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Abstract

We present a transfer learning approach for Title Detection in FinToC 2020 challenge. Our
proposed approach relies on the premise that the geometric layout and character features of the
titles and non-titles can be learnt separately from a large corpus, and their learning can then be
transferred to a domain-specific dataset. On a domain-specific dataset, we train a Deep Neural
Net on the text of the document along with a pre-trained model for geometric and character
features. We achieved an F-Score of 83.25 on the test set and secured top rank in the title
detection task in FinToC 2020 (Bentabet et al., 2020)

1 Introduction

Title detection and table of contents generation are important sub-parts of the bigger problem, known as,
document structure analysis. Understating the inherent document layout and structure benefits several
downstream document AI tasks such as search, summarizing, entity extraction and table detection etc.
from a document. Humans glance at a document and comprehend the document structure including the
titles vs non-titles as well as the overall hierarchy of the titles. Many reasons can be attributed to it, like
the sequential nature of the document, geometrical features or the semantic meaning of the sentences.
We have tried to incorporate these basic human instincts into our model.

Humans have intuitive notions of how a document is structured and the assumption is confirmed af-
ter reading a text block. Transfer learning can be used to model the structural properties of a general
document. We use Arxiv documents1 available in the open-domain to learn the structural model of a
general document. Semantic properties are learned using LSTM (Hochreiter and Schmidhuber, 1997) at
title level for a domain specific document. The final model is trained on a domain-specific dataset with
structural weights pre-trained from Arxiv documents. We see considerable improvements by applying
transfer learning to the title detection task. Combining Deep neural networks based on manual features
and Character CNN(Zhang et al., 2015) on the starting eight characters helps us model the structural
signature of a general document.

2 Related Work

The literature on title detection can be classified broadly into three categories: works that deal with ToC
page of documents, works that use images of document pages and works which use the geometrical and
textual features of the text blocks.

In the approaches dealing with ToC pages of documents, after the ToC pages are detected, the title
entries are extracted and mapped to the pages by finding links between title and corresponding pages.
El Haj et al.(2014) used this approach in detecting titles in UK Financial Reports. As they rely on ToC
pages, they cannot be applied to documents that do not have ToC pages.

Other approaches use computer vision to fragment the page image into entities such as text, title and
table. Yang et al.(2017) used Multimodal Fully Convolutional Neural Networks for this task. Li et

1https://arxiv.org/help/bulk_data
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al.(2020b) used Convolutional neural networks combined with graphical models to identify the entities
in a document page. Few datasets for these tasks are publicly available.(Zhong et al., 2019; Li et al.,
2020a)

Finally, some approaches use learning or rule-based methods to detect headers based on textual and
geometrical features(Bentabet et al., 2019; Gopinath et al., 2018; Liu et al., 2011; Budhiraja and Mago,
2018; Klampfl and Kern, 2013). These methods are usually used in digitally generated documents like
webpages and native PDF documents.

3 Methodology

We pre-process the PDF files by converting them to XML documents by Poppler2 library. These files
are then parsed to merge elements similar in styling and located in close proximity. Headers and Footers
are identified and removed by page association (Lin, 2003) as they would hinder the process of title
detection.

Our proposed title detection method has three components; Pre-trained neural network to model gen-
eral structural information, Sequential Network to learn domain-specific text and training of both the
networks combined.

3.1 Pre-trained Neural Network to Model Structural Information on Arxiv Documents

The network composes of two key components geometrical and a character network.

3.1.1 Geometrical Network
The network comprises 22 manual features as depicted in Table 1. Model is trained by multi-layer neural
network as described by the architecture in Table 2.

Alignment Distance
-Center Alignment with parent text block -Normalized vertical distance to the Child text Block
-Left Alignment with parent text block -Normalized vertical distance to the Parent text Block
-Right Alignment with parent text block
-Center Alignment with child text block
-Left Alignment with child text block
-Right Alignment with child text block
Font Extra
-Font Difference between current and child -Number of New Lines
-Font Difference between current and parent -Number of Poppler blocks
-Font Size -Number of words
-All first word in caps -Majority of the characters in the start are in Bold
-Is Bold -Has Verb
-Is Italic
-Number of Fonts
-Font Change
-Begins with numbering

Table 1: Features for Geometric Model

3.1.2 Character Network
Input to the Character CNN is the first eight characters. The aim is to extract patterns that denote start
of a title like 1.1, a.1, (a). Architecture is mentioned in Table 3. The trained module did not achieve as
high F Score as expected. However, our focus was to capture patterns for a general document. Network
benefits can be utilized in steps further.

2https://poppler.freedesktop.org/
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Hyper-parameters Value (After Validation)
Input Layer 22
First Hidden Layer 15
Second Hidden Layer 4
Epochs 10
Batch Size 100
Dropout (Between 1st and 2nd Layer) 0.2
Activation ReLU
Loss Function binary cross entropy
optimizer Adam*

Table 2: Hyper Parameters for Geometrical Model

Hyper-parameters Value (After Validation)
Vocabulary length 71
sequence of characters length 8
convolutions (number of kernels, kernel size, pool size) [256, 3, 2] , [256, 2, 2]
Dense 1 50
Dense 2 10
Loss Function binary cross entropy
Dropout (Between 1st and 2nd Dense) 0.5
Activation ReLU
optimizer Adam

Table 3: Hyper Parameters for Character Model

3.1.3 Dataset and Training
We take around 6000 Arxiv documents from the annotated documents provided by Muhammad Mah-
bubur Rahman and Tim Finin (2017). The data split is shown in Table 4. The training was done for three
models, namely, geometric, character and character plus geometric. Character plus geometric model
performed the best as expected. Intuition being features from geometric and character will complement
each other when trained together. We got a significant rise of 5% as compared to the geometric model.
Training metrics are depicted in Table 6.

Train Validate Test
Title Non-Title Title Non-Title Title Non-Title

Arxiv 59656 536910 3314 29828 3314 29828
FinToC 6666 64719 952 12341 694 6609

Table 4: Train,Test and Validate sizes for Arxiv and FinToC datasets

3.2 Sequence network to learn domain-dependent semantics

We use LSTM as a sequence classification model. Intuition being common phrases that are part of
financial titles can be learnt by a sequence network such as LSTM. We use Glove word vector embedding.
Last word cell state is passed as input to two dense layers. Final layer after the dense layer performs title
detection Table 5. Out Best F Score on the test dataset was at 73.

3.2.1 Dataset and Training
The architecture is mentioned in Table 5. Dataset Split can be seen in Table 4. Our best performing
model on validation set gave 73% F-Score on test set. Due to time constraints, we could not explore
bidirectional and attention mechanisms (Abi Akl et al., 2019) .
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Hyper-parameters Value (After Validation)
Embedding Size 300
Number of words (From Start) 12
cell state size 13
Dense 1 10
Dense 2 5
optimizer Adam
Epochs 30
Batch Size 500

Table 5: Hyper Parameters of Sequential Model

3.3 Joint Trained combination of both of the above networks
Full network comprises of pre-trained weights from Character plus Geometric Model trained on Arxiv
PDF and Sequence Model trained on FinToC dataset. Last dense layer from Sequence Model and Char-
acter Plus Geometric Model are concatenated. One more and last dense Layer of 10 units is added after
that. Loss function is binary cross entropy. Total trainable parameters are 2, 26, 335. No layers is freezed
for subsequent training.

3.3.1 Dataset and Training
FinToC Dataset as mentioned in Table 4 was used. Adam optimizer, epochs equal to 30 and batch size
of 500 were used as hyperparameters in the model. The code was written in Tensorflow v1.15 (Abadi et
al., 2015) Jointly trained final architecture got the F-Score of 83.25 on the test set.

Fscore (Test)
Models Arxiv FinToC
Geometric 87.38 -
CharCNN 58.56 -
Geometric+CharCNN 91.5 -
XGBoost - 73.01
LSTM - 73.02
Joint Trained LSTM and Geometric+CharCNN - 83.25

Table 6: F-Scores of models on Arxiv and FinToC datasets

4 Results & Conclusion

4.1 Investigations
Final results are shown in Table 6. Two highlights of the final model are

• Pre-trained weights captured the generic structure of documents, giving a boost to accuracy. This
transfer learning approach can be improved further by using better architectures and features which
are domain-independent.This procedure achieved a 10% increase in F Score.

• Combination of geometric and character-based features complemented each other to attain higher
accuracy compared to either of them separately.

4.2 Submitted system
We submitted two systems for the final evaluation.

• First one is the Joint Trained LSTM and Geometric+CharCNN network.

• Second one was the ensemble of the first one and an XGBoost(Chen and Guestrin, 2016) model as
shown in Table 6.
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