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Abstract

In this paper we describe our system submitted to the FinTOC-2020 shared task on financial doc-
ument structure extraction. We propose a two-step approach to identify titles in financial docu-
ments and to extract their table of contents (TOC). First, we identify text blocks as candidates for
titles using unsupervised learning based on character-level information of each document. Then,
we apply supervised learning on a self-constructed regression task to predict the depth of each
text block in the document structure hierarchy using transfer learning combined with document
features and layout features. It is noteworthy that our single multilingual model performs well on
both tasks and on different languages, which indicates the usefulness of transfer learning for title
detection and TOC generation. Moreover, our approach is independent of the presence of actual
TOC pages in the documents. It is also one of the few submissions to the FinTOC-2020 shared
task addressing both subtasks in both languages, English and French, with one single model.

1 Introduction

While large amounts of documents are created and published in machine-readable file formats such as
PDF, only a small fraction come with structural information, e.g. on their table of contents (TOC).
This is especially true in the financial domain where a table of contents, e.g. for annual reports or
shareholder reports, would be particularly helpful. Even though it is often regulated which content these
documents must include (Juge et al., 2019), an automated analysis of their structure remains difficult
for several reasons. One is that financial documents usually come with a complicated layout consisting
of text blocks, tables and figures of various kinds. Also, such documents typically come with a highly
nested hierarchy of subsections. Additionally, most of these documents are published as PDF, which is
the defacto standard for the creation of electronic documents, even though this file format comes with
several inherent drawbacks (Hu and Liu, 2014). PDF files contain little structural information about the
contents, such as words, lines or paragraphs, which would be helpful for automatic structure analysis.
Moreover, there exist various different ways to generate a PDF, which further complicates the automatic
analysis of the structure of such documents, especially in multicolumn settings.

Despite the importance and diverse use cases of automatic structure analysis of documents, there is
only a small research stream focusing on this topic. The FinTOC-2020 shared task about Financial
Document Structure Extraction (Bentabet et al., 2020) promotes research in this field by proposing two
language tracks for English and French together with a benchmark data set of financial documents. The
goal of the shared task is to design systems that solve the following two subtasks:

• Title detection: Given a document, extract text blocks and identify which ones are titles.
• Table of contents (TOC) generation: Given a document, identify titles and their nesting depths.

In this paper we describe our solution to the shared task, a multilingual approach based on transfer
learning that jointly solves both problems title detection and TOC generation for both languages.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:
//creativecommons.org/licenses/by/4.0/.
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Figure 1: The financial documents of the FinTOC-2020 shared task vary greatly with respect to their number of pages, number
of titles and the depth of their TOC tree. On the entire set across both languages, the number of pages ranges from 3 to 285, the
number of titles ranges from 20 to 1039 and the TOC tree depth from 1 to 9.

The paper is organized as follows. We first review previous work in Section 2 and describe the data
that was provided for the FinTOC-2020 shared task in Section 3. We then present our system in Section 4
before we report and discuss our results in Section 5. The paper ends with a conclusion in Section 6.

2 Previous Work

The first approaches to TOC generation are based on physical layout analysis, e.g. (Conway, 1993).
Here, physical entities of a document, such as pages, paragraphs, and figures are extracted and mapped
onto a hierarchy of logical entities such as titles, authors and sections from which the TOC is then
derived. These approaches are often based on heuristic rules and grammars (Mao et al., 2003). As
these predefined rules are mostly domain-specific, these approaches fail to generalize to a diverse set of
documents from different domains (Najah-Imane et al., 2019).

Other approaches explicitly parse the title hierarchy from embedded TOC pages (Dresevic et al., 2009;
Nguyen et al., 2017). While these approaches generalize across different domains, they fail on documents
without TOC pages or whenever the TOC page does not reflect the entire document structure, e.g. in
cases of deeply nested subtitles not mentioned on the TOC page (Giguet and Lejeune, 2019).

Yet another set of approaches leverage learning-based methods to predict the TOC, e.g. based on
both layout and text features of the document. In (Najah-Imane et al., 2019), for example, titles are first
detected using a convolutional neural network (CNN) (Kim, 2014); then the corresponding depth of each
title is predicted using a combination of a bidirectional long short term memory (BiLSTM) network and
a conditional random field (CRF) model, as suggested by (Huang et al., 2015) for sequence tagging.

The approaches from the FinTOC-2019 challenge (Juge et al., 2019) mostly fall into the latter two
categories: explicit TOC parsing and learning-based methods.

3 Data

The training data of the FinTOC-2020 shared task consists of 52 English and 47 French financial PDF
documents. Every document page comes along with a set of annotations, which include both the text
and the depth for each title. The box plots in Figure 1 show the heterogeneity of the financial documents
from this data set. In the median, a financial document from this data set has 34 pages, 132 titles and a
TOC tree depth of 4. However, the number of pages ranges from 3 to 285, so some documents are very
small while others are rather large. Also, the number of titles varies from 20 to 1039 across the different
documents. While some TOC trees are flat with a depth of only 1, some are very nested with a depth
of 9. This heterogeneity of the financial documents in the data set underlines their complex layout and
hence the difficulty of the task to detect titles and extract the TOC.

4 System

Our system works directly on the entire content of a document and is trained for both English and French
documents jointly. We apply a two-step approach, where we first detect candidate text blocks and predict
their TOC depth in a subsequent step as a regression task. The system is described in Figure 2.
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Figure 2: Text blocks are detected (left side) by extracting, scaling and weighting character-level features on which a DBSCAN
clustering is applied. For TOC generation (right side), document features, layout features and text blocks are combined to train
a neural network to predict the depth of each text block.

4.1 Text Block Detection

Previous work on text block detection applies spatial layout processing in combination with a defined
set of rules, e.g. (Ramakrishnan et al., 2012). Other works leverage learning-based approaches, e.g. the
work of (Klampfl et al., 2014), where text blocks are detected using the unsupervised learning approach
of hierarchical agglomerative clustering (HAC). Their clustering mechanism joins characters into groups
that represent words, and groups of words into contiguous blocks of text.

Similarly, we apply DBSCAN clustering (Ester et al., 1996) and combine layout features (character
coordinates) as well as font features (font size, font color and font type). We find DBSCAN clustering
to outperform HAC on this given data set. For each character on a page of a document, we extract
the bounding box coordinates and label-encode font color, font size and font type. After extraction,
these features are scaled using min-max normalization. Then, we apply the DBSCAN clustering with
Minkowski distance of order 1 on the character-level data set per page.

To find appropriate hyperparameters for the DBSCAN clustering and appropriate scaling weights for
our layout features and font features, we use Bayesian optimization as suggested in (Snoek et al., 2012).
As objective we maximize the amount of titles that can be mapped correctly to the training data anno-
tations. To map candidate titles to ground truth titles we use the same customized Levenshtein distance
from the evaluation metric of the FinTOC-2020 shared task (Bentabet et al., 2020). While we optimize
the Eps hyperparameter of DBSCAN, we fix the MinPts parameter to 1. This hyperparameter opti-
mization process has revealed the following: The vertical position, font type, font color and font size are
important features when applying clustering on character-level. After optimization, our approach was
able to extract text blocks that could be matched to 95.7% of the titles from the training data annotations.

4.2 Table of Contents Extraction

To estimate the depth of the text blocks extracted in the previous step, we construct a data set that can be
used for supervised learning. For each text block ti that can be mapped to a ground truth title, we set its
label to the ground truth depth di. We assume that text blocks that cannot be mapped to a ground truth
title to be in fact not a title. For such text blocks we define their TOC depth to be di = 0. That is, we treat
depth 0 as a placeholder for everything that is not a title. This notation allows to train one model that can
be applied to both the title detection subtask and the TOC generation subtask. Now, we have an annotated
set of text blocks together with their depth in the TOC tree. We aim to train a model that we can use to
predict the TOC tree depth of a given text block. For every text block we compute the following features:
First, we represent a text block by the features used for the DBSCAN clustering as described in section
4.1. Then, we add layout features to describe the majority font color, font size and font type of all charac-
ters in the text block. To also capture information that puts the text block in relation to the document, we
further compute the following features: is most frequent font, is most frequent color
and is most frequent size. Additionally, we add document features to the data set, comprising
min, max and mean font size of the entire document.
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Figure 3: In our experiments we observed a positive impact
of both fine-tuning the pretrained layers of the BERT model
(orange vs blue lines) and of additionally incorporating
document and layout features (dashed vs solid lines).

Title detection task TOC generation task
FR EN FR EN

Team F1 Team F1 Team hmean-
F1-Title-
Acc

Team hmean-
F1-Title-
Acc

UWB 0.81 Amex 1 0.79 DNLP 0.37 DNLP 0.34
Taxy.io 0.69 Amex 2 0.79 Taxy.io 0.32 Daniel 3 0.28
Daniel 1 0.66 UWB 0.77 Daniel 1 0.22 Daniel 2 0.28
DNLP 0.64 Daniel 1 0.69 Daniel 2 0.22 Daniel 1 0.26

Daniel 2 0.64 Daniel 3 0.63 Daniel 3 0.20 Taxy.io 0.24
Daniel 3 0.64 Daniel 2 0.62 Amex 1 0.23

DNLP 0.59 Amex 2 0.23
Taxy.io 0.55

Table 1: In comparison to the other approaches submitted to
the shared task, our approach ranks 2nd on the title detection
task and 2nd on the TOC generation task for French, while
we rank 8th and 5th on the respective tasks for English.

Using this data set, we train a model that combines the text blocks with the document features and the
layout features to predict the depth di. To encode the text block ti, we use the pre-trained multilingual
cased BERT-Base model1 (Devlin et al., 2019). The classification token (CLS) output of BERT, which
serves as aggregate sequence representation, is concatenated with the document and layout features and
put through a dropout layer. The training objective of the model is to optimize the mean squared error
(MSE) loss to predict the depth of each text block according to our data set as a regression task.

5 Results and Discussion

In our experiments, we optimized our model for different hyperparameters using a 20% dev set and
the evaluation metric from the FinTOC-2020 shared task (Bentabet et al., 2020). More specifically,
we evaluated 1) the impact of fine-tuning the pretrained layers of the BERT model, 2) the impact of
additionally incorporating document and layout features, and 3) the impact of different learning rates.
Figure 3 shows a positive impact of both fine-tuning the pretrained layers of the BERT model (orange
vs blue lines) and of additionally incorporating document and layout features (dashed vs solid lines).
The inverted U-shape of the curve indicates that 5e-5 is a good choice for the learning rate. Across all
experiments we trained our models for 2 epochs using a fixed 0.25 dropout ratio in the dropout layer. We
trained the model 3 times with different seeds and averaged the outcomes for the final depth prediction,
which we rounded to get an integer depth. We discarded text blocks with depth 0 to only submit titles.

Table 1 shows the final results on the test set in comparison to the other approaches that were submitted
to the challenge. Our approach ranks 2nd on the title detection task and 2nd on the TOC generation task
for French, while we rank 8th and 5th on the respective tasks for English. It is noteworthy that our single
multilingual model performs well on both tasks and on both languages, which indicates the usefulness of
transfer learning for both title detection and TOC generation. The advantage of jointly training a model
for both languages is that we can leverage the small amount of training data, which is particularly useful
for the language independent layout features. Moreover, our approach is independent of the presence
of actual TOC pages in the documents. It is furthermore one of the few submissions addressing both
subtasks in both languages with one single model. The constructed data set for supervised learning
allowed us to train one model for both subtasks, which we find to be advantageous on the small amount
of labeled training documents.

However, our approach also comes with limitations. Selecting fixed clustering hyperparameters as-
sumes that all documents share a similar layout. While we optimized the text block detection hyper-
parameters for the given set of financial documents, this does not generalize well for other documents,
which is mainly due to the limited size of the training set with only 99 documents. Moreover, our text
block detection is based on DBSCAN, which requires label encoding where categorical features, e.g.
font type, are artificially transformed into numerical ones. Using clustering algorithms such as (Ahmad
and Khan, 2019), which handle numerical and categorical attributes directly, is promising future work.

1https://github.com/google-research/bert/blob/master/multilingual.md
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6 Conclusion

We proposed a multilingual two-step approach for both title detection and TOC generation. First, we
identified title candidates by clustering a document into text blocks using DBSCAN. Then, we trained
a neural network to predict the depth of each text block in the document structure hierarchy. The archi-
tecture of the network combines a pre-trained multilingual BERT model with a carefully selected set of
document and layout features. We have learned that fine-tuning BERT and adding document and layout
features improves the TOC generation accuracy. The approach presented in this paper can be used for
both English and French financial documents, even in cases where a TOC page is not present.
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