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Abstract

In order to improve the sample-efficiency of
deep reinforcement learning (DRL), we im-
plemented imagination augmented agent (I2A)
in spoken dialogue systems (SDS). Although
I2A achieves a higher success rate than base-
lines by augmenting predicted future into a
policy network, its complicated architecture in-
troduces unwanted instability. In this work,
we propose actor-double-critic (ADC) to im-
prove the stability and overall performance
of I2A. ADC simplifies the architecture of
I2A to reduce excessive parameters and hyper-
parameters. More importantly, a separate
model-based critic shares parameters between
actions and makes back-propagation explicit.
In our experiments on Cambridge Restaurant
Booking task, ADC enhances success rates
considerably and shows robustness to imper-
fect environment models. In addition, ADC
exhibits the stability and sample-efficiency as
significantly reducing the baseline standard de-
viation of success rates and reaching the 80%
success rate with half training data.

1 Introduction

Spoken Dialogue Systems (SDS) enable human-
computer interaction via natural language. The
core of SDS, dialogue management, can be formu-
lated as an RL problem (Levin et al., 1997; Young
et al., 2013; Williams, 2008). Great advancements
can be achieved with deep RL algorithms (Dhingra
et al., 2016; Chang et al., 2017; Budzianowski et al.,
2017; Casanueva et al., 2017; Liu et al., 2018; Gao
et al., 2018; Takanobu et al., 2019; Wu et al., 2020).
Yet, deep RL methods are notoriously expensive
in terms of the number of interactions they require.
Even relatively simple tasks can require thousands
of labelled dialogues and modelling complex be-
haviour such as a multi-domain application might
need substantially more (Gašić et al., 2011; Li et al.,
2016; Su et al., 2016).

Model-based reinforcement learning (MBRL)
is one way of improving sample-efficiency in
RL (Tamar et al., 2016; Silver et al., 2016; Gu et al.,
2016; Nagabandi et al., 2018; Oh et al., 2017). By
learning the environment model, we can predict
the future states after taking a certain action. In a
dialogue system, that means the system can predict
the user’s behaviour. In contrast, the model-free
RL algorithms only learn the mapping of belief
states and Q-values and do not make use of the user
behaviour patterns in the training data. In other
words, model-free RL is wasting actions by going
through similar transitions multiple times to get
accurate return estimations.

Dyna-Q (Sutton, 1990; Sutton et al., 2012) has
achieved some success in SDS (Peng et al., 2018;
Su et al., 2018; Wu et al., 2019; Zhang et al., 2019)
by generating training data for agents and keeping
improving its environment model from real inter-
actions between agents and users. Nevertheless,
the noisy data generated by inaccurate environment
models could adversely affect the experience re-
play buffer and result in convergence toward sub-
optimal performance. This problem is even more
critical in real-world tasks such as real-world dia-
logue systems where training a good environment
model is challenging.

I2A (Weber et al., 2017) addresses this problem
by augmenting model-based information into the
input of policy networks in order to filter out the
noise generated by poor environment models. How-
ever, I2A introduces unwanted instability when we
applied it to a dialogue system due to its complex
architecture and excessive hyper-parameters. The
unstable performance makes it even harder to tune
the parameters.

In this paper, we propose Actor-Double-Critic
(ADC), a new architecture to augment model-based
information into the policy network. By training
two critics from model-free and model-based data
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Figure 1: ADC architecture: Green blocks indicate predicted belief states. a) the environment model predicts
the next time step bt+1,ai conditioned on an action ai. b) the actor outputs the policy pi as in a standard actor-
critic architecture. c) the two critics estimate Q-values based on the current belief state and predicted next belief
states respectively. Final Q-values are the weighted sum of the outputs of two critics. Note that model-based
critic predicts i-th Q-value based on bt+1,ai

, so this process is repeated for all actions ai ∈ A to obtain all of the
Q-values.

separately and combining them in an ensemble,
we reduce the number of redundant parameters
and make back-propagation more efficient. In the
Cambridge Restaurant dialogue system task, exper-
imental results show a substantial improvement in
success rates. Regarding sample efficiency, ADC
takes only half of baseline training data to achieve
the 80% success rate. In addition, ADC is the most
stable approach among all considered baselines.
Compared to a model-free actor-critic algorithm,
ACER (Wang et al., 2016), it reduces the standard
deviation of success rates from 7.7 to 1.2. It also
proves more stable than a Bayesian model-free al-
gorithm GP-SARSA (Gašić et al., 2010).

2 Dialogue management through
reinforcement learning

Dialogue management can be cast as a continuous
MDP (Young et al., 2013) composed of a contin-
uous multivariate belief state space B, a finite set
of actions A and a reward function R(bt, at). The
belief state b is a probability distribution over all
possible (discrete) states. At a given time t, the
agent (policy) observes the belief state bt ∈ B and
executes an action at ∈ A. The agent then receives
a reward rt ∈ R drawn from R(bt, at). The policy
π is defined as a function π : B ×A→ [0, 1] that
with probability π(b, a) takes an action a in a state
b. For any policy π and b ∈ B, the value function
Vπ corresponding to π is defined as:

V π(b) = E{rt + γrt+1 + ...|bt = b, π} (1)

where 0 ≤ γ ≤ 1, is a discount factor and rt is

a one-step reward. The objective of reinforcement
learning is to find an optimal policy π∗, i.e. a policy
that maximizes the value function in each belief
state. Equivalently, the goal is to find an optimal
policy π∗ that maximises the discounted total return

R =
T−1∑
t=0

γtrt(bt, at) (2)

over a dialogue with T turns, where rt(bt, at) is
the reward when taking action at in dialogue state
bt at turn t and γ is the discount factor.

3 Imagination Augmented Agent (I2A)

I2A (Weber et al., 2017) manages to implicitly
incorporate all the possible future information into
the policy network. Basically, it can be divided into
three hierarchies:

• Imagination core. An environment model is
trained on future states and rewards prediction
conditioned on an action. By interacting with
a baseline actor, the environment model is
used to simulate potential trajectories.

• Single imagination roll-out. To efficiently
use these simulated trajectories, the agent
learns an encoder that extracts information
from these imaginations including both states
and rewards. The encoder is designed to se-
lect useful information and ignore the noisy
one generated by imperfect models.

• Augmentative architecture. For each possi-
ble action, the simulated trajectories are gen-
erated. All the information extracted from
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trajectories are concatenated together and pro-
vided as additional context to a policy net-
work.

However, we found that I2A’s hierarchical ar-
chitecture is not stable enough when experimented
on SDS tasks. This architecture contains several
fragile components which have a strong impact on
the performance, such as the environment model
and the roll-out policy network. Excessive hyper-
parameters, like rollout-depth and embedded fea-
ture sizes for the encoder, also make it hard to con-
duct parameter tuning and apply I2A to real-world
applications.

4 Actor-Double-Critic (ADC)

To increase the stability of the augmenting-style
approaches, we simplify the previous architecture
and propose a key component – model-based critic.
As illustrated in Figure 1, we train two critics based
on model-free and model-based information respec-
tively and combine their outputs by the weighted
sum in an ensemble.

In this section, we explain why we simplify the
architecture in these ways and the benefits of using
a model-based critic.

4.1 Simplified architecture
To reduce the model complexity, we simplify the
architecture in the following three ways,

• Our environment model predicts only the next
belief state bt+1,ai conditioned on an action
ai: the model does not predict rewards. That
is because the reward signals in SDS domain
are sparse and hard to predict.

• In I2A, the pre-trained environment model
will not be updated while learning policy
since the policy network is robust to imper-
fect model. Besides, obtaining pre-training
data is not challenging in a simulated game.
However, in the real world, pre-training data
for SDS is hard to collect. In our approach,
in order to improve the sample efficiency, the
environment model is updated during policy
learning.

• We discard the roll-out policy network.
Since the policy always changes, the predicted
action sequences change as well. Since we
aim at reducing the uncertainties in our frame-
work, roll-out length is set to 1 without using
the roll-out policy network.

4.2 Model-based critic

By definition, a Q-value can be decomposed as:

Qπi (bt, ai) = rt + γV (bt+1,ai) (3)

In dialogue system tasks, rt is typically set to−1
for each turn to penalize lengthy dialogue in our
experimental setting. At the end of a dialogue, rt
varies depending on the result yet we do not need
to predict Q-values at that time. Hence, rt is a
constant in Equation 3 for dialogue system tasks.
Given that rt and γ are constants, we can train
an estimator for Qπi (bt) based on the next belief
state bt+1,ai , which is predicted by the environment
model. 1

We call this estimator model-based critic in the
actor-critic framework, while the original one is
a model-free critic. Compared to previous ap-
proaches, adopting the model-based critic has the
following three benefits:

4.2.1 Parameter sharing
Note that given bt+1,ai , the model-based critic of
ADC predicts only one value Qi. To obtain all of
theQ-values, we firstly predict the next belief states
bt+1,ai∀ai ∈ A using the environment model, and
then map each of them to Qi by the model-based
critic. Parameters of the model-based critic are
shared between actions and the model-complexity
is reduced.

In I2A, bt+1,ai∀ai ∈ A are concatenated as a
large input vector. This means the the number of
parameters of the model-based path of I2A is in-
creasing with the number of actions, which is not
the case in ADC. In practice, the number of pa-
rameters in I2A (1.4 millions) is around five times
more than ADC (240 thousands).

4.2.2 No redundant connections
As shown in Equation 3, Qi is not relevant to other
predicted belief state bt+1,aj where i 6= j. Qi re-
sults from the predicted belief state bt+1,ai . But
I2A concatenates all of the predicted belief states
and the current belief state together to make the
prediction of Q-value. That is, most of the con-
nections in I2A should be updated to zero weights
after training. Using model-based critic eliminates
these redundant connections and predicts one Qi at
one time to improve the stability of the algorithm.

1In other applications where rt is not a constant, the envi-
ronment model should also predict the value of rt.
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Algorithm 1: Actor-Double-Critic for Di-
alogue Policy Learning
Input: Total training epochs N , the

environment model E with
parameters θE , the model-based
critic MB, the model-free critic
MF , the actor (Policy network) P
with parameters θP , the experience
replay D

1 pre-trained E with precollected
conversational data

2 for n=1:N do
// Reinforcement Learning

3 while s is not a terminal state do
4 predict bt+1,ai∀ai ∈ A using E
5 predict QMB using MB
6 compute Q(bt, ai) by Eq. 4
7 with probability ε select a random

action a otherwise select
a = argmaxa′P (b, a

′)
8 execute a, and observe the next

belief state b′ and reward r update
dialogue state to b′

9 store (b, a, r, b′) in D
10 end
11 sample random minibatches of

(b, a, r, b′) from D
12 update θMF , θMB via minibatch

Q-learning according to Equation 4, 5
13 update θP according to ACER or

another actor-critic algorithms
// Environment model Learning

14 sample random minibatches of training
samples (b, a, r, b′) from D

15 update θE via minibatch SGD of
multi-task learning

16 end

Agent #Parameters

ACER 110 K

I2A (Model-free path) 80 K
I2A (Model-based path) 1.2 M

I2A (Total) 1.4 M

ADC (Model-based critic) 110 K
ADC (Total) 240 K

Environment Model 16 K

Table 1: Comparison of the number of parameters.

4.2.3 Explicit update signals
We can also predict Qπ(bt) through the model-free
critic. The final Q-values are the weighted sum of
both two critics in an ensemble way to lower the
variance.

Qπ(bt, ai) =Q
π
MF (bt, ai) · w+

QπMB(bt+1,ai) · (1− w), (4)

where QπMF (bt, ai) is the output of the model-
free critic and QπMB(bt+1,ai) is the output of the
model-based one, and w is a weight parameter. We
replace their notation with QπMF and QπMB to keep
the expressions succinct. The model selects in-
formation either from the model-free path (when
w = 1) when the model is noisy or from the model-
based path (when w = 0) when it provides more
accurate information. During the training process,
we compute the loss for each critic andw is a hyper-
parameter.

losscritics =(QπMF −Qret)2+
(QπMB −Qret)2

(5)

where Qret is the target of Qπ using the Retrace
algorithm (Munos et al., 2016).

Note that for each training iteration, we update
two critics at the same time. In I2A, we cannot iden-
tify whether errors are coming from model-based
path or model-free path. In our approach, the infor-
mation flows from two sources clearly instead of an
ambiguous one. We have tried to back-propagate
loss from Qπ through the whole network, but the
result is better if we back-propagate the loss de-
fined in equation 5. This result again proves the
necessity of using two-critics architecture.

5 Experiments

5.1 Setup
Experiments are conducted on the Cambridge
restaurant domain from the PyDial toolkit (Ultes
et al., 2017) with a goal-driven user simulator op-
erating on the semantic level (Schatzmann et al.,
2007; Schatzmann and Young, 2009), a LSTM-
based NLU model (Mrkšić et al., 2016), and a NLG
model (Wen et al., 2015). During training, an agent
is updated when a dialogue terminates, which is an
iteration. Every 200 training dialogues, the agent is
tested on 500 dialogues. 10 random seeds were run
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Figure 2: Comparison with baselines. Left: Learning curves of success rate. Right: average turns per dialogue.

Figure 3: Left: Comparison between different update algorithms. Right: Experiment on robustness to imperfect
model over different architectures.

for each approach to analyze the variance arising
from different initialization. The mean ± standard
deviation is depicted as the shaded area in Fig-
ure 2, 3. The x-axes of Figure 2, 3 are in log scale
to put emphasis on both the early stage and the final
performance of the training process.

User simulator. To accommodate for ASR er-
ror, 15% semantic error rate (SER) is included in
the user simulator. The maximum dialogue length
is set to 25 turns and γ was 0.99. The reward is
defined as 20 for a successful dialogue minus the
number of turns it took to complete the dialogue.

Implementation details. The input for all mod-
els is the full dialogue belief state b of size 268
and the output action space consists of 16 possi-
ble actions. For NN-based algorithms, the size of
a mini-batch is 64. ε-greedy exploration is used,
with ε linearly reducing from 0.3 down to 0 over
the training process. Two hidden layers are of size
300 and 100 for actor and critic. The Adam op-
timiser was used with an initial learning rate of

0.001 (Kingma and Ba, 2014). For algorithms em-
ploying experience replay, the replay memory has
a capacity of 2000 interactions.

5.2 Dialogue agents for comparison

• GP-SARSA is a Bayesian baseline, which
provides a stable performance by utilising un-
certainty estimates.

• ACER is the model-free actor-critic baseline
and can be perceived as a model-free counter-
part of the proposed method. According to the
benchmark results (Casanueva et al., 2017), it
performs better than other actor-critic meth-
ods such as A2C (Fatemi et al., 2016) and
eNAC (Su et al., 2017). Since ADC can be
applied to any model-free actor-critic method,
not all the performance of RL algorithms are
reported here. In this paper, we focus on the
gap between ACER and ADC rather than the
absolute performance. To have a fair compari-
son, the pre-training data used by model-based
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Agent Suc. Std. Required data

ACER 78.1 ±7.7 1200

GP-SARSA 89.6 ±3.3 800

I2A 93.9 ±2.3 750

ADC 95.8 ±1.2 600

Table 2: Final performance of each agent after training
with 4000 dialogues. Tested in 10 runs, each algorithm
reports 1) the average success rate 2) the standard devi-
ation of success rates and 3)the average amount of data
required to reach the 80% success rate. The latter two
matrices are used to evaluate the stability and sample-
efficiency respectively.

approaches were put into the experience buffer
of ACER at the beginning of the training.

• I2A is the model-based baseline. The environ-
ment model is pre-trained with 400 dialogues
generated by interactions between a simulated
user and an agent.

• ADC is the proposed method. The ensemble
weight w is 0.5 for each critic. The environ-
ment model setting is the same as I2A.

5.3 Comparison with baselines
Success rate. As shown in the left part of Figure 2
and Table 2, ADC outperforms other methods con-
siderably in terms of sample-efficiency, stability,
and success rate. I2A performs better than ACER
but is still fragile to the initialization, shown as
the shaded areas. Compared to I2A, ADC reduces
half of the standard deviation of final success rates,
from 2.3 to 1.2

In contrast, GP-SARSA is quite stable due to its
Bayesian nature. While the standard deviation of
the final success rate of I2A is smaller than GP-
SARSA, I2A is more unstable in the early stage of
the training process. It is worth noticing that ADC
is even more stable than GP-SARSA, and reach
higher performance in the end. In terms of sample
efficiency, ADC uses only half of the data (600
dialogues) to reach the 80% success rate, compared
to ACER (1200 dialogues).

Average turns per dialogue As shown in the
right part of Figure 2, GP-SARSA takes more turns
than other algorithms, and only decrease slightly
during training. We found that GP-SARSA tends
to take more turns to confirm user intention to stabi-
lize its performance, while some of these confirma-

tions are not necessary. Other approaches steadily
reduce the number of turns during the process of
training.

5.4 Different back-propagation styles
In the left part of Figure 3, the red line is the learn-
ing curve of the agent that back-propagates only
one loss from the ensemble output Q, while the
brown line is the agent that update each critic sepa-
rately and the loss back-propagate from ensemble
output only pass through ensemble weight w.

We can note that the agent with the separate loss
function (as in equation 5) is more stable than the
other method. This is because when the ensemble
Q closes to Qret, QMF and QMB are not necessar-
ily close to the target Qret. In contrast, the separate
update can make sure each of output value is accu-
rate.

5.5 Robustness to imperfect models
In order to examine the impact of the environment
model on ADC, we propose another baseline, actor-
model-based-critic (AMC). AMC only use model-
based critic to predict Q-value without the model-
free critic, so the quality of environment model is
critical to AMC. In the experiment, a good environ-
ment model is pre-trained with 400 dialogues, and
a poor environment model is pre-trained with only
200 dialogues.

In the right part of Figure 3, we can observe that
ADC maintains its performance with poor model,
while AMC’s performance drops a lot. This might
be because a poor environment model cannot lead
to accurate value-prediction. The aid from a model-
free critic is also substantial.

5.6 Comparison in different environment
settings

To further investigate the properties of ADC, we
test it on 6 different environments (simulated user)
settings. For each setting, we report the final per-
formance of each agent after training it with 4000
dialogues. Semantic error rate (SER) models the
noise from the ASR and NLU channel (Thomson
et al., 2012). In addition to the standard user, an
unfriendly one is defined, where the user barely
provides any extra information to the system. The
action masking mechanism is used in environment
1 & 3 to reduce the action space. The setting of
each simulated user is listed in Table 3.

The results are shown in Table 4. In clean en-
vironments (1 & 3), ACER learns well after 4000
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Env. 1 Env. 2 Env. 3 Env. 4 Env. 5 Env. 6

SER 0% 0% 15% 15% 15% 30%

Masks On Off On Off On On

User Standard Standard Standard Standard Unfriendly Standard

Table 3: The settings of different environments.

GP-SARSA ACER I2A ADC
Task Suc. Turns Suc. Turns Suc. Turns Suc. Turns

Env. 1 99.2% 6.4 98.6% 6.0 97.9% 6.0 99.1% 6.0

Env. 2 95.7% 7.2 87.3% 6.5 79.8% 5.8 98.7% 6.0

Env. 3 95.8% 7.7 95.3% 7.1 96.3% 7.0 96.1% 7.0

Env. 4 89.6% 8.2 78.1% 6.7 93.9% 7.2 95.8% 6.8

Env. 5 92.5% 9.6 94.0% 8.2 94.2% 8.0 95.6% 8.0

Env. 6 90.0% 9.0 81.0% 8.1 87.9% 8.1 92.0% 7.9

Table 4: Success rates and average turns after 4000 training dialogues. The highest success rate is highlighted.

dialogues. Yet, in noisy environments (2 & 4),
ADC outperforms ACER significantly. In envi-
ronment 5, an unfriendly user was used. But this
defect does not affect the algorithms a lot as action
mask is used, so the number of available actions
are reduced and therefore the task is less difficult.
It is worthy to note that in environment 6, ADC out-
performs hand-crafted policy (89.6% (Casanueva
et al., 2017)) and demonstrates the flexibility of
reinforcement learning that can learn from environ-
ments. Overall, ADC demonstrates its robustness
in all environments especially for the environments
without action masks.

5.7 Case study

To further investigate the behaviour of different
agents during the training process, we sampled a
dialogue session in environment 4 (the setting of
the environment is mentioned in section 4.6) after
500 epochs. The agent of ACER and ADC have
57% and 88% success rate respectively.

As shown in Table 5, ACER informs the restau-
rant in the early stage while ADC is more con-
servative and takes more turns. ADC asks more
questions before giving the recommended restau-
rant and sometimes confirms the booking to make
sure the one it provides fulfills all the requirements.
Besides, ACER keeps asking the same question and
sometimes gives a completely wrong reply. That
is because, without the aid of environment model,

ACER cannot predict that the next belief state will
be the same and thus cannot foresee the unwanted
repetitive conversation which leads to the failure of
dialogues.

6 Conclusions

The policy optimisation algorithm presented in this
paper provides a model-based augmentation and
improves their performance with spoken dialogue
systems (SDS). Our contributions are two-fold:

1) We adopted I2A, a model-based reinforce-
ment learning approach, on SDS and demonstrated
that it can elaborate rich information generated by
environment models. 2) Our proposed algorithm
further reduces instability by introducing a simple
architecture to augment model-based information
into policy network. We used ACER as an actor-
critic model-free baseline, but this method can aug-
ment any deep actor-critic algorithm.

One interesting topic for future research is
model-based actors. In our experiments, in-
corporating a model-based actor did not work
as effectively as ADC. We plan to solve the
problems inhibiting in model-based actor and
make this algorithm applicable to policy learning
approaches (Schulman et al., 2017; Takanobu et al.,
2019).
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Simulation Sample

Cambridge Restaurant Booking User Goal:
Constraints: (Area: North), (Price range: Dont Care), (Food type: Chinese)
Requests: (Address: None), (Name: None), (Description: None)
Patience: 4

ACER agent ADC agent
(57% Success rate) (88% Success rate)

1 usr:
Hello. I want to find a restaurant
in Cambridge.

1 usr:
Hello. I want to find a restaurant
in Cambridge.

2 agt: Do you want Asian oriental food? 2 agt:
Which price range do you want?
expensive or moderate?

3 No, I want some Chinese food. 3 usr: I don’t care.

4 agt:
Ok, I will book Midsummer House
Restaurant for you.

4 agt: Asian oriental or Mexican food?

5 usr: Any other choices? 5 usr: Chinese food, please.

6 agt:
The phone number of Midsummer
House Restaurant is 01223 369299. 6 agt: What else do you want?

7 usr: Ok. 7 usr: Just a Chinese restaurant in the north.

8 agt:
The postcode of Midsummer House
Restaurant is CB4 1HA. 8 agt: Do you want some expensive food?

9 usr: I want a restaurant. 9 usr: Yes, please.

10 agt:
The phone number of Midsummer
House Restaurant is 01223 369299. 10 agt:

Hakka is a Chinese restaurant
in the north area.

11 usr: In the north area. 11 usr: Any other choices?

12 agt:
The address of Midsummer House
Restaurant is Midsummer Common. 12 agt:

The Hotpot is also a Chinese restaurant
in the north area.

13 usr: I don’t care. 13 usr: What is the address?

14 agt:
The postcode of Midsummer House
Restaurant is CB4 1HA.

14 agt: Which price range do you want?

15 usr: What’s the food type of Midsummer House? 15 usr: Give me the address of The Hotpot.

16 agt: North or centre? 16 agt:
The address of The Hotpot is
66 Chesterton Road Chesterton.

17 usr: North. 17 usr: What is the description?
18 agt: The food type of Midsummer House is British. 18 agt: Which price range do you want?
19 usr: I want some light bites. 19 usr: What is the description of The Hotpot?

20 agt: North or south? 20 agt:

The Hotpot serves a variety of Chinese
dishes at their restaurant and can cater for
private parties of up to five five guests
upon request.

21 usr: North. 21 usr: Thank you! Bye.
..
..

Repeat turns 20, 21 till the user is out of patience.
Failure

Success

Table 5: Sample dialogue sessions by ACER and ADC agents trained at epoch 500 in the environment 4 with 15%
SER. The bold sentences are improper or repetitive responses from the agent. (agt: agent, usr: user)
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Gašić. 2017. A benchmarking environment for re-
inforcement learning based task oriented dialogue
management. arXiv preprint arXiv:1711.11023.

Cheng Chang, Runzhe Yang, Lu Chen, Xiang Zhou,
and Kai Yu. 2017. Affordable on-line dialogue pol-
icy learning. In Proceedings of the 2017 Conference
on Empirical Methods in Natural Language Process-
ing, pages 2200–2209.

Bhuwan Dhingra, Lihong Li, Xiujun Li, Jianfeng Gao,
Yun-Nung Chen, Faisal Ahmed, and Li Deng. 2016.
Towards end-to-end reinforcement learning of dia-
logue agents for information access. arXiv preprint
arXiv:1609.00777.

Mehdi Fatemi, Layla El Asri, Hannes Schulz, Jing
He, and Kaheer Suleman. 2016. Policy networks
with two-stage training for dialogue systems. arXiv
preprint arXiv:1606.03152.

Jianfeng Gao, Michel Galley, and Lihong Li. 2018.
Neural approaches to conversational ai. In The
41st International ACM SIGIR Conference on Re-
search & Development in Information Retrieval,
pages 1371–1374.
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