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Abstract
Federated learning has sparkled new interests
in the deep learning society to make use of
isolated data sources from independent insti-
tutes. With the development of novel train-
ing tools, we have successfully deployed fed-
erated natural language processing networks
on GPU-enabled server clusters. This paper
demonstrates federated training of a popular
NLP model, TextCNN, with applications in
sentence intent classification. Furthermore,
differential privacy is introduced to protect par-
ticipants in the training process, in a man-
ageable manner. Distinguished from previous
client-level privacy protection schemes, the
proposed differentially private federated learn-
ing procedure is defined in the dataset sample
level, inherent with the applications among in-
stitutions instead of individual users. Optimal
settings of hyper-parameters for the federated
TextCNN model are studied through compre-
hensive experiments. We also evaluated the
performance of federated TextCNN model un-
der imbalanced data load configuration.

Experiments show that, the sampling ratio has
a large impact on the performance of the FL
models, causing up to 38.4% decrease in the
test accuracy, while they are robust to differ-
ent noise multiplier levels, with less than 3%
variance in the test accuracy. It is also found
that the FL models are sensitive to data load
balancedness among client datasets. When the
data load is imbalanced, model performance
dropped by up to 10%.

1 Introduction

Federated learning is a promising ideology to unite
isolated datasets for machine learning problems
(Konečnỳ et al., 2016; McMahan et al., 2016; Zhu
et al., 2019). In the federated learning framework,
no raw data are exchanged among participating en-
tities. Instead, parameter gradients and aggregated
† Cooresponding author: Jianzong Wang (jzwang@188.com)

updates are communicated between servers during
collective optimization. Therefore, without leaking
private information, institutes can cooperate with
each other by contributing their data collection in
the training of a unified model. Such a feature is es-
pecially desirable when handling sensitive data that
involve e.g. personal preference, financial transac-
tions, medical records, etc. An example of success-
ful deployment of federated learning is the smart
input prediction in Google Input (Hard et al., 2018).
In addition, more business-to-client model training
applications are drawing intensive attention of the
public (Lim et al., 2020; Yang et al., 2020; Kong
et al., 2020). Apart from this business-to-client
cooperation case, more interesting applications can
be found among institutions. Potential areas in-
clude medical image analysis (Sheller et al., 2018),
smart retail (Yang et al., 2019b), fraud detection,
etc.

Despite its promising designs, federated learn-
ing met quite some difficulties migrating to deeper
neural networks, as well as to broader cooperative
areas. These difficulties are largely due to

1. the limited training speed offered by a secured
federated learning platform; and

2. lack of quantifiable evaluation of the privacy
and performance of the federated models.

Before these issues can be settled, institutions
would prone to keep their data private rather than
contributing to a collaborative neural model.

In terms of system security, a federated learn-
ing algorithm needs to take care of two kinds of
adversaries. Firstly, the communication between
participating servers must be protected from third-
party interception or modification. Secondly, local
datasets must be protected from probing or reverse
engineering by other participants. The communica-
tion encryption / decryption, such as AES, 3DESE,
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RSA etc., is often lossless, therefore does not af-
fect the performance of the trained model itself.
On the other hand, the latter security concern about
adversaries from within the participants, has to be
addressed differently. To protect the anonymity of
training data, the models often need to be revised
according to the anonymity protection mechanism.

Since the anonymity protection scheme is in-
volved in the training procedure, it also causes
changes in the expected performance of the overall
system. In previous works, the anonymity protec-
tion scheme and its influence on the system per-
formance is analyzed case-by-case. For example,
Yang et al. proposed a local clustering to ensure the
k-anonymity of the XGBoost model, and studied
the relationship between the number of clusters and
prediction accuracy via experiments (Yang et al.,
2019a). Unfortunately, their results do not gener-
alize to other models or other anonymity metrics.
The restricted applicability of such analyses have
limited the development of institutional coopera-
tion on federated learning frameworks.

In this paper, we adopt the (ε, δ)-differential pri-
vacy defined by Dwork (Dwork, 2011) as the uni-
versal privacy metric. We extend the model privacy
derived in (Abadi et al., 2016) to the federated
training model. By utilizing recent developments
of federated learning framework, we implemented
the federated training of the TextCNN model (Kim,
2014). To our knowledge, this is the first reported
implementation of NLP models on federated learn-
ing frameworks.

Contributions of this paper include:

1. Adapt the differentially private deep learning
algorithm to institutional federated learning
framework. Implement differentially private
federated TextCNN model for text intent clas-
sification.

2. Analyse the performance of federated
TextCNN with various differential privacy
settings. We show that the differential
privacy itself does not negatively affect the
performance of the trained models.

3. In an institutional cooperation mode, analyse
the performance of federated TextCNN with a
wide range of data distribution configurations.
It is shown that the accuracies of the trained
models are sensitive to the number of data
splits, as well as the balancedness of the data
distribution.

2 Related Work

2.1 Federated Deep Learning
Federated learning (FL) was proposed by Google
as a workaround to utilize privacy-related data in
training machine learning models, without intrud-
ing the plain text data (Konečnỳ et al., 2016). Over
the recent years, the federated learning architecture
has been formalized into two categories, namely
vertical and horizontal federated learning (Yang
et al., 2019b). Both categories of federated learn-
ing have great potential in various domains, includ-
ing user-computer interaction (Phong et al., 2018),
medical image analysis (Sheller et al., 2018), finan-
cial data analysis (Yang et al., 2019b,a; He et al.,
2020) and many more.

To our knowledge, existing federated learning
applications mainly adopted machine learning tech-
niques, such as logistic regression and XGBoost,
rather than deep neural networks (DNNs). When
training a model on federated frameworks, con-
vergence is substantially slower than training on a
regular platform. At the end of each training round,
gradients and model updates need to be encrypted
and transferred to respective recipients, who then
decrypts the contents and apply the model updates.
For DNNs, the number of trainable parameters and
required dataset size are at a totally different scale.
Without sufficient support in hardware acceleration,
these efficiency obstacles might prove infeasible in
DNN training.

A mere example of federated DNN training is
found in (Sheller et al., 2018), where a U-Net seg-
mentation model is trained on the BraTS dataset.
The authors compared the segmentation accuracy
of models trained with centralized data, FL, and
institutional incremental learning. However, data
security measure was not mentioned in their paper.
Comparison of training efficiency is also missing
from the report.

To comprehensively evaluate a federated learn-
ing system, we must incorporate three key criteria,
namely, time efficiency, data security, and model
performance. In this paper, we are going to show
that these criteria contradict with each other. An op-
timal design should reach balanced decision among
the three.

2.2 Differential Privacy
Differential privacy (Dwork et al., 2006, 2014) is
defined in terms of the statistical behaviour of a
random process on adjacent datasets. Two datasets
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are said to be adjacent if they differ in only one
entry. Then, a randomized mechanism F : D → R
is defined (ε, δ)-differentially private, if for any
two adjacent inputs d, d′ ∈ D and for any subset of
outputs S ⊆ R it holds that

Pr [F(d) ∈ S] ≤ eεPr
[
F(d′) ∈ S

]
+ δ. (1)

For a deterministic processM of inputs d ∈ D, it
is common practice to add noise upon its outputs
to ensure differential privacy, i.e.,

F(d) =M(d) +N (0, σ2 · SM) (2)

Abadi et al. formalized the application of differ-
ential privacy in deep learning (Abadi et al., 2016).
The authors also derived a tighter upper bound for
the iteratively accumulated ε and δ over the train-
ing process. It was shown that the level of ε and
δ spent at each iteration is related to the sampling
ratio and the noise level.

Abadi et al.’s work has been extended into feder-
ated learning at the client level (Geyer et al., 2017;
McMahan et al., 2017). Clients were randomly sub-
sampled to participate in the t-th round of federated
model update. The (ε, δ) spent were accounted on
the central server, where client updates are gathered
and aggregated. There are two problems in this
process. First, the client datasets are not protected
from the central server by differential privacy. Sec-
ond, the (ε, δ) spent at each client is not accounted
for individually, while they might differ drastically
when their dataset sizes vary.

In this paper, we re-formulate the differentially
private federated learning process, so that client
dataset privacy is protected from the central server
and each other. Noise is added to the accumulated
local updates at client servers, before they are sent
to the central server. Also, the (ε, δ) consumption
is accounted for each client respectively, so that the
desired privacy level would be protected regardless
of its dataset size.

2.3 Additively Homomorphic Encryption
Additively homomorphic encryption (HE) (Gentry
et al., 2009; Brakerski and Vaikuntanathan, 2014)
provides a way of differential privacy between cen-
tral server and clients in federated learning (Phong
et al., 2018). In the process proposed by Phong
et al., client parameter updates are encrypted with
a secret key held by the clients only. When the
central server receives updates from all clients, it
performs additive aggregation without decrypting

the gradients. The aggregated model parameters
are sent back to client servers, where each client
decrypts the contents using the private key. The
additive homomorphism enables the aggregation
without decryption. In this process, differential pri-
vacy and communication security are achieved in
a single lossless encryption process (Hardy et al.,
2017). However, because the private key must be
shared among all clients, it does not guarantee dif-
ferential privacy between clients. Especially, when
there are only two participating clients, one can
easily acquire the gradients of another from the
decrypted aggregation.

2.4 Sentence-level Text Intent Classification

Intent classification (Li et al., 2008) is one of the
fundamental problems in natural language process-
ing. It is crucial for applications such as smart
customer service, review categorization, etc.

State of the art text intent classification studies
mostly employed deep neural networks (Yin and
Schütze, 2016). Common practice in these net-
works is to represent words in the lexicon with
embedding vectors, followed by convolutional or
recurrent network modules to extract sentence-level
features. TextCNN (Kim, 2014) adapted the con-
volutional network structure from computer vision
domain to tackle the sentence-level classification
problem. Zhang et al. evaluated the performance
of TextCNN with a wide range of convolutional
configurations on public datasets such as MR, SST,
TREC, etc. (Zhang and Wallace, 2015). Recently,
large recurrent networks further improved accura-
cies in various natural language processing (NLP)
tasks, including text classification (Devlin et al.,
2018; Yang et al., 2019c). These models rely on
powerful computation resources and large scale
of data in training. Once pre-trained, they can be
fine-tuned for numerous NLP tasks with smaller
datasets. Most of the state of the art text classifi-
cation accuracies on public datasets originate from
these models nowadays. However, these models
are often too large to fit in common GPUs with only
16GB graphic memory of even less. Therefore, we
opt to carry out experiments on text classification
with the simple but efficient TextCNN structure.
Results are compared with the baseline accuracies
provided in (Zhang and Wallace, 2015).
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3 Proposed Methods

3.1 Differentially Privacy Accountant

Federated TextCNN is implemented on the Fed-
erated Average platform with distributed training
servers.

On a deep learning framework, to protect the
privacy of local datasets, Gaussian noise is added to
the gradients before they were applied in parameter
updates. By the arguments in (Abadi et al., 2016),
given δ and noise multiplier σ, an upper bound of
the privacy loss ε can be computed from

εt = A(t, q, σ, δ), (3)

where A(·) is implemented with numerical inte-
gration according to (Abadi et al., 2016). During
training, a privacy accountant keeps track of the
spent εt. Once the cumulated εt exceeds the prede-
fined level, the training must stop sampling from
the dataset. Otherwise, privacy of the dataset is
considered violated.

3.2 Institutional Differentially Private
Federated Training

For federated model training, the gradients com-
puted from local datasets are communicated to the
central server at the end of each epoch. That is,
given a the current parameter values on the central
server as the starting point, client servers sample
their dataset batch by batch. For each sample batch,
gradients are computed and applied to update the
local parameters. After iterating over all batches,
the cumulated difference of parameter values is to
be sent to the central server for cross-client aggre-
gation. Assuming that the communication channels
between the central server and clients are encrypted
and safe from interception, the only adversary that
might affect the client dataset security comes from
the central server itself. It was proven that, given
gradients of a convolutional network, it is possible
to deduce the actual contents of the input images
(Phong et al., 2018). In this paper, we adapt the
privacy preservation scheme proposed by Abadi et
al. to the federated training procedure, in order to
protect client datasets from probing by the central
server.

The pseudo codes of the proposed differentially-
private federated training procedure is depicted in
Algorithm 1.

Algorithm 1 Federated Learning with Differential
Privacy

D = {D1, ...,DK}: datasets held by clients
1, ...,K
L: target loss function
Θ: trainable parameters
C: gradient norm bound
η: step size
procedure FEDERATEDTRAIN

Initialize Θ(0)

for t ∈ {1, ..., T} do
for all Dk do

∆
(t)
k ← ClientUpdate(Θ(t−1),Dk)

end for
∆(t) ← 1

K

∑
k ∆

(t)
k

Θ(t) ← Θ(t−1) + ∆(t)

end for
end procedure
function CLIENTUPDATE(Θ0, d)

L: lot size
t: the number of samples drawn from this

dataset
E: Maximum allowed privacy cost
ε← PrivacyAccountant(σ, L/|d|, t)
if ε ≥ E then

return 0
end if
Θ← Θ0

Lot L ← L samples from d
Batches {B1, ...,BB} ← Random batches of

L
for b in 1, ..., B do

g←∇ΘL(Θ,Bb)
Θ← Θ− ηg

end for
∆Θ ← ClipNorm(Θ−Θ0, C)
∆Θ ← ∆Θ +N (0, σ2C2I)
t← t+ 1
return ∆Θ

end function

The proposed procedure differs from previous
differentially private federated learning in the fol-
lowing aspects:

• The proposed procedure protects per-sample
privacy of each participating client dataset, in-
stead of the client-level privacy as defined in
(McMahan et al., 2017). The proposed proce-
dure is coherent with institutional federated
learning applications, where the number of
participating datasets is small (usually smaller
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Figure 1: Architecture of a differentially private feder-
ated learning system. The shades of the background
indicates different security boundaries.

than 5), while the size of each dataset is large.
Sampling of clients is prohibitive in this case.

• Differential privacy accountant is performed
by clients individually. In institutional FL, the
dataset sizes can be very different among the
clients. Depending on the setting of sampling
strategy, the sampling ratio q can be different
from client to client. Thus the privacy loss
is variant by the client dataset. Each client
should keep record of the spent privacy along
each update, and stops its update to central
server once the predefined privacy threshold
is reached.

• Security distinction between client and cen-
tral server is made clear. In the proposed
procedure, the central server is assumed to
be honest-but-curious. Clients can trust the
broadcasts from the central server, but should
not expose unprotected information to it.
Therefore, the noise adding and differential
privacy accountant on the transferred gradi-
ents are performed on the client side, instead
of on the central server.

The security boundaries are further depicted
in Figure 1. In this figure, the light gray ar-
eas represent the information shared among
the clients and the central server, therefore
must be protected by differential privacy. The
dark gray area stands for the communication
of critical information exposed to not only par-
ticipants of the FL procedure, but also to third
party interception, that must be protected by
cryptology.

3.3 Handling Imbalanced Data Load

As mentioned in Section 3.2, data load imbalance
is one of the critical considerations in institutional
federated learning. It is not uncommon to have
several times difference among dataset sizes. In
such cases, a number of issues would affect the
performance of the federated model.

When differential privacy is involved, the train-
ing schedule on each dataset must conform to the
predefined privacy limit. The number of samples
that can be drawn from a dataset without violating
the privacy limit is co-variant to the privacy limit
E, sampling ratio q and the noise multiplier σ. A
straight-forward solution is to apply the same lot
size and noise multiplier over all client datasets. If
the privacy accounted has reached predefined limit,
the client would stop sampling from its dataset and
return zeros for parameter updates. In case of se-
vere data load imbalance, some datasets may stop
contributing to the federated model training at an
early stage, causing the learned model to be biased
towards datasets on other clients.

In our experiments, optimal settings of q and σ
are selected according to simulated experiments on
balanced datasets. Given the privacy threshold E
and the desired training epoch E, series of exper-
iments are conducted to verify the test accuracies
using different combinations of q and σ.

4 Experiments

4.1 Implementation Details

TextCNN is a convolutional neural network de-
signed for sentence-level classification tasks (Kim,
2014). It is one of the fundamental structures in
the natural language processing (NLP) community.
In TextCNN, words are represented by embedding
vectors. The word embeddings can be pre-trained
from separate datasets, or trained from scratch in
an end-to-end fashion. Convolutional layers with
various filter widths and feature maps extract fea-
tures from the concatenated word embeddings in a
context-aware manner. Then, max-over-time pool-
ing is performed to aggregate the features into a
fixed length vector. A fully connected layer with
softmax activation translates the feature vector into
sentence classification results.

The CNN structure with the best accuracy on
TREC dataset (of Standards and Technology, 2019)
is adopted in our implementation. Specifically, 4
convolution layers with filter region sizes 2, 3, 4, 5
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respectively are chained sequentially. Each convo-
lution layer has feature depth 400.

Parameters in the model are optimized with re-
spect to the cross entropy loss of the classification
outputs, i.e.

L(D; Θ) =
∑

(x,y)∈D

M∑
i=1

yi log pi(x; Θ), (4)

where x is the input sequence, y = {y1, ..., yM}
is the one-hot intent class label, and pi(·)’s are the
predicted probability of entry x being class i.

In our experiments, the federated training pro-
cess is implemented with the coMind collaborative
machine learning framework (Roman, 2019). The
coMind framework supports distributed GPU train-
ing with a federated averaging optimizer. We sim-
ulate multi-institution settings within a local area
network (LAN), with a central server and 1 to 4
client machines. RSA encryption is used to pro-
tect the communication between clients and central
server. Each client machine is equipped with an
NVIDIA P100 GPU with 16GB graphic memory.

The TextCNN model is implemented on Ten-
sorFlow. On client updates, model parameters are
trained with the Adam optimizer (Kingma and Ba,
2014), with initial learning rate 0.001. In the re-
ported experiments, we fix the batch size to 64,
while the lot size varies with respective experiment
settings. During optimization, we use a 0.5 dropout
probability to improve model generality.

4.2 Dataset

The TREC dataset (of Standards and Technology,
2019) is a public dataset of NLP text materials.
TREC question dataset task involves classifying a
question into 6 question types (whether the ques-
tion is about person, location, numeric informa-
tion, etc.). This data collection contains all the
data used in learning question classification experi-
ment, which has question class definition. The total
Dataset size is 5,952, train set size is 5,452, test
size is 500. The average length is 10, maximum
length is 38. The Vocabulary size is 9,592.

4.3 Results

4.3.1 Baseline
Figure 2 illustrates the training curves of TextCNN
on centralized TREC dataset. As the figure shows,
the model converges after around 200 iterations.
Test accuracy slightly increases over the 200 to 500

iterations. The best test accuracy is 91.2% in our
experiment, coherent with the results reported in
(Zhang and Wallace, 2015). This experiment serves
as the baseline of all following experiments.
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Figure 2: Training and testing accuracies over the train-
ing iterations on centralized TextCNN model.

4.3.2 FL with balanced data load
Experiments on federated learning with balanced
data loads are performed to evaluate the effect of
various hyper parameters in the differentially pri-
vate FL. In these experiments, the TREC training
set is split into K = 2, 3, 4 clients with equal num-
ber of samples. Without differential privacy, the
baseline accuracies of the federated TextCNN mod-
els are reported in Table 1. As the number of clients
increases, the test accuracy of the federated model
decreases. When the training set is divided into
4 clients, the accuracy has dropped by 4.8% com-
pared to the centralized model. Figure 3 illustrates
the convergence curves for non-differentially pri-
vate FL on 2 to 4 clients. The max number of
epochs is set to 50 and the batch size is set to 64.
Model averaging is performed for every 2 local
batch update. Because the dataset sizes are smaller
when the number of clients is larger, the number of
communication rounds (CR) is also smaller given
the same epoch. We can see from Figure 3 that
the convergence rates with 2 to 4 clients are simi-
lar with each other. The test accuracy on 2 clients
slightly improves after 750 CRs, when the 3 and 4
client training has stopped because the maximum
epoch has been reached.

On this basis, we would like to study the effect
of hyper parameters in differential privacy. The
privacy spent εt is tracked at each communication
round between the client and the server. If the
privacy accounted has reached predefined limit,
the client would stop uploading any updates to the
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Model # of Clients Test Accuracy
Centralized 1 91.2%

Federated
2 90.0%
3 87.8%
4 86.4%

Table 1: Baseline test accuracies of TextCNN without
differential privacy.
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Figure 3: Training and testing accuracies versus com-
munication rounds without differential privacy.

server. When all clients stop updating, the training
would terminated before reaching the predefined
epoch.

Firstly, suppose that the training set is equally
split into 3 clients, given H = 50, σ = 4, lot size
L = 128 and batch size B = 64, the training pro-
cedure under different E tolerance is demonstrated
in Figure 4. It is shown that the maximally allowd ε
decides the length of training procedure. ForE = 1
and E = 2, the training only continued for 117 and
476 communication rounds, respectively, equiva-
lent to epochs 8.24 and 33.52. The models are
clearly not converged. The resulting test accuracies
are thus significantly lower than the baseline.

Secondly, given H = 50 and E = 4, we would
like to see how the lot size L and the noise multi-
plier σ affect the test accuracies. Again, the TREC
training set is equally split into 2 to 4 clients. Ta-
bles 2 and 3 shows the test accuracies when varying
L and σ respectively. When the noise multiplier
σ varies from 2.0 to 8.0, we do not observe a sig-
nificant difference in the test accuracies. In some
cases, the test accuracy may even be slightly higher
when σ is large. In contrast, varying lot size L
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Figure 4: Training and testing accuracies versus com-
munication rounds with varying E.
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σ = 4.0
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σ = 8.0
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Figure 5: Training and testing accuracies versus com-
munication rounds with varying σ.

K
σ

2.0 4.0 8.0

2 87.2% 87.2% 87.6%
3 81.8% 84.0% 83.6%
4 79.6% 79.4% 76.8%

Table 2: Test accuracies of differentially private feder-
ated TextCNN models with L = 128 and varying σ.

while fixing σ has a large impact on the test ac-
curacy. When the lot size is too large, the model
cannot be trained sufficiently before εt exceeds the
predefined threshold E. Yet, in the range where
sufficient communication rounds can be performed,
a larger lot size gives better performance. There-
fore, in the following experiments, we plan the
schedule of differentially private federated learning
by selecting σ and q according to given privacy
tolerance E and training epoch H .

Training curves of varying σ under the same E
constraint is also depicted in Figure 5.

L (q)
128 256 512 1024

(0.07) (0.14) (0.28) (0.56)
Acc 84.0% 88.2% 50.2% 45.6%
CR 354 354 108 27

Table 3: Test accuracies of differentially private feder-
ated TextCNN models with fixed σ = 4.0 and varying
L.
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(a) Client dataset sizes: (1090, 1090, 3272) (1:1:3)
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(b) Client dataset sizes: (778, 1557, 3117) (1:2:4)
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(c) Client dataset sizes: (1817, 1817, 1818) (1:1:1)

Figure 6: Training and testing accuracies versus train-
ing rounds on different data distributions.

4.3.3 FL with imbalanced data load
Unlike business-to-client applications, dataset sizes
in institutional FL can be very different from client
to client. Given H = 50 and E = 4.0, q = 0.14,
σ = 4.0 are selected by their performance on the
balanced datasets. The performance of FL on dif-
ferent data distributions is illustrated in Figure 6,
where red (gray), blue (dark), and green (light)
colors stand for Client 1, 2, 3, respectively. The
dashed lines are statistics of the non-differentially
private FL models. The solid lines are from differ-
entially private FL models. The TREC dataset is
split into 3 clients with different proportions. We
selected the 1 : 1 : 3 and 1 : 2 : 4 ratio to compare
with the euqal distribution (e.g. 1 : 1 : 1). The
1 : 1 : 3 ratio can represent the one client having
dominant size dataset size over others. The 1 : 2 : 4
ratio can represents each clients having diverse size
of dataset. Training and testing accuracies versus
training rounds are depicted for each client. The
training accuracy on smaller datasets reaches 1.0
shortly after training starts (red lines on Figures
6a and 6b). The larger datasets, however, takes
longer to converge. Over the iterations, the training
accuracies on different datasets fluctuate a lot when

data distribution is highly imbalanced (Figure 6b).
The test accuracy directly before model averaging
also changes from iteration to iteration. In case
where one dataset takes the dominant proportion of
data, the fluctuation in test accuracy is less obvious
(Figure 6a).

Figure 6 also shows the non-differentially pri-
vate FL performances along with the differentially
private counterparts. At convergence, the training
and testing accuracies do not have a large differ-
ence between the differentially private and non-
differentially private models.

5 Conclusion

Federated learning provides a promising platform
for institutions to cooperate with each other in
model training, without tampering their data se-
curity. Unlike previous works that focus on client-
level privacy, this paper addresses the privacy pro-
tection issues on the sample-level, which is more
appropriate for institutional federated learning. In
the proposed procedure, (ε, δ)-differential privacy
is applied to protect client information from prob-
ing by other FL participants. A classical NLP algo-
rithm, TextCNN, is implemented on the differen-
tially private FL platform. Extensive experiments
show that, the sampling ratio has large impact on
the performance of the FL models. On the other
hand, the differentially private FL training is robust
to different noise multiplier levels. To address the
imbalanced data load situations commonly seen in
institutional FL problems, extensive experiments
are also conducted to evaluate its influence. Com-
pared with equally sized client datasets, the FL
models trained on imbalanced clients see signifi-
cant decline in test accuracies. Future studies could
be devoted to improving the model performance
with unequally sized client datasets.

NLP has received a lot of attention from both
the academic and commercial societies. For appli-
cations in automated banking services, insurance
inquires, etc., existing datasets are often confined
within the internal servers of respective institutions.
There has been ongoing demands on secure ways
to utilize these separated data in training a univer-
sal model for NLP tasks such as text understand-
ing, question answering, etc. The formulation of
institutional federated learning procedure would
accelerate development in these areas.
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