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Abstract
Multi-hop relation reasoning over knowledge
base is to generate effective and interpretable
relation prediction through reasoning paths.
The current methods usually require sufficient
training data (fact triples) for each query re-
lation, impairing their performances over few-
shot relations (with limited triples) which are
common in knowledge base. To this end,
we propose FIRE, a novel few-shot multi-
hop relation learning model. FIRE applies
reinforcement learning to model the sequen-
tial steps of multi-hop reasoning, besides per-
forms heterogeneous structure encoding and
knowledge-aware search space pruning. The
meta-learning technique is employed to op-
timize model parameters that could quickly
adapt to few-shot relations. Empirical study
on two datasets demonstrate that FIRE outper-
forms state-of-the-art methods.

1 Introduction

Nowadays large scale knowledge bases (KB), e.g.,
NELL (Mitchell et al., 2018) or Freebase (Bol-
lacker et al., 2008), are serving as useful resources
for many natural language processing applications
such as semantic search or question answering.
Due to the nature of incompleteness (Bordes et al.,
2013), it is essential to automate the KB comple-
tion. One typical problem is fact (triple) prediction.
For example, given a query “What is the national-
ity of Barack Obama?” denoted as (Barack Obama,
Nationality, ?), the task is to infer USA as the an-
swer. There have been a lot of work for solving this
problem by embedding learning approaches (Bor-
des et al., 2013; Socher et al., 2013; Yang et al.,
2015) or deep learning models (Dettmers et al.,
2018; Schlichtkrull et al., 2018).

The fact prediction ignores the compositional
relations in KB and results answer that lacks of
interpretation. Accordingly, an alternative prob-
lem, multi-hop relation reasoning, was presented.

The task is to infer facts using multi-hop reasoning
paths, e.g., (Barack Obama, BornIn, Hawaii) ∧
(Hawaii, LocateIn, USA)→ (Barack Obama, Na-
tionality, USA). A number of recent models (Xiong
et al., 2017; Das et al., 2018; Lv et al., 2019) for-
mulate the problem as sequential decision process
and leverage reinforcement learning to achieve con-
siderable performance.

Most current multi-hop relation reasoning mod-
els require a good amount of training data (fact
triples) for each query relation. However, the rela-
tion frequency distribution in KB is usually long-
tail (Xiong et al., 2018), showing that a large por-
tion of relations only have few-shot fact triples for
model training. Despite that some few-shot relation
learning methods (Chen et al., 2019; Lv et al., 2019;
Zhang et al., 2020) have been proposed recently,
they target at fact prediction only or their perfor-
mance is suboptimal due to deficiency in capturing
heterogeneous structural information and pruning
search space in KB.

In this work, we aim at addressing the few-
shot challenge and improving relation reasoning
performance. In particular, we propose a novel
model called FIRE for few-shot multi-hop relation
learning over KB. FIRE utilizes on-policy rein-
forcement learning to model the sequential steps
of multi-hop reasoning, encodes entity embedding
using heterogeneous structural information, and
prunes the reasoning search space using knowledge
graph embedding. The meta-learning based opti-
mization procedure is further employed to learn
model parameters that could be fast adapted for
few-shot relations. To summarize, our main contri-
butions are: (1) we study the problem of few-shot
multi-hop relation reasoning over KB, which is new
and important; (2) we propose a novel model called
FIRE to solve the problem by exploring several ben-
eficial components; (3) we conduct experiments on
two datasets and the evaluation results demonstrate
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the superior performance of FIRE over state-of-the-
art methods.

2 Approach

In this section, we first define the problem of few-
shot multi-hop relation reasoning in knowledge
bases, then present the FIRE model to solve it.

2.1 Problem Definition

A knowledge base is represented as a knowledge
graph (KG) G = {E ,R, T }, where E and R de-
note the entity set and relation set, respectively.
T is the collection of fact triples (es, rq, eo) ⊆
E ×R× E in KG. We divide all relations into two
groups: few-shot and normal. If the number of
triples containing r is smaller than a given thresh-
old K, it is a few-shot relation, otherwise it is a
normal relation. The relation reasoning task is to
either predict the target entity eo given the source
entity es and the query relation rq: (es, rq, ?), or
predict unseen relation r between source entity and
target entity: (es, ?, eo). In this work, we will focus
on the former one as we want to predict the unseen
facts of a given relation. Formally, the problem is
defined as follows.

Given a query (es, rq, ?), where es is the source
entity and rq is the query few-shot relation, the
goal is to perform a multi-hop search over KG and
reach the target entity eo for this query.

2.2 Reinforcement Learning Framework

The problem of multi-hop relation reasoning aims
at generating a sequential path from es to eo in KG
to interpretate the whole reasoning process. We
build the model based on the on-policy reinforce-
ment learning framework (RL) proposed in (Lin
et al., 2018). To be more specific, the reasoning
process is viewed as a Markov Decision Process
(MDP): given the query relation rq, the agent starts
from source entity es, then sequentially traverses
through a number of relations and entities until it
arrives at target entity eo. In particular, the MDP
includes the following modules.

• State Each state is represented as st =
{et, (es, rq)} ∈ S, where et is the entity visited
at step t. Besides, (es, rq) denotes the (source en-
tity, query relation) shared by all states as global
context.

• Action The action space At for st includes all
outgoing relations and entities of et, i.e., At =

{(rt+1, et+1)|(et, rt+1, et+1) ∈ G}. The self-
loop edge is added to At for terminating search
in a fixed number of steps T .

• Transition The transition function is formulated
as τ(st,At) = {et, (es, rq),At}. That is, the
agent at st selects an action (rt+1, et+1) ∈ At
and changes to st+1 = {et+1, (es, rq)}.

• Reward The agent will receive a terminal re-
wardR(sT ) = 1 if it finally arrives at the correct
target entity, i.e., eT = eo, otherwise, it will get
a reward R(sT ) = g((es, rq), eT ), where g is a
reward shaping function (Lin et al., 2018) using
pre-trained knowledge graph embeddings.

To solve the above MDP problem, we apply the
policy network to determine action at each state.
Specifically, each entity and relation in G is as-
signed with an embedding vector e ∈ Rd and
r ∈ Rd. The action at = (rt+1, et+1) is denoted as
at = [rt+1 ⊕ et+1], where ⊕ is concatenation op-
erator. The search history before step t is encoded
with LSTM (Hochreiter and Schmidhuber, 1997):

h0 = LSTM(0, [r0 ⊕ es])
ht = LSTM(ht−1, at−1), t > 0

(1)

where r0 is a special start relation introduced to
form a start action with es, ht is the encoded state
at step t. The action space is represented by stack-
ing all actions in At, i.e., At ∈ R|At|×2d. The
corresponding policy network is formulated as:

ϕθ(at|st) = σ{At(W2ReLU(W1[et⊕ht⊕ rq]))}
(2)

where σ is the Softmax function, θ denotes the set
of all model parameters. Let D be the set of fact
triples of query relation r, the objective of policy
network is to maximize the expected reward over
all triples:

J Dr (θ) = E(es,r,eo∈D){Ea1,···aT∼ϕθ [R(sT |es, r)]}
(3)

2.3 Heterogeneous Structure Encoding

RL encodes each entity with an embedding vec-
tor. This way, however, is not able to utilize the
heterogeneous graph structure information which
has been demonstrated to benefit relation learning
in graphs (Zhang et al., 2020, 2019; Saebi et al.,
2020). Thus we are motivated to design a neu-
ral network aggregator (Fig. 1(a)) to enhance the
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Figure 1: Illustrations of (a) heterogeneous structure encoding; (b) knowledge-aware search space pruning; (c) fast
adaption with meta-learning.

entity embedding using heterogeneous neighbors
information, which is formulated as follows:

fε(e) = δ
{ 1

|N (e)|
∑

(ri,ei)∈N (e)

W[ri ⊕ ei]
}

(4)

where N (e) denotes the neighbors set of e, δ is
the tanh function, and ε = W is learnable param-
eter. We replace the entity embedding e in policy
network with fε(e) such that the model is able to
capture heterogeneous structural information for
better relation reasoning over KB.

2.4 Knowledge-Aware Search Space Pruning

Some entities in KG have large degrees, making the
action search space enormous or even redundant
in specific steps. Unlike the previous work (Das
et al., 2018; Lin et al., 2018) that cut outgoing
edges via centrality score, e.g., PageRank, we as-
sume that structural correlation is important in
helping guide the action search, and introduce a
knowledge-aware search space pruning strategy
(Fig. 1(b)). Specifically, at each state st, we first
compute structural correlationC(et, et+1) between
et and et+1 using off-the-shelf knowledge graph
embedding pre-trained by the existing algorithms
such as TransE (Bordes et al., 2013). Then we
prune the search space by only considering the m
most correlated entities as potential next step.

2.5 Fast Adaptation with Meta-Learning

We employ MAML (Finn et al., 2017) (Fig. 1(c)) to
initialize and adapt the policy network parameters.
The main idea is to use triples data of normal rela-
tions to learn well initialized parameters θ∗ which
is further adapted to few-shot relations. Formally,
we take each relation r as a task Tr. Let Ds and Dq
denote the support set and query set randomly sam-
pled from the triples of Tr. The relation specific

Algorithm 1: Meta-learning Procedure
1 Require: Distribution of tasks (relations) p(R)
2 Require: Randomly initialized policy network

parameters θ
3 while not done do
4 Sample a batch of tasks Tmeta from p(R)
5 for r ∈ Tmeta do
6 Sample support set Ds and query set Dq

from triples of task Tr
7 Compute∇θJDs

r (θ) of Eq. (3)
8 Compute adapted parameters θ

′
r by Eq. (5):

θ
′
r = θ − α∇θJDs

r (θ)
9 end

10 Update policy network parameters θ by Eq. (6):
θ = θ − β∇θ

∑
Tr
JDq
r (θ

′
r)

11 end

θ
′
r of Tr is computed using a number of gradient

descent updates as follows:

θ
′
r = θ − α∇θJ Dsr (θ) (5)

Then we evaluate the objective function with re-
lation specific parameters θ

′
r on Dq and go over

a number of tasks to update the policy network
parameters θ as follows:

θ = θ − β∇θ
∑
Tr

J Dqr (θ
′
r) (6)

After sufficient training over normal relations, the
well initialized parameters θ∗ could further fast
adapt to θ∗r for reasoning for each few-shot relation
r. Algorithm 1 shows the meta-learning procedure
of the proposed model.

3 Experiments

In this section, we conduct experiments on different
datasets to show model performance and related
analytic study.
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3.1 Datasets

We utilize two datasets NELL-995 (Xiong et al.,
2017) and FB15K-237 (Toutanova et al., 2015)
for experiment. By following the data processing
in (Lv et al., 2019), we obtain normal and few-shot
relations (tasks) for model training and adaptation
& evaluation. Statistics of normal relations and
few-shot relations of two datasets are reported in
Table 1.

Dataset #Ent #Rel #Triples

NELL (normal) 63,524 170 115,454
NELL (few-shot) 2,951 30 2,680
FB15K (normal) 14,448 200 268,039

FB15K (few-shot) 3,078 37 4,076

Table 1: Statistics of datasets used in this work.

3.2 Baseline Methods

We consider five recent multi-hop relation rea-
soning models for performance comparison, in-
cluding (1) NeuralLP (Yang et al., 2018b); (2)
NTP-λ (Rocktäschel and Riedel, 2017); (3) MIN-
ERVA (Das et al., 2018); (4) MultiHop (Lin et al.,
2018); (5) MetaKGR (Lv et al., 2019).

3.3 Evaluation Metrics

For each query (es, rq, ?) in test data, the model
generates a ranking list of possible target entities.
We use two popular ranking metrics for perfor-
mance evaluation: (1) the mean reciprocal rank of
correct entities (MRR); (2) the proportion of cor-
rect entities that rank in the top-k list (Hit@k). In
this study, k is set to 1.

3.4 Reproducibility

We perform grid search to select hyper-parameters
of FIRE. The learning rate is set to 0.0001. The
relation/entity embedding dimension and the rea-
soning step number in reinforcement learning are
set to 100 and 3. We use three-layer LSTM for
path encoding and the hidden dimension is set to
100 (same as the embedding dimension). The max-
imum neighbor size in heterogeneous structure en-
coding is set to 10. The threshold valuem in search
space pruning is set to 64 and 128 for NELL and
FB. We use Pytorch for model implementation and
run it on a GPU machine.

3.5 Performance Comparison

The overall performances of all methods are re-
ported in Table 2, where the best results are high-
lighted in bold and the best baseline scores are
indicated by underline. Overall, FIRE achieves the
best performances in all cases, demonstrating its
strong capability in learning and inferring few-shot
multi-hop relations. Additionally, the improvement
in NELL is larger than that in FB, showing the ad-
vantage of FIRE in sparse data (FB is denser than
NELL). Moreover and unsurprisingly, MetaKGR
is the best baseline as it involves adaptation for
few-shot relations.

Model
NELL-995 FB15K-237

MRR Hit@1 MRR Hit@1

NeuralLP 17.9 4.8 10.2 7.0
NTP-λ 15.5 10.2 21.0 17.4

MINERVA 20.1 16.2 30.5 28.4
MultiHop 23.1 17.8 42.7 36.7
MetaKGR 25.3 19.7 46.9 41.2

FIRE 27.3 22.5 47.8 42.3

Table 2: Performance comparison of all methods. All
scores are multiplied by 100.

3.6 Ablation Study

The RL framework of FIRE is augmented with sev-
eral components. To study the contribution of each
component, we perform ablation study by sepa-
rately removing: (a) heterogeneous structure encod-
ing (– HSE); (b) knowledge-aware space searching
(– KAS) from FIRE. Then we compare the per-
formances of these model variants with the whole
model. The performance of each model is reported
in Table 3. According to this table, removing each
component results performance drop, indicating
their effectiveness in relation reasoning. In addi-
tion, removing HSE impacts significantly, showing
the large benefit of using heterogeneous structural
information.

Model
NELL-995 FB15K-237

MRR Hit@1 MRR Hit@1

– HSE 25.1 20.9 47.0 41.4
– KAS 26.8 21.6 47.4 42.0

FIRE 27.3 22.5 47.8 42.3

Table 3: Results of model variants.
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3.7 Robustness Analysis

As described in the problem definition, we use
threshold K to select few-shot relations. Differ-
ent settings of K represent different train/test data
splits. Here we conduct experiment to study the
impact of K on model performance. Some triples
will be removed to make each few-shot relation
only hasK triples. The results of three best models
on differentK using FB data are shown in Figure 2,
where K = max denotes the data split used in the
original experiment (Table 2). It is easy to find that
FIRE consistently outperforms baseline methods,
showing its robustness in relation reasoning.

Figure 2: Impact of few-shot threshold K.

4 Related Work

This work is closely related to relation reasoning
in knowledge bases and few-shot learning.
Relation Reasoning in Knowledge Bases There
have been a lot of work modeling and reasoning re-
lations over knowledge bases. A group of them aim
at fact inference by embedding based methods (Bor-
des et al., 2013; Socher et al., 2013) or deep learn-
ing models (Dettmers et al., 2018; Schlichtkrull
et al., 2018). For example, Bordes et al. (Bor-
des et al., 2013) proposed TransE that interprets
relationships as translation operating on the low-
dimensional embeddings of entities. Besides, some
targets at generating interpretable multi-hop reason-
ing paths between entities through reinforcement
learning (Xiong et al., 2017; Das et al., 2018; Lv
et al., 2019). Recently, a number of work have been
proposed (Xiong et al., 2017; Chen et al., 2019; Lv
et al., 2019; Zhang et al., 2020) for either fact pre-
diction or multi-hop relation reasoning in few-shot
scenario. For instance, Xiong et al. (Xiong et al.,
2018) presented GMatching model for one-shot re-
lation learning in knowledge bases using matching
network and meta-learning. In this paper, we are
motivated to explore more potentiality of few-shot
relation learning in knowledge bases and move the
topic forward.

Few-Shot Learning Few-shot learning (or meta-
learning) is to learn from prior experiences to form
transferable knowledge for new tasks with few la-
beled data. Notable approaches have three cate-
gories. The first category is metric based meth-
ods (Vinyals et al., 2016; Snell et al., 2017) which
learn effective similarity space for few-shot in-
stances. For instance, Prototypical Network (Snell
et al., 2017) classifies each data sample by comput-
ing the distance to prototype representation of each
class. The second category is gradient based meth-
ods (Finn et al., 2017; Lee and Choi, 2018; Yao
et al., 2019) that aim to quickly optimize the model
parameters given the gradients on few-shot data
instances. For example, MAML (Finn et al., 2017)
effectively initializes model parameters via a small
number of gradient updates and it can quickly adapt
to new few-shot tasks. The last category is memory
models (Santoro et al., 2016) which learn to store
prior experience (from seen tasks) and generalizes
them to unseen tasks. Unlike previous studies that
focus on computer vision (Yang et al., 2018a), im-
itation learning (Duan et al., 2017), graph min-
ing (Yao et al., 2020), we study few-shot relation
learning over knowledge bases in this work.

5 Conclusions

In this paper, we studied the problem of multi-
hop relation reasoning over knowledge bases in
few-shot scenario, and proposed a novel model
called FIRE to solve it. FIRE was built on on-
policy reinforcement learning and additionally aug-
mented with heterogeneous structure encoding and
knowledge-aware search space pruning. It learned
and adapted the model parameters for few-shot re-
lations through meta-learning. Experiments on two
datasets demonstrated the superior performance of
FIRE over state-of-the-art methods. Future work
might consider incorporating entity type informa-
tion to refine entity embeddings and improve rela-
tion reasoning performance.

Acknowledgements

This work was supported in part by National Sci-
ence Foundation grants CCI-1925607 and IIS-
1849816. We also thank the anonymous reviewers
for their valuable comments and helpful sugges-
tions.



585

References
Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim

Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In SIGMOD.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-
Duran, Jason Weston, and Oksana Yakhnenko.
2013. Translating embeddings for modeling multi-
relational data. In NeurIPS.

Mingyang Chen, Wen Zhang, Wei Zhang, Qiang Chen,
and Huajun Chen. 2019. Meta relational learning
for few-shot link prediction in knowledge graphs. In
EMNLP-IJCNLP.

Rajarshi Das, Shehzaad Dhuliawala, Manzil Zaheer,
Luke Vilnis, Ishan Durugkar, Akshay Krishna-
murthy, Alex Smola, and Andrew McCallum. 2018.
Go for a walk and arrive at the answer: Reasoning
over paths in knowledge bases using reinforcement
learning. In ICLR.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp,
and Sebastian Riedel. 2018. Convolutional 2d
knowledge graph embeddings. In AAAI.

Yan Duan, Marcin Andrychowicz, Bradly Stadie, Ope-
nAI Jonathan Ho, Jonas Schneider, Ilya Sutskever,
Pieter Abbeel, and Wojciech Zaremba. 2017. One-
shot imitation learning. In NeurIPS.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017.
Model-agnostic meta-learning for fast adaptation of
deep networks. In ICML.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Yoonho Lee and Seungjin Choi. 2018. Gradient-based
meta-learning with learned layerwise metric and sub-
space. In ICML.

Xi Victoria Lin, Richard Socher, and Caiming Xiong.
2018. Multi-hop knowledge graph reasoning with
reward shaping. In EMNLP.

Xin Lv, Yuxian Gu, Xu Han, Lei Hou, Juanzi Li,
and Zhiyuan Liu. 2019. Adapting meta knowledge
graph information for multi-hop reasoning over few-
shot relations. In EMNLP-IJCNLP.

Tom Mitchell, William Cohen, Estevam Hruschka,
Partha Talukdar, Bo Yang, Justin Betteridge, An-
drew Carlson, B Dalvi, Matt Gardner, Bryan Kisiel,
et al. 2018. Never-ending learning. Communica-
tions of the ACM, 61(5):103–115.
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