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Abstract
In this paper, we propose a sequence con-
trast loss driven text generation framework,
which learns the difference between real texts
and generated texts and uses that difference.
Specifically, our discriminator contains a dis-
criminative sequence generator instead of a bi-
nary classifier, and measures the ’relative re-
alism’ of generated texts against real texts by
making use of them simultaneously. Moreover,
our generator uses discriminative sequences
to directly improve itself, which not only re-
places the gradient propagation process from
the discriminator to the generator, but also
avoids the time-consuming sampling process
of estimating rewards in some previous meth-
ods. We conduct extensive experiments with
various metrics, substantiating that our frame-
work brings improvements in terms of training
stability and the quality of generated texts.

1 Introduction

Generating human-like texts has always been a
fundamental problem in the natural language pro-
cessing field, which is essential to many applica-
tions such as machine translation (Bahdanau et al.,
2015), image captioning (Fang et al., 2015), and
dialogue systems (Reschke et al., 2013). Currently,
the dominant approaches are auto-regressive mod-
els, such as Recurrent Neural Network (Mikolov
et al., 2011), Transformer (Vaswani et al., 2017),
and Convolutional Seq2Seq (Gehring et al., 2017),
which have achieved impressive performances for
the task of language generation using the Maximum
Likelihood Estimation (MLE) method. Neverthe-
less, some studies reveal that such settings may
have three main drawbacks: First, the MLE method
makes the generative model extremely sensitive to
rare samples, which results in the learned distribu-
tion being too conservative (Feng and McCulloch,
1992; Ahmad and Ahmad, 2019). Second, auto-
regressive generation models suffer from exposure

bias (Bengio et al., 2015) due to the dependence on
the previous sampled output during the inferring
phase. Third, they only consider the word-level
objective and may fail to guarantee some sentence-
level goals, such as realism, preserving semantic
consistencies, long-range semantic structure, and
so on (Ranzato et al., 2016).

Recently, lots of recent studies (Yu et al., 2017;
Che et al., 2017; Lin et al., 2017; Zhang et al.,
2017; Chen et al., 2018; Wang and Wan, 2018; Ke
et al., 2019; Nie et al., 2019; Wang and Wan, 2019;
Wang et al., 2019) try to apply generative adversar-
ial networks (GAN) (Goodfellow et al., 2014) in
text generation, which uses discriminator networks
as loss functions to ensure these higher-level ob-
jectives. However, the discreteness of texts makes
it difficult for the gradient to pass from the dis-
criminator to the generator. The current solution is
mainly based on reinforcement learning (Yu et al.,
2017) or differentiable sampling functions (Jang
et al., 2017). In addition, considering the complex-
ity of the language, the generator is easily much
weaker than the discriminator in practice, making
it difficult to obtain a clear optimization direction
from the discriminator and learn from scratch.

In this paper, by borrowing techniques from con-
trastive learning (Hadsell et al., 2006; Hénaff et al.,
2019; He et al., 2019; Chen et al., 2020), we pro-
pose a sequence contrast loss driven adversarial
learning framework for text generation, SLGAN.
In our framework, the discriminator D is not just
a simple binary classifier, but a Siamese network
composed of a sequence generator Gd, which can
provide sequences with discriminative information.
In other words, our discriminator D measures the
gap between the generated texts and the real texts,
rather than simply predicting the probability of the
generated data (by generator G) being real. Specif-
ically, these discriminative sequences with well-
formed textual structure information can be used to
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Figure 1: Illustration of SLGAN. x is the real text sam-
pled from D. y is the text generated by G, and ŷ is the
discriminative text generated by Gd.

measure the ’relative realism’ (sequence contrast
loss) of the generated texts against the real texts,
and further improve the generator G. Intuitively,
the discriminator can not only tell if the text gen-
erated by the generator is good, but also teach the
generator in which direction to generate better text.
Our motivations are two-fold: 1) Our discriminator
can provide better discriminative information to the
generator because it observes both ’fake’ and ’real’
data simultaneously. 2) Compared to other gradi-
ent propagation strategies based on reinforcement
learning or differentiable sampling functions, the
contrastive loss between generated sequences and
discriminative sequences can improve the generator
more time-efficiently and steadily.

We conduct experiments on both synthetic and
real datasets, and use various metrics (i.e., fluency,
novelty, generalization, diversity, human evalua-
tion, and learning curve) to show that our approach
not only produce more realistic samples but also
greatly stabilize the adversarial training process.

2 Method

The architecture of our proposed model is depicted
in Figure 1. The whole framework can be divided
into two adversarial learning objectives: generator
learning and discriminator learning. The goal of the
discriminator D is to learn the difference (’relative
realism’) between fake texts (y, texts generated by
generators) and real texts (x). While the goal of the
generatorG is to use this difference (discriminative
sequences) to generate more realistic texts, which
contains a word-level item (Lmle) and a sentence-
level item (L̂adv).

To achieve the above goals, we start with two
things. One is that discriminator D observes and
uses both ’fake’ and ’real’ data at the same time,
rather than considering them in an alternating fash-
ion. The other is that the inside of the discriminator
is not a binary classifier, but a sequence generator
Gd. Gd aims to generate discriminative sequence
ŷ, which can be considered as a sequence represen-
tation to be used for better measurement of ’relative
realism’. To some extent,Gd can be seen as an ’am-
plifier’, and the closer the input text is to real texts,
the less it changes. Further, ŷ not only can be used
to measure the ’relative realism’ of generated texts
against real texts, but also can be used to directly
affect G through sequence contrast loss. Therefore,
by calculating the contrastive loss, the gradient
back-propagation process from the discriminator
to the generator is avoided, which is of significant
importance in adversarial learning.

Discriminator Learning: The contrastive loss
of our discriminator takes the output of the dis-
criminative sequence generator Gd for a positive
example (real texts x), and calculates its similarity
to an example of the same class (x) and contrast-
s that with the distance to negative examples (y,
texts generated by generators):

Ldiscriminator = λiSims − Simd, (1)

where Simd and Sims are the similarity measure
of a pair of dissimilar points and a pair of similar
points, respectively. λi = max{λ, 1 − αi} is the
coefficient to balance two terms at i-th epoch. It is
worth noting that Eq 1 degenerates into the vanilla
GAN’s adversarial loss when λi = 0.

We use the KL-divergence to measure how sim-
ilar two word distributions of generated sequences
are to each other, and the inter-class loss Simd is:

Simd = Ladv = Ex∼D,z∼P

[||Gd(x; θd)−Gd(G(z; θg); θd)||kl], (2)

where z is sampled from a noise distribution P .
The outputs of Gd is not a probability between
0 and 1, but a representation with more discrim-
inative information. That is, the generator Gd in
our discriminator takes input of the real data x or
the fake data G(z; θg), and then generates word
sequence ŷ for each input.

In addition, we consider making ŷ meaningful,
with the purpose that it can be used not only to
discriminate but also to represent ’realism’ features.
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We hence rewrite the intra-class loss Sims with a
similar idea as:

Sims = Lrec = Ex∼D[||Gd(x; θd)− x||kl]. (3)

In practice, we add noise to x by randomly replac-
ing input word with the noise word (< unk >).

Generator Learning: The loss function of our
generator includes two terms: one term (Lmle) is to
concern word-level fitness and another term (L̂adv)
is to ensure a higher level of ’realism’ resembling
qualities:

Lgenerator = Lmle + λ̂iL̂adv, (4)

where λ̂i = λ̂(i/k) is the balance coefficient and k
is the number of all epochs.

Given a training sentence x = {x0, . . . xt, . . . }
with length |x|, the word-level objective Lmle is
to minimize the negative log-likelihood loss as fol-
lows:

Lmle = Ex∼D[−
|x|−1∑
t=1

logG(xt|x0:t−1)], (5)

where G(xt|x0:t−1) denotes the probability that
the output of G is xt under the condition of the for-
mer given sequence x0:t−1 = {x0, x1, . . . xt−1} at
time step t. While in the inference phase, gen-
erator G will take the previous sampled output
y0:t−1 as the input at time step t. Here G is an
auto-regressive generation model ( e.g., RNN and
its variants (Mikolov et al., 2011; Hochreiter and
Schmidhuber, 1997; Chung et al., 2014), Trans-
former (Vaswani et al., 2017) and Convolutional
Seq2Seq (Gehring et al., 2017) ).

Furthermore, the other goal of generator G is
to minimize Simd in Eq 2, with the intuition that
using a discriminator network to learn the loss func-
tion of sentence-level properties (e.g., long-range
semantic structure, preserving semantic consisten-
cies, etc.) over time, rather than explicitly formu-
lating these properties. According to the discrimi-
nator’s loss (Eq 1), the closer G(z; θg) is to x, the
closer Gd(G(z; θg); θd) is to G(z; θg). As such,
we resort to an approximation approach to define
the generator’s adversarial loss as:

L̂adv = Ez∼P [||Gd(G(z; θg); θd)−G(z; θg)||kl].
(6)

In this way, we can directly guide the genera-
tion of G by measuring the sequence contrast loss
of the output between G and Gd, which not only
avoids the gradient back-propagation process from
the discriminator to the generator, but also makes
the generator use the discriminator’s discriminative
information more effectively.

3 Experiments

3.1 Setup
In this study, we use Texygen (Zhu et al., 2018), a
benchmarking platform that implements a majority
of GAN-based text generation models and covers
a set of metrics, to standardize comparisons with
other GAN models. We compare SLGAN with
several typical and state-of-the-art unsupervised
generic text generation models, including MLE
(Mikolov et al., 2011), SeqGAN (Yu et al., 2017),
MaliGAN (Che et al., 2017), RankGAN(Lin et al.,
2017), GSGAN (Kusner and Hernández-Lobato,
2016), TextGAN (Zhang et al., 2017), LeakGAN
(Guo et al., 2018). Without loss of generality, we
evaluate our model on two benchmark datasets: a
synthetic dataset and a real text dataset (COCO
image caption (Lin et al., 2014)).

3.1.1 Implementation Details
In our model, the default initial parameters of all
generators follow a Gaussian distribution N (0, 1).
The total number of adversarial training epochs is
200 and the sampling temperature is set to 1.0. We
set λ = 1.0 and α = 0.1, and Gd is a seq2seq
model based on single-layer RNN-GRU and Luong
attention. λ̂ is set to 1.0, and the number of all
epochs k = 200, based on performance. G is a
single-layer RNN-GRU network and can be easily
extended to other types of generators as well. We
implement our model based on Pytorch and use a
TITAN X graphic card for learning.

3.1.2 Dataset Statistics
A summary of statistics for each dataset is provided
in Table 1. To be fair, on the synthetic and real
datasets, we train all models using the same-size
(size = 10,000) training set and use the models
to generate the same-size (size = 10,000) set of
sentences for evaluation.

3.2 Synthetic Data Experiment
Here we use the synthetic dataset used by Texygen
(Zhu et al., 2018), which consists of a set of se-
quential tokens which can be seen as the simulated
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Datasets #Train #Test #Vocab Max-Length
Synthetic 10,000 10,000 5,000 20

Real 10,000 10,000 4,684 38

Table 1: Statistics for the synthetic and real dataset we
use.
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Figure 2: The illustration of learning curves. Dotted
line is the end of pre-training for baseline models ex-
cept GSGAN and TextGAN.

data comparing to the real-word language data. We
compare our model with various models on this
dataset, as shown in Figure 2. We observe that
our model outperforms all other competitors with a
large margin and the NLL loss declines rapidly and
steadily from the beginning, demonstrating that our
model is more stable and time-efficient.

3.3 Real Data Experiment
We also conduct experiments on a real-world
dataset (i.e., COCO image caption), and present
a variety of evaluation methods for a comprehen-
sive comparison.

Fluency: We show the perplexity of generated
sentences in Figure 3, which shows that our model
is good at keeping the fluency of sentences.

Novelty: We use the novelty measure in (Wang
and Wan, 2018) to investigate how different the gen-
erated sentences and the training corpus are. From
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Figure 3: Comparison of fluency (lower perplexity
means better fluency) and novelty of generated sen-
tences.
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ing process.

the results in Figure 3, we observe that our model
has a better ability to generate new sequences.

Generalization: Same as Texygen, we also e-
valuate BLEU (Papineni et al., 2002) between gen-
erated sentences and the test set to see the gener-
alization capacity of different models. The BLEU
scores are shown in Table 2, which show that our
model has a rather good generalization capacity.
Moreover, as the order (i.e., n) of n-gram rises, the
corresponding BLEU performance of our model
does not drop as fast as other models.

Diversity: We use Self-BLEU to evaluate how
one sentence resembles the rest in a generated col-
lection. From Table 2, we see that the sentences
generated by our model have the lowest Self-BLEU
score, indicating the highest diversity.

Human Evaluation: We randomly extract 100
sentences from the generated sentences and then
hire three workers on Amazon Mechanical Turk to
rate each of them according to its ’grammaticality’,
’topicality’, and ’overall’ aspects, where ’topicality’
indicates the semantic consistency of the entire
sentence. The rating score ranges from 1 to 5, and
5 is the best. As shown in Table 2, our model
outperforms several baseline models, especially in
the aspects of ’topicality’ and overall quality.

Training Stability: We also show the differen-
t loss curves of our model during the adversarial
training process in Figure 4. As can be seen in
Figure 4, the adversarial process between G and
Gd is quite stable. Firstly, the discriminator is not
powerful enough to let loss Ladv fall to 0, because
it does more things than a simple binary predic-
tion. Secondly, the ability (L̂adv) of the generator
to attempt to deceive the discriminator has been
fluctuating. As the discriminator has been getting
better, we argue that the capabilities of the gener-
ator are constantly being enhanced, that is, more
similar to real texts.
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Models Generalization ↑ Diversity ↓ Human Evaluation ↑
BLEU-2 BLEU-3 BLEU-4 BLEU-5 BLEU-2 BLEU-3 BLEU-4 BLEU-5 Grammaticality Topicality Overall

MLE 0.731 0.497 0.305 0.189 0.916 0.769 0.583 0.408 3.68 2.03 2.57
SeqGAN 0.745 0.498 0.294 0.180 0.950 0.840 0.670 0.498 3.73 3.29 3.36
MaliGAN 0.673 0.432 0.257 0.159 0.918 0.781 0.606 0.437 3.83 2.32 2.79
RankGAN 0.743 0.467 0.264 0.156 0.959 0.882 0.762 0.618 3.94 3.83 3.78
LeakGAN 0.746 0.528 0.355 0.230 0.966 0.913 0.848 0.780 4.08 4.04 3.96
TextGAN 0.593 0.463 0.277 0.207 0.942 0.931 0.804 0.746 4.23 3.46 3.99
SLGAN 0.753 0.502 0.348 0.251 0.751 0.573 0.422 0.313 3.93 4.29 4.16

Table 2: Results on real dataset. ↓ means the smaller the better, and ↑ is the opposite. The best scores are bold and
our scores are underlined. The kappa coefficient of the three workers is 0.63.

4 Conclusion and Future Work

In this study, we propose a sequence contrast loss
for adversarial text generation, where the discrimi-
nator outputs discriminative sequences rather than
binary classification probabilities. Extensive exper-
imental results demonstrate that our model brings
improvements in training stability and the quality
of generated texts.

In future work, we will expand our method to
have specific targets, to benefit more conditional
text generation tasks (e.g., sentimental text genera-
tion, dialogue response generation).
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A Appendices

A.1 Implementation Details
In our model, the default initial parameters of all
generators follow a Gaussian distribution N (0, 1).
The total number of adversarial training epochs is
200 and the sampling temperature is set to 1.0. We
set λ = 1.0 and α = 0.1, and Gd is a seq2seq
model based on single-layer RNN-GRU and Luong
attention. λ̂ is set to 1.0, and the number of all
epochs k = 200, based on performance. G is a
single-layer RNN-GRU network and can be easily
extended to other types of generators as well. We
implement our model based on Pytorch and use a
TITAN X graphic card for learning.

A.2 Generated Cases
In Table 3, we show example sentences generated
by different models trained on a real-world dataset.
From the examples, we see that: 1) Although the
sentence produced by the MLE method is longer,
it may have unreadable and unreasonable problem-
s. 2) The sentences generated by LeakGAN and
TextGAN are more readable, but they are not di-
versified and relatively short. 3) In particular, com-
pared with all benchmark methods, the sentences
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MLE

a store is blue sink in a water bottle . (Unreasonable)
serious air force jet mid flight during a cobblestone day , where a flooded street
a simple bathroom with some wood cupboards .
a girafee is standng in the spot for a village in parking spot with four hinged cakes trees
a jet jet flying away on the runway , in the sky .
a fat orange motorcycle is low building .
a bathroom with a sink , a sink , refrigerator and the walls . (Unreadable)
a living room with a blue roof and green traffic lights blue .
person sitting in a commercial plane at night .

LeakGAN

a view of a parking desk with two plungers
a desk with multiple large monitors . (Very short)
a woman wearing a glass is sitting on a cupboard .
a kitchen with a shelf area .
a man tinkers with his ear .
a white stove top open from a wood oven .
a group of men talking .
a kitchen with a shelf area . (Repeated)
two people sitting on .

TextGAN

a man riding a motorcycle . (Very short)
is to a bathroom with a sink . (Unreadable)
a man is on a motorcycle .
a white toilet a sink .
with a sink and a table .
a motorcycle in a blue sky .
a bathroom with a sink .
a man is sitting on a motorcycle . (Repeated)
a bathroom with a sink .

SLGAN

a group of people sat in front of the house together .
several people stood in front of the bicycle .
a person is holding a monitor range in the kitchen .
a woman is riding a motorcycle on the street .
three adults sat in his car with hats .
two people in a public parking lot .
white bathtub , toilet and basin under the bathroom wall .
an old brick building with a wooden manufacturer next to it .
a motor scooter parked in the street with a crowd waiting for a parade.

Table 3: Example sentences generated by different models.

produced by our model are more readable, diversi-
fied and of better quality.


