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Abstract
Deep neural networks have made great success
on video captioning in supervised learning set-
ting. However, annotating videos with descrip-
tions is very expensive and time-consuming.
If the video captioning algorithm can bene-
fit from a large number of unlabeled videos,
the cost of annotation can be reduced. In
the proposed study, we make the first attemp-
t to train the video captioning model on la-
beled data and unlabeled data jointly, in a semi-
supervised learning manner. For labeled da-
ta, we train them with the traditional cross-
entropy loss. For unlabeled data, we lever-
age a self-critical policy gradient method with
the difference between the scores obtained by
Monte-Carlo sampling and greedy decoding as
the reward function, while the scores are the K-
L divergence between output distributions of
original video data and augmented video data.
The final loss is the weighted sum of losses ob-
tained by labeled data and unlabeled data. Ex-
periments conducted on VATEX, MSR-VTT
and MSVD dataset demonstrate that the intro-
duction of unlabeled data can improve the per-
formance of the video captioning model. The
proposed semi-supervised learning algorithm
also outperforms several state-of-the-art semi-
supervised learning approaches.

1 Introduction

Video captioning refers to the task that generating
a description of a given video automatically and it
combines computer vision and Natural Language
Processing (NLP) in a unified framework. It can be
widely used in video retrieval, video recommenda-
tion, disabled supporting and scene understanding
(Yao et al., 2015), (Venugopalan et al., 2015). With
the rapid development of deep learning, deep neu-
ral networks have dominated the video captioning
task. Venugopalan et al. (Venugopalan et al., 2015)
extend encoder-decoder framework to video cap-
tioning which employs a CNN as the encoder and

an RNN as the decoder and the following video
captioning algorithms almost use this architecture.

Although recent video captioning algorithms
have made great success, they are heavily depen-
dent on supervised training data consisting of video-
caption pairs. It is expensive to take long hours of
laboring to collect such labeled data, thus there is a
strong interest to develop the algorithm which does
not need a lot of annotated examples. Some studies
embed the visual feature and text imformation into
a mutual space and design unsupervised learning
algorithm to reduce the requirement for annotated
data (Gu et al., 2018), (Gu et al., 2019), (Laina
et al., 2019), (Feng et al., 2019). However, the per-
formances of such algorithms are poor because they
do not use pairs of labeled examples at all. Semi-
supervised learning, leveraging a small number of
labeled examples and a large number of unlabeled
examples at the same time, provides another solu-
tion to solve the problem of strong dependency on
labeled examples. Chen et al. (Chen et al., 2016)
proposed a Semi-Supervised Learning (SSL) im-
age captioning strategy which using unsupervised
out-of-domain textual data to boost the captioning
performance. Kim et al. (Kim et al., 2019) pro-
posed another semi-supervised image captioning
algorithm which jointly using the labeled and unla-
beled data and assigning pseudo-labels to unlabeled
data via Generative Adversarial Networks to learn
the joint distribution of image and text.

Recently, some semi-supervised learning works
which use the consistency of the output probability
distribution between original data and augmented
data have achieved excellent performances with the
help of some latest data augmentation methods on
several classification problems of computer vision
and NLP (Berthelot et al., 2019), (Xie et al., 2019a).
Although these data augmentation based methods
have great potential, it is still challenging when
applied to video captioning task, because the input
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Figure 1: The architecture of the video captioning model, which includes an ECO encoder and a GRU decoder (or
a Transformer Decoder).

and output complexity of video captioning is much
higher than that of image or text classification. In
this paper, we design our algorithm based on out-
put consistency of data augmentation, and apply a
self-critical training strategy (Rennie et al., 2017)
to exploit large amounts of unsupervised video data
without requiring the corresponding caption annota-
tions. First, we get a pseudo-label by Monte-Carlo
sampling. Then a reward score is obtained, while
the score is the K-L divergence between the output
distribution of augmented examples and real exam-
ples. Based on the observation of Figure 3, K-L
divergence is positive related with the quality of
the sentence, thus K-L divergence can be used as
the reward score in policy gradient. We use greedy
decoding to get another pseudo-label and get an-
other reward score as the baseline. Then we use the
difference between these two reward scores as the
final reward. Finally, we combine the reward with
the log probability to get the policy gradient loss.
In the meantime, we compute the cross-entropy
loss for labeled data and train the model with these
two losses jointly.

In summary, the main contributions of the pro-
posed algorithm are three-fold:

• To the best of our knowledge, this is the first
attempt to use semi-supervised learning on
video captioning task.

• We apply a self-critical policy gradient learn-

ing algorithm and consistency regularization
to leverage the unlabeled data to improve the
model performance.

• Our proposed approach is robust for different
captioning tasks, different datasets and differ-
ent models and outperforms several state-of-
the-art semi-supervised learning algorithms.

2 Related Work

2.1 Video Captioning

The development of video captioning algorithms
comes from researchers’ unremitting efforts to find
better video features, stronger model architectures
and better optimization strategies. For feature ex-
traction, 3D-CNN spatial-temporal feature (Yao
et al., 2015), (Aafaq et al., 2019), transferred se-
mantic attributes (Pan et al., 2017), external seman-
tic information (Venugopalan et al., 2016), audio
features (Wang et al., 2018c) and Part-of-Speech
(POS) information (Hou et al., 2019), (Wang et al.,
2019a) are used to enhance the representation abil-
ity of features. For model architecture, attention
mechanism (Yao et al., 2015), (Wang et al., 2018c),
(Song et al., 2017) and strong decoders (Pasunuru
and Bansal, 2017), (Wang et al., 2018b), (Zhou
et al., 2018) are proposed to enhance the decod-
ing ability. For optimization strategy, Rennie et
al. (Rennie et al., 2017) propose a self-critical se-
quence training strategy for image captioning and
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Figure 2: The proposed Self-Critical Semi-Supervised (SC-SSL) Learning algorithm.

Want et al. (Wang et al., 2017) extend this method
to video captioning by introducing a hierarchical
Reinforcement Learning (RL) algorithm.

2.2 Semi-supervised learning

Semi-supervised learning has been proposed for a
long time as a solution to reduce the dependency
on supervised data. SSL can be roughly divided
into the following four types: transductive models
(Joachims, 1999), (Joachims, 2003), graph-based
approaches (Zhu et al., 2003), generative models
(Pu et al., 2016), (Salimans et al., 2016) and consis-
tency regularization (Laine and Aila, 2017), (Tar-
vainen and Valpola, 2017), (Miyato et al., 2017),
(Xie et al., 2019b) based methods. Because our
method belongs to consistency regularization, we
pay more attention to discuss this kind of method.
Consistency regularization applies data augmenta-
tion to unlabeled data and this operation is based
on the insight that for an unlabeled example even
after it has been augmented, the output distribution
of a classifier should be similar with the original
data.”Π -Model” (Laine and Aila, 2017) computes
the Mean-Squared Error (MSE) of the class distri-
bution between two different augmented examples
from one unlabeled data. ”Mean Teacher” (Tar-
vainen and Valpola, 2017) replaces one of the terms
in ”Π -Model” with the output of the model using
an exponential moving average of model parameter-
s. Virtual Adversarial Training (Miyato et al., 2017)
(VAT) proposes a novel virtual adversarial loss to
measure the local smoothness of the conditional
label distribution given input which can address

the domain-specific data augmentation problem.
Some recent works (Berthelot et al., 2019), (X-
ie et al., 2019a) utilize latest data augmentation
methods such as MixUp (Zhang et al., 2017) or
AutoAugment (Cubuk et al., 2018) to improve the
performance of SSL.

3 Methods

3.1 Video Captioning Model

The main purpose of this study is to verify the ef-
fectiveness of SSL in video captioning instead of
proposing a strong video captioning model, so we
only use a simple video captioning model. Besides,
we apply two candidate decoders (GRU and Trans-
former) to verify the robustness of the proposed
algorithm.
Video Encoder. For video captioning, an input
video v is given and we are required to gener-
ate a caption with a sequence of words y =
[y1, . . . yt, . . . , yT ], yt ∈ Y to describe the video,
where T is the maximum length of a sentence and
Y is the vocabulary set. To encode the visual fea-
ture of the given video, we use an Efficient Convo-
lutional Network (ECO) (Zolfaghari et al., 2018)
pre-trained on Kinetics-400 dataset (Kay et al.,
2017) as the encoder.
GRU Captioning Decoder. Our GRU captioning
decoder model is similar to (Yao et al., 2015) which
utilizes a variant LSTM as the base model, but in
our implementation, a GRU in which visual feature
is added into the inputs with an attention module is
used to replace the original LSTM.
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Algorithm 1 Self-Critical Semi-Supervised Learn-
ing (SC-SSL) algorithm for video captioning

Require: Batch of labeled data v = [vb], b ∈ (1, ..., Bl) and
their caption labels y = [y(b)], b ∈ (1, ..., Bl), batch of
unlabeled data u = [ub], b ∈ (1, ..., Bu), number of aug-
mented data for one unlabeled data K, maximum length of
a sentence T , temporal weights W = [Wt], t ∈ (1, ...T ),
weight parameter for unlabeled loss λ.
Lu = 0 // Loss of unlabeled data
Ll = 0 // Loss of labeled data
for b = 1 to Bu do

ŷ = [ŷ1 . . . ŷT ], where ŷt = Sample
ŷt

pθ(ŷ1:t−1,ub)

// Monte-Carlo Sampling
ỹ = [ỹ1 . . . ỹT ], where ỹt = argmax

ỹt
pθ(ỹ1:t−1,ub)

// Greedy Decoding
for k = 1 to K do

u∗
b = DataAugmentation(ub) // AutoAugment

or RandomDrop
d̂t = DKL(pθ(ŷt|ŷ1:t−1,ub)||pθ(ŷt|ŷ1:t−1,u

∗
b))

d̃t = DKL(pθ(ỹt|ỹ1:t−1,ub)||pθ(ỹt|ỹ1:t−1,u
∗
b))

r =
∑T
t=1(d̂t − d̃t)×Wt // Reward

∇θlu(θ) = −
∑T
t=1 r∇θlogpθ(ŷt|ŷ1:t−1,ub) //

Policy Gradient
Lu = Lu + lu

end for
Lu = Lu/K

end for
for b = 1 to Bl do
Ll = Ll +−

∑T
t=1 log(pθ(y

(b)
t |y

(b)
1:t−1,vb))

end for
L = Ll + λ ∗ Lu // Final loss
return L

Transformer Captioning Decoder. In order to
demonstrate the validity of our SSL method, be-
sides the recurrent captioning decoder, we also take
experiments on Transformer (Vaswani et al., 2017)
captioning decoder. Since video captioning is a
video-to-text task rather than a text-to-text task,
our decoder model only consists of transformer
decoder. The whole architecture of the proposed
video captioning model is illustrated as Figure. 1.

3.2 Self-Critical Semi-Supervised Learning

3.2.1 Algorithm
We have some labeled video data v with caption an-
notations y and unlabeled video data u. To train the
labeled data, we use the traditional cross-entropy
loss:

Ll(θ) = −
T∑
t=1

log(pθ(yt|y1:t−1,v)) (1)

For unlabeled data u, we generate a sentence
as pseudo-label ŷ = [ŷ1 . . . ŷT ] by Monte-Carlo
sampling using the current model parameters. We
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Figure 3: (a) Consistency distance. and (b) CIDEr. us-
ing the sentence generated by captioning model trained
with different epochs.

apply data augmentation on the unlabeled example
by K times to get K augmented video examples.
We denote one augmented data as u∗. Here, we
use two data augmentation methods: AutoAugmen-
t (Cubuk et al., 2018) and randomly dropping some
frames of the video with probability σ. Some other
video data augmentation methods can also be used
in our algorithm. We use AutoAugment as the de-
fault data augmentation method. Then we compute
the K-L divergence of the output class distribution
between u and u∗ given ŷ. Thus, we can obtain a
consistency distance d̂:

d̂ =

T∑
t=1

d̂t =

T∑
t=1

DKL(pθ(ŷt|ŷ1:t−1,u)||pθ(ŷt|ŷ1:t−1,u
∗))

(2)

Next, we will demonstrate that the consistency
distance d̂ is positive correlated with the quality of
ŷ. We perform a experiment on VATEX dataset us-
ing GRU and Transformer decoders. We generate
several captions for all the validation samples using
the model trained with different epochs. We denote
these captions as {Ye}, e ∈ (1, . . . , E), E is the
maximum epoch. Then we compute the CIDEr
score which is often regarded as the best metric to
measure the quality of sentence between the gener-
ated captions and ground truth. Figure 3. (b) shows
CIDEr increases with the epoch increasing. We
also use the model of the last epoch to compute
the average consistency distance over all validation
data given different Ye. The trend of the change
of consistency distance is consistent with that of
CIDEr. The correlation coefficient between consis-
tency distance and CIDEr are 0.92, 0.86 for GRU
and transformer.

Based on the result of Figure 3., if the quality
of the generated sentence is high (i.e. with high
CIDEr score), the consistency distance between u
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and u∗ might be higher. Otherwise, the consistency
distance will be lower. The consistency distance is
positively correlated to evaluate the quality of sen-
tence and can be regarded as the reward function of
policy gradient algorithm (Williams, 1992), which
is a specific type of Reinforcement Learning. The
reward and policy gradient are:

r̂ = d̂ (3)

∇θLu(θ) = −
T∑
t=1

r̂∇θlogpθ(ŷt|ŷ1:t−1,u) (4)

Inspired by self-critical sequence training (SC-
ST) (Rennie et al., 2017), we also add a baseline
term on the reward function. The baseline ter-
m is the reward obtained using the pseudo-label
ỹ = [ỹ1 . . . ỹT ] which is generated by greedy de-
coding, where

ỹt = arg max
ỹt

pθ(ỹ1:t−1,u) (5)

The consistency distance and the reward obtained
by ỹ are:

d̃t = DKL(pθ(ỹt|ỹ1:t−1,u)||pθ(ỹt|ỹ1:t−1,u
∗))

(6)

r̃ =

T∑
t=1

d̃t (7)

And the policy gradient is replaced to:

∇θLu(θ) = −
T∑
t=1

(r̂ − r̃)∇θlogpθ(ŷt|ŷ1:t−1,u)

(8)
Lu is averaged overK augmented examples. We

jointly train the labeled and unlabeled data using
the weighted sum of the losses from labeled and
unlabeled data:

L = Ll + λ ∗ Lu (9)

where λ is a hyper-parameter to control the weight
of each component.

3.2.2 Training Techniques
For the pseudo label mentioned above, words occur
later in a sentence have lower confidence due to
the problem of error accumulation (Ranzato M A,
2015). To address this issue, we add a tempo-
ral weight on the reward function to decrease the

weights of losses of later words. The temporal
weight is Wt = T/t, and the equation (3) and e-
quation (7) are replaced by:

r̂ =
∑T

t=1
d̂t ×Wt (10)

r̃ =
∑T

t=1
d̃t ×Wt (11)

To overcome the problem of overfitting of la-
beled data, following (Xie et al., 2019a), we add a
training signal annealing on the calculation of the
loss of labeled data. Equation (1) is changed to the
following equation:

Ll = −
T∑
t=1

log(pθ(yt|y1:t−1,v))I(pθ(yt|y1:t−1,v) < ητ )

(12)

where I(·) is the indicator function. We use linear-
schedule annealing signal:

ητ =
τ

M
× (1− 1

C
) +

1

C
(13)

where C is the vocabulary size, M is the total train-
ing steps.

The proposed Self-Critical Semi-Supervised
Learning (SC-SSL) algorithm is summarized as
Algorithm 1 and illustrated as Figure. 2.

4 Results

4.1 Datasets and Implementation Details
We conduct experiments on three benchmark
datasets Video And TEXt (VATEX) (Wang et al.,
2019b), Microsoft Research video to text (MSR-
VTT) and Microsoft Research Video Description
Corpus (MSVD) (Chen and Dolan, 2011).
VATEX. VATEX contains over 41250 video clips
in 10 seconds and each video clip depicts a single
activity. Each video clip has 10 English descrip-
tions and 10 Chinese descriptions. We use the
official 25991 training examples as labeled and un-
labeled training data and 3000 validation examples
for testing. For labeled and unlabeled partition,
we randomly select 600, 1200, 1800, 2400, 3000
as labeled data and use the rest training data as
unlabeled data.
MSR-VTT. We use the initial version of MSR-
VTT, referred as MSR-VTT-10K which has 10k
video clips and each video clip has 20 descriptions
annotated by 1327 workers from Amazon Mechan-
ical Turk. MSR-VTT has 200k video-caption pairs
and 29316 unique words. We take 7010 video clips
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Figure 4: (a) BLEU-1, (b) BLEU-2, (c) BLEU-3, (d) BLEU-4, (e) ROUGE-L and (f) METEOR on VATEX English
and Chinese captioning tasks with different number of labeled examples. ”EN” is short for English and ”CN” is
short for Chinese.

as labeled training data and 2990 clips for testing.
We use the training data of VATEX as unlabeled
training data.
MSVD. MSVD dataset contains 1970 YouTube
short video clips in 10 seconds to 25 seconds and
each video clip depicts a single activity. Each video
clip has about 40 English descriptions. We use
the public splits which take 1200 video clips for
training, 100 clips for validation and 670 clips for
testing. We use the training data of VATEX and
MSR-VTT as unlabeled training data.

We follow the standard caption pre-processing
procedure including converting all words to low-
er cases, tokenizing on white space, clipping sen-
tences over 24 words and filtering words which
occur at least five times. We use open source Jie-
ba 1 toolbox to segment the Chinese words. The
final vocabulary sizes are 10260 for VATEX En-
glish task, 12776 for VATEX Chinese task, 8784
for MSR-VTT dataset and 5663 for MSVD dataset.
We use standard automatic evaluation metrics in-
cluding BLEU (Papineni et al., 2002), METEOR

1https://github.com/fxsjy/jieba

(Denkowski and Lavie, 2014), ROUGE-L (Lin,
2004), and CIDEr (Vedantam et al., 2014).

We uniformly sample 32 frames for each video
clip. The embedding dimension 512. For GRU
decoder, the model size and all hidden size are 512.
For transformer decoder, the layer number is 6, the
number of head is 8 and the model dimension is
512. We train the captioning model using an Adam
optimizer. At first 10 epochs, we only train labeled
data. The learning rate is 5×10−4, batch size is 100
and dropout rate is 0.1. Then we train the labeled
data and unlabeled data jointly with learning rate of
1× 10−4, labeled batch size of 100 and unlabeled
batch size of 400. We set hyper-parameters by
K = 10, λ = 1× 103, and σ = 0.1.

4.2 Evaluation and Comparison

Figure. 4. shows the results of BLEU-1, BLEU-
2, BLEU-3, BLEU-4, ROUGE-L and METEOR
on VATEX English and Chinese captioning tasks
with different number of labeled examples using
GRU decoder. It can be seen that the proposed
semi-supervised learning algorithm outperforms
supervised learning algorithm for all metrics. As
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Table 1: Comparison between supervised and semi-supervised learning using GRU or Transformer decoder on
VATEX English Captioning task.

#Labeled Examples Model Type Training Type BLEU-4 METEOR ROUGE-L CIDEr

600
GRU

Supervised 0.142 0.166 0.332 0.177
Semi-Supervised 0.163 0.175 0.346 0.181

Transformer
Supervised 0.141 0.162 0.325 0.157

Semi-Supervised 0.153 0.178 0.342 0.174

1200
GRU

Supervised 0.163 0.177 0.344 0.224
Semi-Supervised 0.179 0.186 0.362 0.229

Transformer
Supervised 0.157 0.174 0.345 0.221

Semi-Supervised 0.169 0.186 0.360 0.234

Table 2: Comparison with state-of-the-arts on MSR-
VTT dataset. Unlabeled data comes from VATEX.

BLEU-4 METEOR ROUGE-L CIDEr

MGSA (Chen and Jiang, 2019) 0.424 0.276 - 0.475
Hierarchical (Song et al., 2017) 0.383 0.263 - -
M3 (Wang et al., 2018b) 0.381 0.266 - -
GRU-EVE (Aafaq et al., 2019) 0.383 0.284 0.607 0.481
PickNet (Chen et al., 2018) 0.413 0.277 0.598 0.441
Reconstruction (Wang et al., 2018a) 0.391 0.266 0.593 0.427
MARN (Pei et al., 2019) 0.404 0.281 0.607 0.471
XGating (Wang et al., 2019a) 0.420 0.282 0.616 0.487
OA-BTG (Zhang and Peng, 2019) 0.414 0.282 - 0.469
JSRL+VCT (Hou et al., 2019) 0.423 0.297 0.628 0.491

Ours: Supervised 0.419 0.294 0.621 0.489
Ours: SC-SSL w VATEX 0.427 0.300 0.632 0.498

Table 3: Comparison with state-of-the-arts on MSVD
dataset. Unlabeled data comes from VATEX and MSR-
VTT.

BLEU-4 METEOR ROUGE-L CIDEr

FCVC-CF (Fang et al., 2019) 0.531 0.348 0.718 0.798
MGSA (Chen and Jiang, 2019) 0.534 0.350 - 0.867
LSTM-TVAIV (Pan et al., 2017) 0.528 0.335 - 0.740
Hierarchical (Song et al., 2017) 0.530 0.336 - 0.738
M3 (Wang et al., 2018b) 0.520 0.322 - -
GRU-EVE (Aafaq et al., 2019) 0.479 0.350 0.715 0.781
PickNet (Chen et al., 2018) 0.523 0.333 0.696 0.765
Reconstruction (Wang et al., 2018a) 0.523 0.341 0.698 0.803
ECO (Zolfaghari et al., 2018) 0.535 0.350 - 0.858
XGating (Wang et al., 2019a) 0.525 0.341 0.713 0.887
JSRL+VCT (Hou et al., 2019) 0.528 0.361 0.718 0.878

Ours: Supervised 0.556 0.347 0.711 0.857
Ours: SC-SSL w VATEX 0.567 0.353 0.715 0.870
Ours: SC-SSL w VATEX & MSR-VTT 0.572 0.364 0.725 0.888

the number of labeled example increasing, which
means the ratio between labeled and unlabeled ex-
amples is getting larger, the gap between semi-
supervised and supervised decreases. The gaps for
most metrics are between 0.01 and 0.02. This result
demonstrates that by introducing unlabeled data,
the performance can be boosted. Combining the
results of English and Chinese captioning tasks,
we can see that the proposed SC-SSL algorithm is
robust for different captioning tasks.

The proposed SC-SSL is effective for different

models as well. From Table 1. we can see that the
results of semi-supervised learning are higher than
supervised learning on all metrics for both GRU
and Transformer based decoder using 600 and 1200
labeled examples on VATEX English captioning
task. The above results demonstrate that SC-SSL
will not overfit to a certain model or a certain task,
and it is a robust and general algorithm. Another
interesting result in Table 2. is that some metric-
s of semi-supervised learning using 600 labeled
examples are comparable with that of supervised
learning using 1200 labeled examples (e.g. 0.346
vs. 0.344 of ROUGE-L using GRU decoder). This
result shows that the proposed SC-SSL algorithm
can reduce the requirement of annotating videos by
half with the help of a large number of unlabeled
data under certain circumstances.

Figure. 5. shows the comparison with other state-
of-the-art semi-supervised learning algorithms of
BLEU-1, BLEU-2, BLEU-3, BLEU-4, ROUGE-
L and METEOR on VATEX English captioning
task with different number of labeled examples
using GRU decoder. Here, as baselines for com-
parison, we consider four other methods: Pseudo-
Label (Lee, 2013), Π Model (Laine and Aila, 2017),
Mean Teacher (Tarvainen and Valpola, 2017) and
UDA (Xie et al., 2019a). Other semi-supervised
learning algorithms such as VAT (Miyato et al.,
2017) or MixMatch (Berthelot et al., 2019) require
single label output and can only be used in classifi-
cation tasks, so we do not compare with these meth-
ods. For Pseudo-Label, Π Model, Mean Teacher
and UDA, we use the sentence generated by greedy
decoding as the pseudo-label. The result shows that
because video captioning task is much harder than
classification task, Pseudo-Label, Π Model, Mean
Teacher and UDA all fail to beat the supervised
learning baseline. Among these methods, UDA
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Figure 5: Comparison with other state-of-the-art semi-supervised learning algorithms of (a) BLEU-1, (b) BLEU-
2, (c) BLUE-3, (d) BLEU-4, (e) ROUGE-L and (f) METEOR on VATEX English captioning task with different
number of labeled examples.

achieves the best performance and this result is
consistent with other prior arts (Xie et al., 2019a).
SC-SSL outperforms other four algorithms espe-
cially UDA with a significant gap, because it fully
considers the sequential property of captioning task
and uses policy gradient to update the model pa-
rameter instead of using the K-L divergence as loss
directly.

Table 2. shows the results on MSR-VTT dataset
using GRU decoder. For fair comparison, we only
show the results of prior arts trained with cross-
entropy loss, because we train labeled data using
only cross-entropy loss without RL optimization.
It can be seen that SC-SSL outperforms supervised
learning method which demonstrates that unlabeled
data from another dataset can also help to boost
the captioning performance even the distributions
of labeled and unlabeled data are not consistent.
Thanks to the unlabeled data, the proposed SC-SSL
outperforms other state-of-the-art video captioning
models for all metrics, even the decoder used in
our method is quite simple.

Table 3. shows the results on MSVD dataset
using GRU decoder. It has similar results with

MSR-VTT that unlabeled data from VATEX can
help to boost the captioning performance. Joint-
ly using unlabeled data from VATEX and MSR-
VTT, performances are enhanced further. The pro-
posed SC-SSL outperforms other state-of-the-art
video captioning models using cross-entropy loss
for most metrics. Because MSVD is much smaller
than MSR-VTT and VATEX, the gap between su-
pervised learning and SC-SSL is more significant
than that in Table 3. It is worth mentioning that our
supervised result is comparable with that of ECO
(Zolfaghari et al., 2018) because the backbone are
identical. While our SC-SSL outperforms ECO
with a significant gap, this result demonstrate the
superiority of SC-SSL.

Table 4. shows the result of an ablation study
on different data augmentation methods, temporal
weights and baseline reward using 1200 labeled
examples on VATEX English captioning task using
GRU decoder. It can be seen that SC-SSL using
AutoAugment is slightly better than SC-SSL using
RandomDrop. SC-SSL w / o temporal weights has
lower performances on all metrics than SC-SSL
which verifies the temporal weights can decrease
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Table 4: An ablation study of the influence of temporal
weights, baseline reward and RL training using #1200
labeled examples on VATEX English captioning task.

BLEU-4 METEOR ROUGE-L CIDEr

SC-SSL w AutoAugment 0.179 0.186 0.362 0.229
SC-SSL w RandomDrop 0.176 0.180 0.358 0.230
SC-SSL w / o temporal weights 0.172 0.174 0.353 0.222
SC-SSL w / o baseline reward 0.169 0.170 0.350 0.210

the influence of error accumulation. SC-SSL w / o
baseline reward means only using reward obtained
by Monte-Carlo sampling, i.e. the loss of unlabeled
data is Lu(θ) = −

∑T
t=1 r̂ · logpθ(ŷt|ŷ1:t−1,u).

The performance drops significantly. This result
verifies that self-critical training has better perfor-
mance than traditional policy gradient training.

5 Conclusion

In this paper, we make the first attempt to train
the video captioning model in a semi-supervised
learning manner. We train labeled data with the
traditional cross-entropy loss. For unlabeled data,
we leverage a self-critical policy gradient method
to train the data. The reward function is the differ-
ence between the scores obtained by Monte-Carlo
sampling and greedy decoding and the scores are
the K-L divergences between output distribution of
original video data and augmented video data. The
final loss is the weighted sum of two losses men-
tioned above. Experiments conducted on VATEX,
MSR-VTT and MSVD dataset demonstrate that
the introduction of unlabeled data can improve the
performance of the video captioning model signifi-
cantly. The proposed method is robust for different
tasks (English captioning task and Chinese caption-
ing task), different datasets (VATEX, MSR-VTT
and MSVD) and different models (GRU and Trans-
former). The proposed semi-supervised learning
algorithm also outperforms several state-of-the-art
semi-supervised learning approaches.
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