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Abstract

The FinCausal 2020 shared task aims to detect causality on financial news and identify those
parts of the causal sentences related to the underlying cause and effect. We apply ensemble-based
and sequence tagging methods for identifying causality, and extracting causal subsequences. Our
models yield promising results on both sub-tasks, with the prospect of further improvement given
more time and computing resources. With respect to task 1, we achieved an F1 score of 0.9429
on the evaluation data, and a corresponding ranking of 12/14. For task 2, we were ranked 6/10,
with an F1 score of 0.76 and an ExactMatch score of 0.1912.

1 Introduction

Despite the many advances in the field of Natural Language Processing (NLP) in recent years, many
challenges dealing with contextual relationships still persist, one of which being causality. Causality, as
conveyed in written English, relates a textual description of a cause to a description of its effect(s). While
the identification of subordinating conjunctions - such as ”because”, ”since” and ”if” - can help in identi-
fying relevant pieces of text forming causal relationships, often richer contextual information is needed.
The goal of the FinCausal 2020 shared task (Mariko et al., 2020) is to explore causal relationships from
financial and economic context and to determine the likelihood of whether or not a given text contains a
causal relationship and then detect the cause and effect parts of the sentence.

2 Data

The data sets are composed of 23808 paragraphs from financial news.1 The data sets contain paragraphs,
with an average size of 214 (+/- 161) characters, each with annotations relevant to the corresponding
task. For task 1, the size of the complete data is 22058 paragraphs, each of which is annotated with a ”1”
(a causal relationship exists in this paragraph - 7.2% of the paragraphs), or ”0” (no causal relationship
in the paragraph - 92.8% of the paragraphs). The data set for task 2 has a size of 1750 paragraphs, with
every paragraph containing exactly one cause and one effect character sequence. These are annotated
as character ranges. Since we treat task 2 as a sequence tagging task, we transform these annotations to
token level annotations, so that every token in the paragraph gets the label CAUSE, EFFECT or, 0 (for
all tokens which belong neither to the cause nor the effect part). This yields a label distribution of 40.8%
CAUSE, 40.8% EFFECT, and 18.4% ”0”. For the experimentation and the development of the models
for task 1 and task 2, a 70% training - 30% validation split of the respective data-set (joined practice and
trial) was used.

3 System

Tasks 1 and 2 were treated independently. The former was treated as a document classification task (a
document being a paragraph in this case) and the latter as a sequence tagging task.

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1The data set both for task 1 and task 2 is split into a ”trial” and ”practice” test. To account for any differences in the
distribution of the data in the two subsets, we decided to join the two sub-datasets.
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3.1 Task 1: Causality Detection

The goal of task 1 is to identify whether a paragraph contains a causal relation or not. The labels are
binary, with a 1 indicating the presence of (a) causal statement(s), and a 0 otherwise. For the best per-
forming models, no data pre-processing was used, other than ignoring punctuation and single-character
tokens. We explore two approaches: The first is a paragraph embedding paired with shallow Machine
Learning (ML) models, while the second is embedding the individual tokens and using a one-dimensional
Convolutional Neural Network (CNN) as a classifier. For the first strategy, the text data is transformed
into a feature matrix using the scikit-learn (Pedregosa et al., 2011), version 0.23.1 implementation of
TF-IDF. This matrix is then used by several classical ML models, including SVMs, Logistic Regres-
sion and Random Forests. The best performers were found to be an SVM Classifier 2 and an XGBoost
model. XGBoost, or eXtreme Gradient Boosting, is a fairly recent algorithm based on gradient boosting
techniques (Chen and Guestrin, 2016). Additionally, a voting classifier model was made from these two
models, which predicts the class label based on the argmax of the sums of the prediction confidence
values from the SVM classifier and the XGBoost models. We adjust the parameters of our models using
the RandomizedSearchCV class from scikit-learn3. These models were trained on an Intel i7-8750H
CPU. After training, a Voting Ensemble classifier from scikit-learn was built using the trained models as
parameters. This ensemble used ”soft” voting, that is, the probabilities output by the SGD and XGBoost
were averaged and the result was the output of the ensemble.

The second strategy is based on the idea of using CNNs for NLP (Yin et al., 2017). Adjusting the
filter size on a one-dimensional CNN also acts similarly to an N-gram, and CNNs are generally very
fast at analyzing problems with large feature matrices. This model was implemented using Tensorflow
(Abadi et al., 2015) and Keras (Chollet and others, 2015), versions 2.1.0 and 2.3.1 respectively. The
data was processed using the Keras tokenizer and then fed into a one-dimensional CNN. The network
consists of an embedding layer that uses the 200-dimensional Word2Vec (Le and Mikolov, 2014) em-
bedding from GoogleNews, a convolutional layer, and 2 dense layers. The models were optimized using
manual parameter tuning4. This model was trained using an Nvidia GTX 1060 Max-Q with 6GB of GPU
memory.

3.2 Task 2: Causality Extraction

The goal of task 2 is to identify the parts of a sentence, that correspond to cause and effect, respectively.
It is thus a sequence tagging task in which the tokens of a sentence must be assigned either a CAUSE,
EFFECT, or 0 tag. One approach to tackle sequence tagging tasks is the use of sequential models such
as a Recurrent Neural Network (RNN). We employ the Flair sequence tagger by (Akbik et al., 2018),
using ElMo (Peters et al., 2018) and fine-tuned BERT embeddings. For BERT, the transformers library
by (Wolf et al., 2019), version 3.0.2 was used.

Using the Flair Sequence Tagger We utilize the Flair Sequence tagger (Akbik et al., 2018) to produce
token-level predictions for the causality extraction task. The framework consists of a recurrent neural
model with a Conditional Random Field (CRF) and a Long Short Term Memory (LSTM) layer trained
for token classification. Learning rate scheduling is applied during training, meaning that the learning
rate will be reduced whenever the validation loss does not decrease after 3 epochs. Once the learning
rate falls below 0.0001 following this policy, training is stopped.

As a first fine-tuning step, we evaluate different pre-trained word embeddings (ElMo, BERT, Flair,
GloVe, and FastText) that are integrated in the Flair framework. We find that ElMo embeddings obtained
from the full-sized model (see (Peters et al., 2018) for implementation details) yield the best results on

2For the SVM classifier, the scikit-learn implementation was used.
3For the TFIDF-SVM the adjusted parameters are: ngram range = (1, 2) and smooth idf = false for TFIDF, and alpha

= 1e−6, loss = log for SVM. For TFIDF-XGBoost: ngram range = (1, 1) for TFIDF, and booster = gbtree, learning rate
= 0.3, max depth = 6, and n estimators = 100 for XGBoost.

4The best configuration was: a tokenizer that ignored all punctuation and symbols, and set all words to lowercase, and for
the CNN: a 1D convolutional layer of 64x3 with relu, a dropout layer with rate = 0.1, a global 1D maxpooling layer, a dense
layer with an output of 16 with relu, another dropout layer with rate = 0.1, and a final dense layer with an output of 1 with
sigmoid activation.
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Model F1 score Recall Precision

XGBoost 0.942374 0.948957 0.943619
SVM classifier 0.942909 0.947604 0.942031
Ensemble 0.937722 0.949093 0.950175
CNN 0.942066 0.945979 0.940644

Table 1: Task 1 results.

our data, so we use them as word embeddings in the following evaluation steps. The model is being
further improved by optimizing the hyperparameters, yielding a batch size of 32, an initial learning
rate of 0.1, and a hidden size of 500 neurons. In addition, we adjust the class weights of the model to
compensate for the imbalanced label distribution (see section 2). Thus, the weights for the CAUSE and
EFFECT classes are decreased to 0.25, and the weight for the 0 class is increased to 0.5. As an alternative
embedding method, we also incorporate the fine-tuned BERT model delivered as a baseline for task 1 5

to the Flair Sequence Tagger. The models were trained on an Nvidia Tesla V100-SXM2 with 32 GB of
GPU memory.

Post-processing In addition to the token classification by the Flair sequence tagger, we apply some
post-processing to the output to further improve the results. Our first approach is based on the obser-
vation, that the classifier sometimes correctly recognizes large parts of a CAUSE or EFFECT sequence,
but still predicts 0 for some single tokens in between. Since in most of the cases, every CAUSE or EF-
FECT is a coherent sequence, it makes sense to account for that using rule-based post-processing. This
is done by filling in every ”hole” of up to three tokens in a consequent sequence of CAUSE or EFFECT
predictions with the surrounding label. An alternative post-processing approach that was tested, was to
smooth the output class probabilities over consecutive tokens, using an average filter with a window size
of 3 tokens.

4 Results

The reported results were evaluated on the holdout test set, which was not included in the validation set.
The evaluation metrics are reported as defined by the shared task organizers. 6

4.1 Task 1

For task 1, the best results in terms of F1 score were achieved by the SVM classifier, while the Ensemble
of the SVM classifier and the XGBoost classifier performed best in terms of precision and recall (see
Table 1). The CNN model performed not significantly different than the less complex ML models.

4.2 Task 2

For task 2, the best scores with respect to the three common metrics are achieved by the Flair sequence
tagger model using fine-tuned BERT embeddings, balanced class weights, and applying the first post-
processing approach (filling in ”holes” of predicted sequences). Interestingly, our baseline model (ElMo)
outperforms the tuned models on ExactMatch. Especially adding balanced class weights seems to cause
a drop in the ExactMatch metric. This could potentially indicate some overfitting effect of the simpler
model. Table 2 shows two examples that illustrate this behavior. In example 1 (Table 2a), while the
simpler model predicts the sequence exactly right, the model with fine-tuning added makes one mistake
in between. Example 2 (Table 2b), however, shows that the second model is better at separating cause and
effect in a non-straightforward formulated sentence, even though it does not get the labels exactly right.
Generally, the fine-tuned model tends to leave larger ”holes” between ”cause” and ”effect” sequences,
than the simpler model does.

5https://github.com/yseop/YseopLab/tree/develop/FNP_2020_FinCausal/baseline/task1
6See website of shared task: https://competitions.codalab.org/competitions/23748
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Sentence They fell (...) to 4p on Wednesday as analysts lowered price targets and cut forecasts.
Model 1 prediction E E (...) E E E E 0 C C C C C C C
Model 2 prediction E E (...) E E E 0 0 C C C C C C C
True label E E (...) E E E E 0 C C C C C C C

(a) Example 1

Sentence Suppose (...) they could borrow at -0.25% NLY would be getting paid $262 million.
Model 1 prediction E (...) E E E E E E E E E E E E
Model 2 prediction C (...) 0 C C C E E E E E E E E
True label C (...) C C C C 0 E E E E E E E

(b) Example 2

Table 2: Example predictions of model 1 (ElMo) and model 2 (fine-tuned BERT, balanced, post-
processing), on two sentences from our validation split (part of the practice data set). ”C” stands for
”cause”, ”E” for ”effect”. Due to space constraints, only the relevant part of the sentence is displayed.

Model F1 score Recall Precision ExactMatch

ElMo 0.740380 0.745353 0.741605 0.231975
ElMo, balanced 0.726232 0.71307 0.777991 0.184953
ElMo, balanced, post-processing 0.743371 0.734344 0.769642 0.210031
ElMo, balanced, post-processing (probability smoothing) 0.741773 0.734672 0.759757 0.152038
ElMo, task1 data augmentation 0.731066 0.733866 0.729065 0.188088
ElMo, task1 data augmentation , post-processing 0.737836 0.748546 0.735892 0.191223
fine-tuned BERT, balanced, post-processing 0.759982 0.748933 0.799503 0.191223

Table 3: Task 2 results. The Flair sequence tagger model was used to produce all of those results.

5 Discussion

Our present system relies heavily on the choice of embeddings, as well as on large pre-trained language
models. This could possibly be changed if we had a more extensive and consistent data set for training.
One of our observations in this regard was, that the provided data included a number of irregularly
formatted paragraphs (for example headlines or bullet points). We believe that our algorithms would
benefit from further analysis and possible cleaning of such instances. Additionally, the current data does
not allow us to explore other approaches that are based on syntactic features.

Regarding task 1, the results of the CNN could be potentially improved by additional hyperparameter
tuning. The CNN model showed good results already in early epochs, but was not able to outperform
the less complex ML models, which were extensively tuned. With respect to task 2, it would have been
interesting to test more combinations of embeddings, data augmentation, and post-processing, which was
not possible due to limited time and computing resources.

6 Conclusion and Outlook

Identifying causality in text can be a helpful tool for many empirical use cases. In the context of financial
document analysis, it could be used to identify important facts and developments in the annual report of a
company. We can potentially extend our previous work on various downstream-tasks on financial reports
by incorporating causality, for instance for key performance indicator extraction (Brito et al., 2019b) ,
contradiction detection (Sifa et al., 2019b) , or content-based text classification and consistency checks
(Sifa et al., 2019a) . We can also exploit causality detection in the context of text summarization. Causal
sentences may indicate content richness, which is useful not only to extract the most relevant sentences
of an original text within an extractive summarization setting (as presented in (Brito et al., 2019a)) but
also when we evaluate the quality of a generated summary from a wide range of features (Biesner et al.,
2020). In our future work, we are planning to address such applications, building on our experiments
and insights from this challenge.
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