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Abstract

Recent studies show that integrating syntactic
tree models with sequential semantic models
can bring improved task performance, while
these methods mostly employ shallow inte-
gration of syntax and semantics. In this pa-
per, we propose a deep neural communica-
tion model between syntax and semantics to
improve the performance of text understand-
ing. Local communication is performed be-
tween syntactic tree encoder and sequential se-
mantic encoder for mutual learning of informa-
tion exchange. Global communication can fur-
ther ensure comprehensive information propa-
gation. Results on multiple syntax-dependent
tasks show that our model outperforms strong
baselines by a large margin. In-depth analysis
indicates that our method is highly effective in
composing sentence semantics.

1 Introduction

Neural sequential models such as LSTM (Hochre-
iter and Schmidhuber, 1997), GRU (Cho et al.,
2014), Transformer (Vaswani et al., 2017), ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2019),
have been extensively applied for encoding the
semantics of texts in natural language processing
(NLP) (Sundermeyer et al., 2012; Bahdanau et al.,
2015; Dozat and Manning, 2017; Yuan et al., 2019).
On the other hand, hierarchical tree models, such
as TreeLSTM (Socher et al., 2013) and GCN (Kipf
and Welling, 2017), have been introduced to en-
rich sequence encoding with syntactic information,
bringing further strengths in text modeling. Such
external syntactic structure knowledge provides en-
hanced features, which can facilitate a broad range
of NLP tasks (Tai et al., 2015; Looks et al., 2017;
Zhang and Zhang, 2019).

Recent studies show that integrating syntactic
tree models with sequential semantic models can
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B. James    loves      the atmosphere in the city
A. James witnessed the     tragedy    in the city · Syntactic √

· Semantic ×

Similar:

(a) The same syntactic structure but different semantics.

B. Tom cooked his own past under threat
A. They  forced Tom  to  fake  his  history · Syntactic ×

· Semantic √

Similar:

(b) The similar semantics but different syntactic structures.

Figure 1: Comparisons of syntax and semantics in sen-
tences. The same color indicates the same (similar) se-
mantic objective.

bring improved performance for syntax-dependent
tasks (Shi et al., 2016; Havrylov et al., 2019), such
as semantic role labeling (SRL) (Wang et al., 2019)
and natural language inference (NLI) (Chen et al.,
2017; Liu et al., 2018, 2019), etc. Intuitively, se-
quential semantic models and syntactic tree models
play different roles in text modeling. Sequential
semantic models learn the representation via adja-
cency neighborhood, while syntactic tree models
encode texts through structural connections. Tak-
ing the two sentence pairs from the NLI task in Fig-
ure 1 as example, sentence A and B in example (a)
share the same dependency structure but have irrel-
evant semantics, and tree models are more suitable
and effective for capturing the semantic difference
than sequential models in this case. In example (b),
two sentences convey very similar semantics but
have different syntactic structures. Therefore, two
types of models should interact closely in learn-
ing compositional representations for better under-
standing of the texts.

However, existing efforts integrate tree and se-
quential models through a straightforward way
such as representations concatenation (Chen et al.,
2017; Vashishth et al., 2019) or multi-task learning
(Shi et al., 2016; Swayamdipta et al., 2018; Chen
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et al., 2019), limiting the performance of end tasks.
We believe that a better integration can be achieved
when adequate interactions between sequential se-
mantic encoder and syntactic tree encoder can take
place during learning, improving the performance
of end tasks, and also alleviating the long-range
dependency problem.

To this end, we present a novel deep syntax-
semantics communication model, as shown in Fig-
ure 2. In particular, sequential and dependency-
tree based submodels are used for encoding input
sentence separately. Local communication is per-
formed between each submodel during learning for
information exchange of consecutive words in a
sentence. Meanwhile, two submodels are consid-
ered as an entire unit, taking global propagation
at sentence level over recurrent steps. In addition,
we employ gate mechanism to control information
flow of each node at each time step during global
communication.

Experimental results on a wide range of syntax-
dependent NLP tasks show that our model outper-
forms strong baselines by a large margin, offering
an alternative for better integration of sequential
and tree models. Further analysis indicates that our
method is highly effective in composing sentence
semantics, verifying the importance of integrating
syntax and semantics for text understanding.

2 Related Work

Neural sequential models have been widely used
for encoding texts in the NLP community, due to
their effectiveness on capturing semantics. Rep-
resentative models such as LSTM, GRU, Trans-
former, ELMo and BERT, have been employed for
various NLP tasks, including language modeling
(Sundermeyer et al., 2012), machine translation
(Bahdanau et al., 2015), question answering (Yuan
et al., 2019), etc. On the other hand, some efforts
devote to develop hierarchical tree models such
as TreeLSTM and GCN, based on syntactic struc-
tures (e.g., dependency tree). Such tree encoders
equipped with external syntactic knowledge can
bring further improvements for some NLP tasks,
especially syntax-dependent ones (Tai et al., 2015;
Looks et al., 2017; Zhang and Zhang, 2019; Fei
et al., 2020b,a), such as SRL (Swayamdipta et al.,
2016; Wang et al., 2019; Fei et al., 2020c), NLI
(Chen et al., 2017; Liu et al., 2019) and relation
classification (Liu et al., 2015; Tran et al., 2019),
etc.
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Figure 2: Overall architecture of the proposed model.

In recent years, exploring the correlation be-
tween syntax and semantics has become a hot re-
search topic. Previous work has shown a strong cor-
relation between syntax and semantics, and proven
that integrating syntactic tree models with sequen-
tial models could improve the performance of end
tasks (Swayamdipta et al., 2016; Shi et al., 2016;
Looks et al., 2017; Liu et al., 2018; Chen et al.,
2019). For example, Shi et al. (2016) simul-
taneously conducted syntax parsing and seman-
tic role labeling via multi-task training strategy.
Swayamdipta et al. (2018) incorporated syntactic
features into semantic parsing tasks by multi-task
learning. Vashishth et al. (2019) concatenated the
contextualized semantic representations with syn-
tactic tree representations for improving the abil-
ity of word embeddings. More recently, Liu et al.
(2019) added a multi-layer BiLSTM with short-
cut connections to the Pairwise Word Interaction
model for capturing semantics and syntactic struc-
ture of sentences. However, these methods only
use shallow integration of syntax and semantics,
limiting the performance of end tasks.

Our model is inspired by Zhang et al. (2019),
who introduce a novel method allowing the suffi-
cient communication between different tree models
for sentiment analysis. Unlike their work, this pa-
per is dedicated to realizing a deep communication
between syntactic tree model and sequential seman-
tic model for improving text understanding. The
idea of sentence-level propagation in our work is
partially related to Zhang et al. (2018), who pro-
pose a novel LSTM architecture where a set of
global states are used for sentence-level propaga-
tion along recurrent steps, rather than incremental
reading of a sequence of words in vanilla sequential
LSTM. Compared with their model, our model is
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more effective in composing semantic information
of texts.

3 Model

In this paper, we propose a deep neural commu-
nication model between syntax and semantics to
improve the performance of text understanding. Lo-
cal communication is performed between two en-
coders for information exchange of each node, as
illustrated in Figure 3. Global communication is
performed over the entire framework under recur-
rent steps for sufficient information propagation, as
shown in Figure 2.

3.1 Baseline Encoders

For an input sentence S = {w1, · · · , wn}
with sequential word representations
{xseq1 , · · · , xseqn } and dependency tree repre-
sentations {xtree1 , · · · , xtreen } from dependency
parsing, the baseline sequential encoder and the
tree encoder generate contextualized representa-
tions separately, which can be concatenated as the
final node representation.

3.1.1 Sequential Encoder
We use a bidirectional LSTM (BiLSTM) as se-
quential encoder on learning semantic information,
which processes a sentence in forward and back-
ward directions, based on vanilla LSTM model.
Considering the forward node representation

−→
hi

from a forward LSTM:

ii = σ(W (i)x
seq
i +U (i) + b(i)) (1)

fi = σ(W (f)x
seq
i +U (f)−→h i−1 + b(f)) (2)

oi = σ(W (o)x
seq
i +U (o)−→h i−1 + b(o)) (3)

ui = tanh(W (u)x
seq
i +U (u)−→h i−1 + b(u)) (4)

ci = ii � ui + fi � ci−1 (5)
−→
hi = oi � tanh(ci) (6)

where ii, fi, oi and ui are the gates controlling the
LSTM cell ci and the state

−→
hi . W and b are the

parameters. σ is the sigmoid function and � is the
element-wise multiplication. Similarly, a backward
LSTM can yield the backward node representa-
tion
←−
hi over the same input S. BiLSTM takes the

concatenation of
−→
hi and

←−
hi as the final node repre-

sentation for the word wi:

hseqi = [
−→
hi ;
←−
hi ] (7)

3.1.2 Tree Encoder
We employ the dependency tree as the underlying
structure, where all the nodes are input words and
connected with directed edges, as the sentences
shown in Figure 1. We use two typical tree models
for encoding the structure, including TreeLSTM
and GCN, both under a bidirectional setting.

The standard TreeLSTM encodes each node j
with its corresponding head word representation as
input xj . For the bottom-up TreeLSTM:

h
↑
j =

∑
k∈C(j)

h↑k (8)

ij = σ(W (i)xtree
j +U (i)h

↑
j + b(i)) (9)

fjk = σ(W (f)xtree
j +U (f)h

↑
k + b(f)) (10)

oj = σ(W (o)xtree
j +U (o)h

↑
j + b(o)) (11)

uj = tanh(W (u)xtree
j +U (u)h

↑
j + b(u)) (12)

cj = ij � uj +
∑

k∈C(j)

fjk � ck (13)

h↑j = oj � tanh(cj) (14)

where W , U and b are parameters, C(j) is the set
of child nodes of j. hj , ij , oj and cj denote the hid-
den state, input gate, output gate and memory cell
of the node j, respectively. fjk is a forget gate for
each child k of j. Similarly, the top-down TreeL-
STM has the same transitions as the bottom-up
counterpart, except for the direction and number of
dependent nodes. We use the concatenated repre-
sentations from two direction for each node:

htreej = [h↑j ;h
↓
j ] (15)

Compared with TreeLSTM, GCN is more com-
putationally efficient, performing tree propagation
for each node in parallel with O(1) complexity.
Considering the constructed dependency graph
G = (V, E), where V are sets of nodes and E are
sets of bidirectional edges between heads and de-
pendents, respectively. GCN can be viewed as a
hierarchical node encoder, which represents the
node j at the k-th layer and encodes the node j as
follows:

gkj = σ(W k
j h

k
j + bkj ) (16)

hkj = ReLU(
∑

j∈N (j)

xtree,kj � gkj ) (17)

where N (j) denotes neighbors of j. ReLU is a
non-linear activation function. We take the final
layer’s output as the final tree representation htreej .
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Figure 3: Local communication between sequential en-
coder and tree encoder.

3.2 Deep Communication Model

We treat sequential encoder and tree encoder as
one entire unit, making use of the representation
concatenation of the corresponding nodes as the
final node representation halli :

halli = [hseqi ;htreei ]. (18)

As shown in Figure 2, during the inner-sentence
local interaction between semantics and syntax,
we meantime scale the whole unit over recur-
rent steps T for sentence-level global propaga-
tion. We denote the unit at recurrent step t as
Ut = {Hseq,t,Htree,t,Hall,t}.

3.2.1 Local Interaction

The motivation of local communication is to en-
courage sequential encoder and tree encoder to
learn more from each other’s pattern of information
propagation. In particular, considering sequential
encoder Hseq,t and tree encoder Htree,t in Ut, and
current word wi, as shown in Figure 3. The main
idea is to let the nodes in unit Ut take their neighbor
nodes of both sequential and tree encoder as input
at the last time step t− 1, including the nodes in se-
quential model: hseq,t−1i−1 , hseq,t−1i , hseq,t−1i+1 , and in
tree model: htree,t−1left , htree,t−1j , htree,t−1right , htree,t−1par

(par is parent), which all are packed into a set
Hnbs,t−1 (nbs means neighbors).

First, each node in sequential encoder at current
step t takes as an additional input the neighbor
nodes from the last time step:

xseq,ti = [xseqi ;xseq,ti ] (19)

where xseq,ti is the neighbor node representation

obtained via the attentive operation:

useqq = vTtanh(W1h
nbs,t−1
q +W2h

seq,t−1
i )

(20)

αseqq = softmax(useqq ) (21)

xseq,ti =
∑
q

αseqq h
nbs,t−1
q (22)

where h
nbs,t−1
q ∈ Hnbs,t−1 excluding hseq,t−1i it-

self.
Similarly, each node in tree encoder takes the

additional neighbor node representation as input:

xtree,tj = [xtreej ;xtree,tj ] (23)

where xtree,tj is formulated as:

utreeq = vTtanh(W1h
nbs,t−1
q +W2h

tree,t−1
j )

(24)

αtreeq = softmax(utreeq ) (25)

xtree,tj =
∑
q

αtreeq h
nbs,t−1
q (26)

where h
nbs,t−1
q ∈Hnbs,t−1 excluding htree,t−1j it-

self.

3.2.2 Sentence-level Global Propagation
During sentence-level propagation across recurrent
steps T , information exchange between syntax and
semantic in a sentence can be extended sufficiently
and broadly, and information flow between con-
secutive words can be enhanced by capturing long-
range dependencies.

We reach the goal by employing a context gate
over the final node representation hall,ti . Formally,

cti = σ(W 1
i h

all,t−1
i +W 2

i h
all,t
i + b) (27)

hall,ti = cti � h
all,t−1
i + (1− cti)� h

all,t
i (28)

where h
all,t
i is the ungated value from the concate-

nation of hseq,ti and htree,ti . The context gate cti for
the node wi controls the contribution proportion of
history representation and current representation
during each step t.

3.3 Decoding and Training
We use a softmax classifier as the decoding layer:

y = softmax(r) (29)
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Technically, for sentence-level classification, the
final sentence representation is the attention repre-
sentation over hall,Ti :

ϕi = tanh(Whall,Ti + b) (30)

αi = softmax(ϕi) (31)

rs =

n∑
i

αih
all,T
i (32)

For sentence pair tasks, such as NLI, we make
element-wise production, subtraction, addition and
concatenation of two separate sentence representa-
tions as a whole:

rp = [ra; rb; ra − rb; ra + rb; ra � rb] (33)

where ra and rb are the corresponding sentence
representations.

For sequence-level classification, we directly
make use of the final node representations
{hall,T1 , · · · , hall,Tn }, followed by a softmax de-
coder:

y1, · · · , yn = softmax(hall,T1 , · · · , hall,Tn ) (34)

The main task cross-entropy loss can be repre-
sented as:

L = −
∑
i

ŷilogyi +
λ

2
‖θ‖2, (35)

where λ
2‖θ‖

2 is the l2 regularization term and ŷi is
the ground truth label.

To avoid cold-start training, we first pre-train the
standalone sequential encoder and the tree encoder
separately, and then take their parameters as the
initial states for the framework at step 0, including
Hseq,0 and Htree,0. Thereafter, we train the entire
framework in total N iterations with early stopping
strategy.

4 Experiments

4.1 Experimental Setups
Hyperparameters. For BiLSTM, TreeLSTM
and GCN, we all use a 2-layer version. The di-
mension of word embeddings is set to 300, which
is initialized with the pre-trained GloVe embedding
(Pennington et al., 2014). All the hidden sizes in
neural networks are set to 350. We adopt the Adam
optimizer with an initial learning rate in [1e-5, 2e-5,
1e-6], and L2 weight decay of 0.01. We use the
mini-batch in [16, 32, 64] based on the tasks, and
apply 0.5 dropout ratio for word embeddings. λ is
fine-tuned according to specific tasks.

Task, Dataset and Evaluation. We conduct ex-
periments on typical syntax-dependent tasks. 1)
EFP, event factuality prediction on the UW dataset
(Lee et al., 2015). EFP evaluates the performance
of different methods with Pearson correlation co-
efficient (r). 2) Rel, relation classification for
drug-drug interaction (Segura Bedmar et al., 2013).
3) SRL, semantic role labeling on the CoNLL08
WSJ dataset (Surdeanu et al., 2008). Rel and SRL
use the F1 score to measure the performance of
different models. 4) NLI, natural language infer-
ence, which also can be modeled as a sentence
pair classification, and we investigate NLI on three
benchmarks: QNLI (Rajpurkar et al., 2016), SICK
(Marelli et al., 2014) and RTE (Bentivogli et al.,
2009). For NLI, we use the accuracy to evaluate
different models by following previous work.

Note that each dataset contains its own train-
ing set, development set and test set. We test the
performance of our method 30 times on the corre-
sponding test set, and the results are presented after
significant test with p≤0.01. We use the state-of-
the-art BiAffine parser (Dozat and Manning, 2017)
to obtain the dependency annotation xtree. Being
trained on the Penn Treebank (Marcus et al., 1993),
the dependency parser has a 93.4% LAS and 95.2%
UAS on WSJ test sets.

Baselines. To show the effectiveness of our
model, we compare the proposed model with three
types of baseline systems.

• Sequential semantic models, including BiL-
STM, attention-based BiLSTM, Transformer
and sentence-state LSTM (S-LSTM) (Zhang
et al., 2018).

• Syntactic tree models, including standalone
TreeLSTM or GCN encoder introduced in §
3.1.2.

• Syntax and semantics ensemble models, in-
cluding ensembling learning (Wolpert, 1992;
Ju et al., 2019) and multi-task method (MTL)
(Liu et al., 2016).

For ensemble models, we concatenate the output
representations of tree encoder TreeLSTM and se-
quential model BiLSTM. For MTL, we use the
underlying shared structure for parameter sharing
for TreeLSTM and BiLSTM. For the NLI task, we
additionally compare the syntax-semantics integra-
tion models, including ESIM (Chen et al., 2017),
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System EFP Rel SRL Avg.
• Sequential Semantic Model

BiLSTM 71.6 80.5 80.0 77.4
ATTBiLSTM 73.8 84.9 81.4 80.0
Transformer 74.5 86.2 82.5 81.1
S-LSTM 74.9 86.7 83.0 81.5
• Syntactic Tree Model

TreeLSTM 77.1 87.4 83.3 82.6
GCN 78.5 88.7 83.8 83.7
• Syntax+Semantics Model

Ensemble 76.8 88.1 83.6 82.8
MTL 78.2 88.5 84.0 83.6
• Ours

+TreeLSTM 80.9∗ 90.3 85.7∗ 85.6
+GCN 80.2 91.2∗ 84.8 85.2

Table 1: Main results on various tasks. ∗ indicates
p ≤0.05.

StructAlign (Liu et al., 2018) and PWIM (Liu et al.,
2019).

4.2 Experimental Results

Main tasks. Table 1 shows the results of differ-
ent models on EFP, Rel and SRL tasks. Several ob-
servations can be found. First of all, the attention-
based sequential models (e.g., ATTBiLSTM and
Transformer) are better than the vanilla BiLSTM
model, while the S-LSTM model that incorpo-
rates both word-level and sentence-level propaga-
tion is more effective in encoding texts, compared
with the attention-based sequential models such
as ATTBiLSTM and Transformer. Besides, tree
models with syntactic structure achieve better per-
formance than sequential semantic models, show-
ing the effectiveness of utilizing external syntactic
knowledge for syntax-dependent tasks. In partic-
ular, the GCN encoder slightly outperforms the
TreeLSTM encoder.

In addition, when integrating tree models with
sequential networks via ensemble method or multi-
task learning, the improvements are quite incre-
mental and limited. Even ensemble learning can be
worse than standalone tree encoders such as GCN.
Finally, our proposed method (including both the
TreeLSTM and GCN based encoder) gives the best
results (p≤0.01) than all the baselines, demonstrat-
ing the importance of an effective integration be-
tween syntax and semantics. The results also show
the TreeLSTM based tree encoder is more benefi-
cial to our deep syntax-semantics communication
model. The possible reason is that TreeLSTM en-

System QNLI SICK RTE Avg.
• Sequential Semantic Model

BiLSTM 78.6 80.0 58.2 72.3
ATTBiLSTM 80.5 81.2 59.6 73.8
Transformer 81.6 82.4 61.8 75.3
S-LSTM 83.9 83.0 63.2 76.7
• Syntactic Tree Model

TreeLSTM 85.2 84.8 66.0 78.7
GCN 83.9 83.7 65.3 77.9
• Syntax+Semantics Model

Ensemble 84.6 84.1 65.0 77.9
ESIM 85.4 85.0 66.7 78.9
StructAlign 86.0 85.3 67.2 80.2
PWIM 86.6 86.1 68.3 79.4
• Ours

+TreeLSTM 88.2∗ 87.2∗ 70.6∗ 82.0
+GCN 87.8 86.7 69.0 81.2

Table 2: Results on natural language inference tasks.

codes syntactic tree structure in an incremental pro-
cess, during which more detailed information pass
can be leveraged. While in GCN, the nodes of syn-
tactic graph is encoded in parallel, though being
more computational efficient, offering collapsed
information.

NLI tasks. We evaluate different methods on the
NLI datasets. As shown in Table 2, similar obser-
vations can be found as previous tasks. Among
syntactic tree models, TreeLSTM is more effective
than GCN for sentences pair encoding, showing
the same trends in Table 1. Despite structural ar-
chitecture of the TreeLSTM encoder, it learns the
syntax consecutively, during which more contex-
tual information can be maintained. While GCN
encodes the sentence in one shot, it is not suffi-
cient for matching a sentence pair. In addition,
we can find that the strong NLI baselines (ESIM,
StructAlign and PWIM) give better results than the
syntax-semantics ensemble model, as they can pro-
vide more sophisticated manner on incorporating
syntactic knowledge with semantic composition.
Nevertheless, our model outperforms all baseline
systems, with an average accuracy 82.0% by the
TreeLSTM tree baseline, and 81.2% by the GCN
encoder. The above results prove that our frame-
work is highly effective in integrating syntactic
structure with sequential semantic models.

4.3 Ablation Study

We do ablation tests to analyze the contribution
of different components, including tree encoders,
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Item Acc.
Sequential Sem. (+TreeLSTM)

+Xavier 87.3
+ELMo 89.4
+BERT 92.8

Communication (+TreeLSTM)
w/o Local (Eq. 23 & 19) 85.1
w/o Globala (Eq. 28) 86.9
w/o Globalb (T=0) 86.4

Table 3: Ablation study on QNLI.

sequential encoders and communication methods.
The experiments are based on the QNLI dataset.
As shown in Table 1 and 2, TreeLSTM performs
better than GCN on NLI tasks. But the result is
the opposite on the other tasks, as we discussed
earlier. This shows that different syntax-dependent
tasks rely on different tree encoders with differing
utility. We further investigate the influences of se-
quential encoders, as shown in Table 3. First, we
replace the GloVe embedding with the one initial-
ized by the Xavier algorithm (Glorot and Bengio,
2010), and we can find that the performance has
a significant drop. When we use the state-of-the-
art language models, such as ELMo and BERT,
instead of BiLSTM, we obtain prominent perfor-
mance gains. This indicates the importance of se-
mantics for the framework. Second, if we abandon
the local communication mechanism, the accuracy
decreases dramatically. Finally, the context gate
cti and the sentence-level propagation architecture
make similar contributions on global communica-
tion for the task performance.

4.4 Efficiency

We investigate the efficiency of different models on
the EFP task. As shown in Figure 4, our method
gives competitive performance when the sentence
length grows to 30. In contrast, the performance
of the other models has been significantly reduced.
This indicates that our method can partially relieve
the long distance dependency problem, thanks to
the sentence-level global communication.

We explore the impact of recurrent steps in
sentence-level propagation architecture. As shown
in Figure 5, TreeLSTM converges at step 7, while
GCN is faster, at step 3. This partially coincides
with the principle that GCN is more efficiency-
saving than TreeLSTM.
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76

79

82

Sentence length

r

AttLSTM TreeLSTM Ensemble Ours

Figure 4: Performance of different sentence lengths.
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Figure 5: Sentence-level propagation under varying
time step.

4.5 Semantic Composition

We explore to what extent the model better cap-
tures the semantics of sentences. Based on the
RTE task, we first measure the distance of each
sentence pair on semantic representation with the
Euclidean distance (Ed), and then scale the contin-
uous value ŷi into [0,1]. The RTE gold test labels
yi ∈ {0, 1}, includes Entailment and Contradict.
We define a semantic deviation as: Dev(y, ŷ) =√

1
N

∑N
i (Ed(yi, ŷi)− Ed), where Ed is the av-

eraged distance. If all the predicted distances are
coincident with gold ones, or different from ora-
cles, Dev=0, indicating the maximum consistency
of semantic representation. We make statistics for
the deviation of each sentence pair by several base-
lines, as shown in Figure 6. We can see that our
method gives the best semantic consistencies with
gold ones, compared with other methods. This indi-
cates the effectiveness of our model on composing
sentence semantics.

We also explore the effectiveness of semantic
composition by comparing our method with the
NLI model StructAlign. We scatter the predicted
probability of each sentence pair. Technically, a
model is expected to predict the Entailment label
(y=1) with larger probability, and vise versa for
the Contradict label. As shown in Figure 7, we
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Figure 6: Semantic deviation of sentence pair.
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Figure 7: Scatter plot on accuracy probability for RTE.

find that our model tends to predict the samples
with higher confidence, on either Entailment or
Contradict, compared with StructAlign. The above
analysis proves that our method is more effective
than StructAlign in semantics composition.

4.6 Case Study

To better understand the introduced local and
global communication mechanisms, we conduct
case study by empirically visualizing the edge
weights on both syntactic dependency structure en-
coder and sequential model, and the word weights.
The experiment is based on the RTE test set. We
first calculate the attention weights for each node in
sequential model (Eq. 21) and tree model (Eq. 25),
respectively. We then recompute such edge weights
for all the nodes via global normalization at sen-
tence level, for sequential model and tree model,
separately. By calculating the co-occurrence matrix
of edge weights, we can obtain word weights. We
visualize the importance of words, dependent edges
and consecutive edges for Premise and Hypothesis
sentences, respectively.

As illustrated in Figure 8, before information
exchange (T=0), the weights of dependency edges
and consecutive edges are inaccurate and not di-

Coyote got shot after biting girl in Vanier Park

Coyote got shot after biting girl in Vanier Park T =0

T =5

Girl got shot in park

Girl got shot in park

T =0

T =5

Pr
em

ise
H
yp
ot
he
si
s

Figure 8: Case visualization of words and edges on the
RTE task (with Contradict label). The arrows above
sentences are bidirectional syntactic dependents, and
the ones below sentences are sequential semantics.

rectly useful for capturing semantics. Besides, the
‘attentions’ focused on edges in sequential model
and tree model are quite different. When the frame-
work is trained close to convergence, at time step 5,
the connections between syntax and semantics tend
to be mutually coincident. The possible reason is
that sequential semantics can guide syntactic struc-
ture learning onto the proper place. For example,
syntactic links for biting girl in Premise, and the
one for got shot in Hypothesis, are enhanced by
the correspondences of sequential edges, respec-
tively. Consequently, more informative words, e.g.,
biting girl in Premise and Girl got shot in Hypoth-
esis, can receive proper weights for building more
accurate semantics. With such semantics compo-
sition, the model easily gives correct predictions.
This shows that an effective communication can
improve mutual learning of syntactic structure and
sequential semantic.

5 Conclusion

We proposed a deep syntax-semantics communica-
tion model for improving text understanding. Local
communication was performed between syntactic
tree encoder and sequential semantic encoder for
mutual learning of information exchange. Global
communication was performed for ensuring infor-
mation propagation throughout entire architecture
over recurrent steps. Results on multiple tasks
showed that our model outperformed strong base-
lines. In-depth analysis further indicated that our
method was highly effective on composing sen-
tence semantics.
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