chen et al., 2017), relation
extraction (Fundel-Clemens et al., 2007; Zhang
et al., 2018), named entity recognition (Jie et al.,
2017; Finkel and Manning, 2009), information ex-
traction (Angeli et al., 2015; Peng et al., 2017), all
of which involve natural language understanding
to an extent. Each dependency relation is identified
between a head word and a dependent word that
modifies the head word in a sentence. Although
such relations are considered syntactic, they are nat-
urally built upon semantic relationships between
words. For example, each dependent has a role
in modifying its head word, which is a result of a
semantic influence.

Within the context of dependency parsing, re-
lations between heads and dependents are also la-

beled by specifying the type of the grammatical
relation between words. In the Universal Depen-
dencies (de Marneffe et al., 2014) tagset, there are
37 dependency relation types defined. In the lat-
est Universal Dependencies (UD v2.0) tagset, re-
lations are split into four main categories (Core
Arguments, Non-core dependents, Nominal depen-
dents and Other) and nine sub-categories (Nom-
inals, Clauses, Modifier Words, Function Words,
Coordination, MWE, Loose Special and Other).

One way to illustrate the grammatical structure
obtained from dependency parsing is a dependency
graph. An example dependency graph is given
below:

Thank you , Mr. Poettering .

ROOT

obj
punct

vocative

flat

punct

Here, the relations are illustrated by the links
from head words to dependent words along with
their dependency labels. Every sentence has a
global head word, which is the ROOT of the sen-
tence.

There are two main difficulties in dependency
parsing. One is the long term dependencies in
especially long sentences that are difficult to be
identified in a standard Recurrent Neural Network
due to the loss of the information flow in long se-
quences. Another difficulty in parsing is the out-
of-vocabulary (OOV) words. In this work, we try
to tackle these two problems by using Transformer
Networks (Vaswani et al., 2017) by introducing
subword information for OOV words in especially
morphologically rich languages such as Turkish.
For that purpose, we integrate character-level word
embeddings obtained from Convolutional Neural
Networks (CNNs). The morphological complexity



91

in such agglutinative languages makes the parsing
task even harder because of the sparsity problem
due to the number of suffixes that each word can
take, which brings more problems in syntactic pars-
ing. Dependencies in such languages were also
defined between morphemic units (i.e. inflectional
groups) rather than word tokens (Eryiğit et al.,
2008), however this is not in the scope of this work.

In this work, we introduce a novel two-level
deep neural architecture for graph-based depen-
dency parsing. Graph-based dependency parsers
build dependency trees among all possible trees,
therefore the final dependency tree has the highest
score globally. However, in transition-based depen-
dency parsers, each linear selection in a sentence
is made based on a local score which may lead
to erroneous trees at the end of parsing. For this
reason, we prefer graph-based dependency parsing
in our approach to be able to do global selections
while building dependency trees. In the first level
of our deep neural architecture, we encode each
sentence through a transformer network (Vaswani
et al., 2017), which shows superior performance
in long sequences compared to standard recurrent
neural networks (RNNs). In the second level, we
decode the dependencies between heads and de-
pendents using a Stack Pointer Network (Ma et al.,
2018), which is extended with an internal stack
based on pointer networks (Vinyals et al., 2015).
Since stack pointer networks benefit from the full
sequence similar to self attention mechanism in
transformer networks, they do not have left-to-right
restriction as in transition based parsing. Hence, we
combine the two networks to have a more accurate
and efficient dependency parser.

We evaluate our model on Turkish which is a
morphologically rich language and on English with
a comparably poorer morphological structure. Al-
though our model does not outperform other recent
model, it shows competitive performance among
other neural dependency parsers. However, our
results show that our self attended stack pointer
network improves UAS score around 6% upon the
LSTM based stack pointer (Ma et al., 2018) for
Turkish sentences with a length of more than 20
words.

The paper is organized as follows: Section 2 re-
views the related work on both graph-based and
transition-based dependency parsing, Section 3 ex-
plains the dependency parsing task briefly, Section
4 describes the proposed deep neural architecture

Figure 1: An example to graph-based dependency pars-
ing with a maximum spanning tree.

based on Transformer Networks and Stack Pointer
Networks, and finally Section 5 presents the ex-
perimental results of the proposed model for both
English and Turkish.

2 Related Work

Dependency parsing is performed by two differ-
ent approaches: graph-based and transition-based
parsing. We review related work on both of these
approaches.

Graph-based Dependency Parsing: Graph-
based approaches are generally based on perform-
ing the entire parsing process as graph operations
where the nodes in the graph represent the words in
a sentence. For the sentence, ”John saw Mary”, we
can illustrate its parse tree with a weighted graph
G with four vertices where each of them refers
to a word including the ROOT . Edges store the
dependency scores between the words. The main
idea here is to find the maximum spanning tree
of this graph G. The parse tree of the sentence is
given in Figure 1. The dependencies are between
ROOT and saw, saw and John; and saw and
Mary where the first ones are the heads and the
latter ones are the dependents.

When the parsing structure is represented as a
graph, finding dependencies becomes easier to vi-
sualize, and moreover the task becomes finding
the highest scored tree among all possible trees.
Edge scores in the graphs represent the dependency
measures between word couples.

Neural architectures have been used for graph-
based dependency parsing extensively in the last
decade. Li et al. (2018) introduce a seq2seq model
using bi-directional LSTMs (BiLSTMs) (Hochre-
iter and Schmidhuber, 1997), where an attention
mechanism is involved between the encoder and
decoder LSTMs. Kiperwasser and Goldberg (2016)
propose another model using BiLSTMs, where the
right and left arcs in the dependency trees are iden-
tified through the BiLSTMs. Dozat and Manning
(2016) proposes a parser that uses biaffine attention
mechanism, which is extended based on the models



92

of Kiperwasser and Goldberg (2016), Hashimoto
et al. (2017), and Cheng et al. (2016). The bi-
affine parser (Dozat and Manning, 2016) provides
a baseline for other two models introduced by Zhou
and Zhao (2019) and Li et al. (2019), which forms
trees in the form of Head-Driven Phase Structure
Grammar (HPSG) and uses self-attention mecha-
nism respectively. Ji et al. (2019) propose a Graph
Neural Network (GNN) that is improved upon the
biaffine model. Another LSTM-based model is
introduced by Choe and Charniak (2016), where
dependency parsing is considered as part of lan-
guage modelling (LM) and each sentence is parsed
with a LSTM-LM architecture which builds parse
trees simultaneously with the language model.

The recent works generally focus on the encoder
in seq2seq models because a better encoding of an
input eliminates most of the cons of the sequence
models. For example, Hewitt and Manning (2019)
and Tai et al. (2015) aim to improve the LSTM-
based encoders while Clark et al. (2018) introduce
an attention-based approach to improve encoding,
where they propose Cross-View Training (CVT).

In this work, we encode each sentence through a
transformer network based on self-attention mech-
anism (Vaswani et al., 2017) and learn the head
of each word using a stack pointer network as a
decoder (Ma et al., 2018) in our deep neural ar-
chitecture. Our main aim is to learn long term de-
pendencies efficiently with a transformer network
by removing the recurrent structures from encoder.
Transformer networks (Vaswani et al., 2017) and
stack pointer networks (Ma et al., 2018) have been
used for dependency parsing before. However, this
will be the first attempt to combine these two meth-
ods for the dependency parsing task.

Transition-based Dependency Parsing: In
transition-based dependency parsing, local selec-
tions are made for each dependency relationship
without considering the complete dependency tree.
Therefore, globally motivated selections are nor-
mally not performed in transition-based parsing
by contrast with graph-based dependency parsing.
For this purpose, two stacks are employed to keep
track of the actions made during transition-based
parsing.

Similar to graph-based parsing, neural ap-
proaches have been used extensively for transition-
based parsing. Chen and Manning (2014) intro-
duce a feed forward neural network with various
extensions by utilizing single-word, word-pair and

three-word features. Weiss et al. (2015) improve
upon the model by Chen and Manning (2014) with
a deeper neural network and with a more structured
training and inference using structured perceptron
with beam-search decoding. Andor et al. (2016)
use also feed forward neural networks similar to
others and argue that feed forward neural networks
outperform RNNs in case of a global normalization
rather than local normalizations as in Chen and
Manning (2014), which apply greedy parsing.

Mohammadshahi and Henderson (2019) utilize
a transformer network, in which graph features
are employed as input and output embeddings to
learn graph relations, thereby their novel model,
Graph2Graph transformer, is introduced.

Fernández-González and Gómez-Rodrı́guez
(2019) propose a transition-based algorithm that
is similar to the stack pointer model by Ma et al.
(2018); however, left-to-right parsing is adopted on
the contrary to Ma et al. (2018), where top-down
parsing is performed. Hence, each parse tree is
built in n actions for an n length sentence without
requiring any additional data structure.

In addition to these models, there are some
works such as the greedy parser of Ballesteros et al.
(2016) and Kuncoro et al. (2016), and the high-
performance parser by Qi and Manning (2017).

Nivre and McDonald (2008) indicate that graph-
based and transition-based parsers can be also com-
bined by integrating their features. And several
works follow this idea (Goldberg and Elhadad,
2010; Spitkovsky et al., 2010; Ma et al., 2013;
Ballesteros and Bohnet, 2014; Zhang and Clark,
2008).

3 The Formal Definition of Dependency
Parsing

Dependency parsing is the task of inferring the
grammatical structure of a sentence by identifying
the relationships between words. Dependency is a
head-dependent relation between words and each
dependent is affected by its head. The dependen-
cies in a dependency tree are always from the head
to the dependents.

The parsing, no matter which approach is used,
creates a dependency tree or a graph, as we men-
tioned above. There are some formal conditions of
this graph:

• Graph should be connected.

– Each word must have a head.



93

Figure 2: An example projective tree

Figure 3: An example non-projective tree

• Graph must be acyclic.

– If there are dependencies w1→ w2 and
w2 → w3; there must not be a depen-
dency such as w3→ w1.

• Each of the vertices must have one incoming
edge.

– Each word must only have one head. A
graph that includesw1→ w2 andw3→
w2 is not allowed in a dependency graph.

A dependency tree is projective if there are no
crossing edges on the dependency graph. Figure 2
illustrates a projective tree and Figure 3 illustrates
a non-projective dependency graph.

4 Dependency Parsing with Self
Attended Stack Pointer Network

4.1 Overview

Self Attended Stack Pointer Network is extended
on a standard Stack Pointer Network (STACKPTR)
(Ma et al., 2018) along with a self attention mecha-
nism. In STACKPTR, input word embeddings are
processed via a BiLSTM-CNN encoder, where a
BiLSTM is utilized to encode each word and a
CNN is utilized to learn character-based encod-
ing of each word. All words are stored in a stack
structure and each encoded word on the top of
the stack is decoded using an LSTM decoder to
discover their heads by utilizing high-order infor-
mation such as siblings and grandparents. Finally,
each dependency relation is predicted through a
Deep BiAffine Parser Dozat and Manning (2016)
in a standard Pointer Network architecture.

Our model deviates from the STACKPTR model
with a transformer network that encodes each word
with a self-attention mechanism, which will allow
to learn long-term dependencies since every word’s
relation to all words in a sentence can be effec-
tively processed in a transformer network on the

contrary to recurrent neural networks. In sequen-
tial recurrent structures such as RNNs or LSTMs,
every word’s encoding contains information about
only previous words in a sentence and there is al-
ways a loss in the information flow through the
long sequences in those structures.

In our transformer network, we adopt a multi-
head attention and a feed-forward network. Once
we encode a sequence with a transformer network,
we decode the sequence to predict the head of each
word in that sequence by using a stack pointer net-
work.

4.2 Transformer Encoder

In RNNs, each state is informed by the previous
states with a sequential information flow through
the states. However, in longer sequences, informa-
tion passed from earlier states loses its effect on
the later states in RNNs by definition. Transformer
networks are effective attention-based neural net-
work architectures (Vaswani et al., 2017). The main
idea is to replace the recurrent networks with a sin-
gle transformer network which has the ability to
compute the relationships between all words in a
sequence with a self-attention mechanism without
requiring any recurrent structure. Therefore, each
word in a sequence will be informed by all other
words in the sequence.

Learning long term dependencies in especially
long sentences is still one of the challenges in de-
pendency parsing. We employ transformer net-
works in order to tackle with the long term depen-
dencies problem by eliminating the usage of recur-
rent neural networks while encoding each sentence
during parsing. Hence, we use transformer network
as an encoder to encode each word by feeding our
transformer encoder with each word’s pretrained
word embeddings (Glove (Pennington et al., 2014)
or Polyglot (Al-Rfou’ et al., 2013) embeddings),
part-of-speech (PoS) tag embeddings, character-
level word embeddings obtained from CNN, and
the positional encodings of each word.

Positional encoding (PE) is used to inject posi-
tional information for each encoded word, since
there is not a sequential recurrent structure in a self
attention mechanism. With the positional encoding,
some relative or absolute positions of words in a
sentence are utilized. The cos function is used for
the odd indices and the sin function is used for
even indices. The injection of the position infor-
mation is performed with the sinus waves. The



94

Figure 4: Overview of the Self-Attended Pointer Network Model. After concatenating word embeddings, POS tag
embeddings, and char-embeddings obtained from CNN, the final embedding is fed into the self-attention encoder
stack. Then, embedding of the word at the top of the stack, its sibling and grandparent vectors are summed-up in
order to predict the dependency head.

sin function for the even indices is computed as
follows:

PE(x, 2i) = sin

(
x

100002i/dmodel

)
(1)

where dmodel is the dimension of the word embed-
dings, i ∈ [0, dmodel/2), and x is the position of
each word where x ∈ [0, n] in the input sequence
s = (w0, w1 . . . wn). The cos function for the odd
indices is computed analogously.

The positional encoding is calculated for each
embedding and they are summed. So the dimen-
sion dmodel does not change. Concatenation is also
possible theoretically. However, in the input and
output embeddings, the position information is in-
cluded in the first few indices in the embedding.
Thus, when the dmodel is large enough, there is no
need to concatenate. The summation also meets
the requirements.

The Encoder stack contains a Multi-Head At-
tention and a Feed-Forward Network. A Layer
Normalization is applied after each of these two
layers. There could be more than one encoder in
the encoder stack. In this case, all of the outputs
in one encoder is fed into the next encoder in the
encoder stack. In our model, we performed several
experiments with different number of encoder lay-
ers in the encoder stack to optimize the number of
encoder layers for parsing.

Multi-Head Attention is evolved from Self-
Attention Mechanism, which enables encoding all
words using all of the words in the sentence. So it
learns better relations between words compared
to recurrent structures. The all-to-all encoding
in self-attention mechanism is performed through

query, key and value matrices. There are multiple
sets of queries, keys and values that are learned
in the model. Self-attention is calculated for each
of these sets and a new embedding is produced.
The new embeddings for each set are concatenated
and multiplied with Z matrix which is a randomly-
initialized matrix in order to compute the final em-
beddings. Z matrix is trained jointly and multiplied
with the concatenated weight matrix in order to re-
duce the embeddings into a single final embedding
for each set. In other words, the final embedding is
learnt from different contexts at the same time. It is
multi-head because it learns from the head of each
set. The head of each set is calculated by using
self-attention.

Finally, a Feed Forward Neural Network which
is basically a neural network with two linear layers
and ReLU activation function is used to process the
embeddings obtained from multi-head attention. It
is placed at the end of the encoder because with
this feed-forward neural network, we can train the
embeddings with a latent space of words.

Layer Normalization (Ba et al., 2016) is applied
to normalize the weights and retain some form
of information from the previous layers, which is
performed for both Multi-Head Attention and Feed
Forward Neural Network.

Final output embeddings contain contextual in-
formation about the input sentence and the words
in the sequence. So, the output of the Trans-
former Encoder is a -theoretically- more compre-
hensive representation of contextual information
compared to the input word embeddings and also
compared to the the output of a BiLSTM encoder



95

head sibling modifier

Figure 5: Sibling structure

grandparent head modifier

Figure 6: Grandchild structure

of a STACKPTR.

4.3 Stack Pointer Network
Stack Pointer Network (STACKPTR) (Ma et al.,
2018) is a transition-based structure but it still per-
forms a global optimization over the potential de-
pendency parse trees of a sentence. STACKPTR is
based on a pointer network (PTR-NET) (Vinyals
et al., 2015) but differently, a STACKPTR has a
stack to store the order of head words in trees. In
each step, an arc is built from a child to the head
word at the top of the stack based on the attention
scores obtained from a pointer network.

We use a Stack Pointer Network for decoding
the sequence to infer the dependencies, where each
word is encoded with a Transformer Network as
mentioned in the previous section.

The transformer encoder outputs a hidden state
vector si for the ith word in the sequence. The hid-
den state vector is summed with higher-order infor-
mation similar to that of Ma et al. (2018). There are
two types of higher-order information in the model:
Sibling (two words that have the same parent) and
grandparent/grandchild (parent of the word’s par-
ent and the child of the word’s child). Figure 5 and
Figure 6 shows an illustration of these high-order
structures.

So, the input vector for the decoder is the sum of
the state vector of the word on the top of the stack,
its sibling and its grandparent:

βi = sh + ss + sg (2)

In the decoder part, an LSTM gathers all of the
contextual and higher-order information about the
word at the top of stack. Normally, in the pointer
networks, at each time step t, the decoder receives
the input from the last step and outputs decoder
hidden state ht. Therefore, an attention score is

obtained as follows:

eti = score(ht, si) (3)

where et is the output of the scoring function, si
is the encoder hidden state and ht is the decoder
hidden state at time step t. After calculating the
score for each possible output in the Biaffine atten-
tion mechanism, the final prediction is performed
as follows with a softmax function to convert it into
a probability distribution:

at = softmax(et) (4)

where at is the output probability vector for each
possible child word and et is the output vector of
the scoring function.

In our model, scoring function is adopted from
Deep Biaffine attention mechanism (Dozat and
Manning, 2016):

eti = hTt Wsi + U tht + V tsi + b (5)

where W is the weight matrix, U and V are the
weight vectors and b is the bias.

Additionally, before the scoring function, an
MLP is applied to the output of decoder, as pro-
posed by Dozat and Manning (2016) to reduce the
dimensionality.

As for the dependency labels, we also use an-
other MLP to reduce the dimensionlity and then
apply deep biaffine to score the possible labels for
the word at the top of the stack.

4.4 Learning

We use cross-entropy loss for training the model
similar to STACKPTR. The probability of a parse
tree y for a given sentence x under the parameter
set θ is Pθ(y|x) and estimated as follows:

Pθ(y|x) =
k∏
i=1

Pθ(pi|p<i, x) (6)

=
k∏
i=1

li∏
j=1

Pθ(ci,j |ci,<j , p<i, x) (7)

p<i denotes the preceding paths that have already
been generated, ci,j represents the jth word in the
path pi and ci,<j denotes all the proceeding words
on the path pi. Here, a path consists of a sequence
of words from the root to the leaf.

The model learns the arcs and labels in the de-
pendency tree simultaneously.



96

5 Experiments & Results

5.1 Datasets
We ran experiments on both Turkish and English.
We used Penn Treebank (PTB) (Marcus et al.,
1993) for English and IMST dataset (Sulubacak
et al., 2016) in Universal Dependencies for Turk-
ish.

As for the word embeddings, we used pre-trained
Glove embeddings (Pennington et al., 2014) on
Wikipedia and pre-trained Polyglot embeddings
(Al-Rfou’ et al., 2013) on Wikipedia for both Turk-
ish and English.

5.2 Evaluation Metrics
For the evaluation, we used two different evaluation
metrics: UAS and LAS, which are the standard
metrics for dependency parsing.

UAS is a metric that is used to calculate the ac-
curacy of predicting words’ heads. In other words,
it is the ratio of the number of correctly predicted
heads to the total number of words in the dataset:

UAS = #ofcorrectheads

#ofwords
(8)

LAS is another metric for dependency parsing
that measures the correctness of both heads and
labels. In other words, it is the ratio of correctly
predicted heads and labels to the total number of
words in the dataset:

LAS = #ofcorrecthead, labelpair

#ofwords
(9)

5.3 Hyperparameters
In our experiments, we use similar configurations
with the baseline models: STACKPTR model by
Ma et al. (2018) and Self-Attention mechanism by
Vaswani et al. (2017). Differently from the base-
line models, for the self-attended encoder stack; we
used 6 layers because this configuration performs
better with the Polyglot embeddings for both En-
glish and Turkish as seen in Table 1 and Table 2 for
English and Turkish respectively.

5.4 Results
The results obtained from IMST dataset (Suluba-
cak et al., 2016) in Turkish is given in Table 3,
along with the results of other related work. OUr
results compared to other related work show com-
petitive performance for Turkish language. Our
model gives an UAS score of 74.43% and LAS
score of 64.26% with Glove embeddings, whereas

Layer UAS
1 86.24
2 88.56
4 92.40
6 94.23
8 93.13

Table 1: Accuracy for different number of encoder lay-
ers for PTB Dataset (Marcus et al., 1993)

Layer UAS
1 69.89
2 71.48
4 74.51
6 76.81
8 75.32

Table 2: Accuracy for different number of encoder lay-
ers for Turkish IMST Dataset (Sulubacak et al., 2016)

an UAS score of 76.81% and LAS score of 67.95%
are obtained with Polyglot embeddings. Therefore,
using Polyglot embeddings gives far better results
in Turkish. This could be due to the size of the
train set used for the Polyglot embeddings.

The results obtained from Penn Treebank dataset
(Marcus et al., 1993) in English is given in Table
4. Our results again show competitive performance
compared to other related work for English. Simi-
lar to the Turkish results, our model performs bet-
ter with Polyglot embeddings. While Glove gives
93.43% UAS and 91.98% LAS, Polyglot gives
94.23% UAS and 92.67% LAS.

5.5 Error Analysis

5.5.1 Sentence Length
The main aim in this study is to utilize Transformer
Networks to resolve the long-term dependencies
problem in dependency parsing. We analyzed the
accuracy of our model in both short and longer
sentences to see the impact of the Transformer
Networks in our model compared to sequential
STACKPTR model that is based on LSTMs.

Table 7 gives the results for different lengths of
sentences to show the impact of using Transformer
Networks in long term depedencies. We compare
our model with the original STACKPTR (Ma et al.,
2018) model, which is based on LSTMs. As the
results show, our model performs far better for
sentences with more than 20 words compared to the
standard STACKPTR model, with an improvement



97

Model UAS LAS
Our Model w/ Glove 74.43 64.26

Our Model w/ Polyglot 76.81 67.95
Nguyen and Verspoor (2018) 70.53 62.55

Kondratyuk and Straka (2019) 74.56 67.44
McDonald et al. (2006) 74.70 63.20

Dozat and Manning (2016) 77.46 68.02
Ma et al. (2018) 79.56 68.93

Ballesteros et al. (2015) 79.30 69.28

Table 3: Results for Turkish IMST Dataset (Sulubacak
et al., 2016)

Model UAS LAS
Our Model w/ Glove 93.43 91.98

Our Model w/ Polyglot 94.23 92.67
Ballesteros et al. (2015) 91.63 89.44

Chen and Manning (2014) 91.8 89.6
Kiperwasser and Goldberg (2016) 93.1 91.0

Ballesteros et al. (2016) 93.56 91.42
Weiss et al. (2015) 94.26 92.41
Andor et al. (2016) 94.61 92.79

Ma and Hovy (2017) 94.88 92.98
Dozat and Manning (2016) 95.74 94.08

Ma et al. (2018) 95.87 94.19

Table 4: Results for English PTB Dataset (Marcus et al.,
1993)

of UAS score with around 7%.
For less than 20 words, our model’s accuracy

is lower compared to longer sentences. It shows
that our self-attention based model is not able to
learn shorter sentences better than the BiLSTM
based STACKPTR model. However, we observed
that decreasing the number of layers in our encoder
stack gives a higher accuracy for shorter sentences.
However, it decreases the overall accuracy for the
entire dataset.

5.5.2 The Impact of Punctuation

We also analyzed the impact of using punctua-
tion in the datasets during training. Analysis of
Spitkovsky et al. (Spitkovsky et al., 2011) shows
that the usage of lexicalized and punctuated sen-
tences gives better results in dependency parsing.
So, we ran our model with both punctuated and
not-punctuated versions of both datasets in Turkish
and English. Table 5 shows that punctuation af-
fects the learning of the model for both languages

Dataset w/ Punctuation w/o Punctuation
PTB 94.23 (92.67) 93.47 (91.94)

IMST 76.81 (67.95) 71.96 (62.41)

Table 5: Accuracy (UAS (LAS)) with and without
punctuation on IMST (Sulubacak et al., 2016) and PTB
(Marcus et al., 1993) Datasets

Input Embeddings UAS
Glove 63.24

Polyglot 65.76
Polyglot + PoS 70.48
Polyglot + CNN 73.81

Polyglot + PoS + CNN 76.81

Table 6: The impact of using word embeddings (Glove
or Polyglot), PoS tag embeddings and character-based
word embeddings for the Turkish IMST Dataset (Su-
lubacak et al., 2016)

and the results are comparably higher when the
punctuation is also used in the datasets. The im-
pact of using punctuation is even more for Turkish
language and both UAS and LAS are around %5
higher compared to training on datasets without
punctuation.

5.5.3 The Impact of Using Embeddings
We analyzed the effect of using various embeddings
in the Transformer encoder. As mentioned before,
we utilize word embeddings, PoS tag embeddings
and char embeddings obtained from CNN in our
model. Table 6 shows the impact of the embed-
dings on the accuracy of the model. As the results
show, character-level encoding plays a crucial role
in our model because it helps to mitigate the OOV
problem during training. We obtained the highest
scores when Polyglot word embeddings, PoS tag
embeddings and character-based word embeddings
are incorporated in training.

6 Conclusion & Future Work

Our experiments show that using Self-Attention
mechanism increases parsing accuracy especially
in longer sentences in Turkish. However, our parser
requires more data to learn better for also shorter
sentences. The results also show that using charac-
ter level word embeddings along with word embed-
dings and PoS tag embeddings gives the highest
accuracy for our model.

We obtained the highest scores when we include



98

Number of words in sentence UAS - STACKPTR UAS - Self-Attended STACKPTR

less than 10 words 93.23 86.47
between 10 and 20 words 88.96 81.63

more than 20 words 56.49 62.33

Table 7: Accuracies for different lengths of sentences in IMST Dataset in Turkish (Sulubacak et al., 2016)

6 layers in our encoder stack by using Polyglot
embeddings. Our results also show that including
punctuation in the dataset improves the accuracy
substantially.

We leave integrating morpheme-level informa-
tion in especially morphologically rich languages
such as Turkish as future work.

References
Rami Al-Rfou’, Bryan Perozzi, and Steven Skiena.

2013. Polyglot: Distributed word representations
for multilingual NLP. In Proceedings of the Seven-
teenth Conference on Computational Natural Lan-
guage Learning, pages 183–192, Sofia, Bulgaria.
Association for Computational Linguistics.

Daniel Andor, Chris Alberti, David Weiss, Aliaksei
Severyn, Alessandro Presta, Kuzman Ganchev, Slav
Petrov, and Michael Collins. 2016. Globally normal-
ized transition-based neural networks. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2442–2452, Berlin, Germany. Associa-
tion for Computational Linguistics.

Gabor Angeli, Melvin Jose Johnson Premkumar, and
Christopher D. Manning. 2015. Leveraging linguis-
tic structure for open domain information extraction.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
344–354, Beijing, China. Association for Computa-
tional Linguistics.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer normalization.

Miguel Ballesteros and Bernd Bohnet. 2014. Au-
tomatic feature selection for agenda-based depen-
dency parsing. In Proceedings of COLING 2014,
the 25th International Conference on Computa-
tional Linguistics: Technical Papers, pages 794–
805, Dublin, Ireland. Dublin City University and As-
sociation for Computational Linguistics.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith.
2015. Improved transition-based parsing by model-
ing characters instead of words with lstms.

Miguel Ballesteros, Yoav Goldberg, Chris Dyer, and
Noah A. Smith. 2016. Training with exploration im-
proves a greedy stack-lstm parser.

Xavier Carreras and Michael Collins. 2009. Non-
projective parsing for statistical machine translation.
In Proceedings of the 2009 Conference on Empiri-
cal Methods in Natural Language Processing, pages
200–209, Singapore. Association for Computational
Linguistics.

Danqi Chen and Christopher Manning. 2014. A fast
and accurate dependency parser using neural net-
works. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 740–750, Doha, Qatar. Association
for Computational Linguistics.

Huadong Chen, Shujian Huang, David Chiang, and Ji-
ajun Chen. 2017. Improved neural machine trans-
lation with a syntax-aware encoder and decoder.
pages 1936–1945.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao,
and Li Deng. 2016. Bi-directional attention with
agreement for dependency parsing. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 2204–2214,
Austin, Texas. Association for Computational Lin-
guistics.

Do Kook Choe and Eugene Charniak. 2016. Parsing
as language modeling. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2331–2336, Austin, Texas.
Association for Computational Linguistics.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc V. Le. 2018. Semi-supervised se-
quence modeling with cross-view training.

Timothy Dozat and Christopher D. Manning. 2016.
Deep biaffine attention for neural dependency pars-
ing.

Gülşen Eryiğit, Joakim Nivre, and Kemal Oflazer. 2008.
Dependency parsing of turkish. Computational Lin-
guistics, 34(3):357–389.

Daniel Fernández-González and Carlos Gómez-
Rodrı́guez. 2019. Left-to-right dependency parsing
with pointer networks. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 710–716, Minneapolis, Minnesota.
Association for Computational Linguistics.

Jenny Rose Finkel and Christopher D. Manning. 2009.
Joint parsing and named entity recognition. In Pro-
ceedings of Human Language Technologies: The

https://www.aclweb.org/anthology/W13-3520
https://www.aclweb.org/anthology/W13-3520
https://doi.org/10.18653/v1/P16-1231
https://doi.org/10.18653/v1/P16-1231
https://doi.org/10.3115/v1/P15-1034
https://doi.org/10.3115/v1/P15-1034
http://arxiv.org/abs/1607.06450
https://www.aclweb.org/anthology/C14-1076
https://www.aclweb.org/anthology/C14-1076
https://www.aclweb.org/anthology/C14-1076
http://arxiv.org/abs/1508.00657
http://arxiv.org/abs/1508.00657
http://arxiv.org/abs/1603.03793
http://arxiv.org/abs/1603.03793
https://www.aclweb.org/anthology/D09-1021
https://www.aclweb.org/anthology/D09-1021
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.18653/v1/P17-1177
https://doi.org/10.18653/v1/P17-1177
https://doi.org/10.18653/v1/D16-1238
https://doi.org/10.18653/v1/D16-1238
https://doi.org/10.18653/v1/D16-1257
https://doi.org/10.18653/v1/D16-1257
http://arxiv.org/abs/1809.08370
http://arxiv.org/abs/1809.08370
http://arxiv.org/abs/1611.01734
http://arxiv.org/abs/1611.01734
https://doi.org/10.18653/v1/N19-1076
https://doi.org/10.18653/v1/N19-1076
https://www.aclweb.org/anthology/N09-1037


99

2009 Annual Conference of the North American
Chapter of the Association for Computational Lin-
guistics, pages 326–334, Boulder, Colorado. Associ-
ation for Computational Linguistics.

Katrin Fundel-Clemens, Robert Küffner, and Ralf Zim-
mer. 2007. Relex - relation extraction using de-
pendency parse trees. Bioinformatics (Oxford, Eng-
land), 23:365–71.

Yoav Goldberg and Michael Elhadad. 2010. An effi-
cient algorithm for easy-first non-directional depen-
dency parsing. In Human Language Technologies:
The 2010 Annual Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics, pages 742–750, Los Angeles, California.
Association for Computational Linguistics.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa Tsu-
ruoka, and Richard Socher. 2017. A joint many-task
model: Growing a neural network for multiple NLP
tasks. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 1923–1933, Copenhagen, Denmark. Associa-
tion for Computational Linguistics.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word repre-
sentations. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4129–4138, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long
short-term memory. Neural computation, 9:1735–
80.

Tao Ji, Yuanbin Wu, and Man Lan. 2019. Graph-
based dependency parsing with graph neural net-
works. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 2475–2485, Florence, Italy. Association
for Computational Linguistics.

Zhanming Jie, Aldrian Obaja Muis, and Wei Lu. 2017.
Efficient dependency-guided named entity recogni-
tion. In Proceedings of the Thirty-First AAAI Con-
ference on Artificial Intelligence, AAAI’17, page
3457–3465. AAAI Press.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Sim-
ple and accurate dependency parsing using bidirec-
tional LSTM feature representations. Transactions
of the Association for Computational Linguistics,
4:313–327.

Dan Kondratyuk and Milan Straka. 2019. 75 lan-
guages, 1 model: Parsing universal dependencies
universally.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, and Noah A. Smith. 2016. Distill-
ing an ensemble of greedy dependency parsers into
one mst parser.

Ying Li, Zhenghua Li, Min Zhang, Rui Wang, Sheng
Li, and Luo Si. 2019. Self-attentive biaffine depen-
dency parsing. In Proceedings of the 28th Inter-
national Joint Conference on Artificial Intelligence,
pages 5067–5073. AAAI Press.

Zuchao Li, Jiaxun Cai, Shexia He, and Hai Zhao. 2018.
Seq2seq dependency parsing. In Proceedings of
the 27th International Conference on Computational
Linguistics, pages 3203–3214, Santa Fe, New Mex-
ico, USA. Association for Computational Linguis-
tics.

Ji Ma, Jingbo Zhu, Tong Xiao, and Nan Yang. 2013.
Easy-first POS tagging and dependency parsing with
beam search. In Proceedings of the 51st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 110–114,
Sofia, Bulgaria. Association for Computational Lin-
guistics.

Xuezhe Ma and Eduard Hovy. 2017. Neural proba-
bilistic model for non-projective MST parsing. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 59–69, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Xuezhe Ma, Zecong Hu, Jingzhou Liu, Nanyun Peng,
Graham Neubig, and Eduard Hovy. 2018. Stack-
pointer networks for dependency parsing. In Pro-
ceedings of the 56th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 1403–1414, Melbourne, Australia.
Association for Computational Linguistics.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.

Marie-Catherine de Marneffe, Timothy Dozat, Na-
talia Silveira, Katri Haverinen, Filip Ginter, Joakim
Nivre, and Christopher D. Manning. 2014. Uni-
versal Stanford dependencies: A cross-linguistic ty-
pology. In Proceedings of the Ninth International
Conference on Language Resources and Evaluation
(LREC-2014), pages 4585–4592, Reykjavik, Ice-
land. European Languages Resources Association
(ELRA).

Ryan McDonald, Kevin Lerman, and Fernando Pereira.
2006. Multilingual dependency analysis with a two-
stage discriminative parser. In Proceedings of the
Tenth Conference on Computational Natural Lan-
guage Learning (CoNLL-X), pages 216–220, New
York City. Association for Computational Linguis-
tics.

Alireza Mohammadshahi and James Henderson. 2019.
Graph-to-graph transformer for transition-based de-
pendency parsing.

Dat Quoc Nguyen and Karin Verspoor. 2018. An im-
proved neural network model for joint. Proceedings
of the.

https://doi.org/10.1093/bioinformatics/btl616
https://doi.org/10.1093/bioinformatics/btl616
https://www.aclweb.org/anthology/N10-1115
https://www.aclweb.org/anthology/N10-1115
https://www.aclweb.org/anthology/N10-1115
https://doi.org/10.18653/v1/D17-1206
https://doi.org/10.18653/v1/D17-1206
https://doi.org/10.18653/v1/D17-1206
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.18653/v1/P19-1237
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
https://doi.org/10.1162/tacl_a_00101
http://arxiv.org/abs/1904.02099
http://arxiv.org/abs/1904.02099
http://arxiv.org/abs/1904.02099
http://arxiv.org/abs/1609.07561
http://arxiv.org/abs/1609.07561
http://arxiv.org/abs/1609.07561
https://www.aclweb.org/anthology/C18-1271
https://www.aclweb.org/anthology/P13-2020
https://www.aclweb.org/anthology/P13-2020
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/I17-1007
https://doi.org/10.18653/v1/P18-1130
https://doi.org/10.18653/v1/P18-1130
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/1062_Paper.pdf
https://www.aclweb.org/anthology/W06-2932
https://www.aclweb.org/anthology/W06-2932
http://arxiv.org/abs/1911.03561
http://arxiv.org/abs/1911.03561
https://doi.org/10.18653/v1/k18-2008
https://doi.org/10.18653/v1/k18-2008


100

Joakim Nivre and Ryan McDonald. 2008. Integrat-
ing graph-based and transition-based dependency
parsers. In Proceedings of ACL-08: HLT, pages
950–958, Columbus, Ohio. Association for Compu-
tational Linguistics.

Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina
Toutanova, and Wen-tau Yih. 2017. Cross-sentence
n-ary relation extraction with graph lstms. Transac-
tions of the Association for Computational Linguis-
tics, 5.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 1532–1543, Doha, Qatar. Asso-
ciation for Computational Linguistics.

Peng Qi and Christopher D. Manning. 2017. Arc-swift:
A novel transition system for dependency parsing.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2010. From baby steps to leapfrog: How
“less is more” in unsupervised dependency parsing.
In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter
of the Association for Computational Linguistics,
pages 751–759, Los Angeles, California. Associa-
tion for Computational Linguistics.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Ju-
rafsky. 2011. Punctuation: Making a point in un-
supervised dependency parsing. In Proceedings of
the Fifteenth Conference on Computational Natural
Language Learning, pages 19–28, Portland, Oregon,
USA. Association for Computational Linguistics.

Umut Sulubacak, Memduh Gokirmak, Francis Tyers,
Çağrı Çöltekin, Joakim Nivre, and Gülşen Eryiğit.
2016. Universal dependencies for Turkish. In Pro-
ceedings of COLING 2016, the 26th International
Conference on Computational Linguistics: Techni-
cal Papers, pages 3444–3454, Osaka, Japan. The
COLING 2016 Organizing Committee.

Kai Sheng Tai, Richard Socher, and Christopher D.
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1556–1566, Beijing, China. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks.

David Weiss, Chris Alberti, Michael Collins, and Slav
Petrov. 2015. Structured training for neural net-
work transition-based parsing. In Proceedings of
the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 323–333, Beijing,
China. Association for Computational Linguistics.

Yue Zhang and Stephen Clark. 2008. A tale of two
parsers: Investigating and combining graph-based
and transition-based dependency parsing. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 562–
571, Honolulu, Hawaii. Association for Computa-
tional Linguistics.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency
trees improves relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205–2215, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Junru Zhou and Hai Zhao. 2019. Head-driven phrase
structure grammar parsing on Penn treebank. In
Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2396–2408, Florence, Italy. Association for Compu-
tational Linguistics.

https://www.aclweb.org/anthology/P08-1108
https://www.aclweb.org/anthology/P08-1108
https://www.aclweb.org/anthology/P08-1108
https://doi.org/10.1162/tacl_a_00049
https://doi.org/10.1162/tacl_a_00049
https://doi.org/10.3115/v1/D14-1162
https://doi.org/10.3115/v1/D14-1162
http://arxiv.org/abs/1705.04434
http://arxiv.org/abs/1705.04434
https://www.aclweb.org/anthology/N10-1116
https://www.aclweb.org/anthology/N10-1116
https://www.aclweb.org/anthology/W11-0303
https://www.aclweb.org/anthology/W11-0303
https://www.aclweb.org/anthology/C16-1325
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
https://doi.org/10.3115/v1/P15-1150
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1506.03134
https://doi.org/10.3115/v1/P15-1032
https://doi.org/10.3115/v1/P15-1032
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/D08-1059
https://www.aclweb.org/anthology/D08-1059
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

