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Abstract
Weight tying is now a common setting in many
language generation tasks such as language
modeling and machine translation. However,
a recent study reveals that there is a potential
flaw in weight tying. They find that the learned
word embeddings are likely to degenerate and
lie in a narrow cone when training a language
model. They call it the representation degen-
eration problem and propose a cosine regular-
ization to solve it. Nevertheless, we prove that
the cosine regularization is insufficient to solve
the problem, as the degeneration is still likely
to happen under certain conditions. In this pa-
per, we revisit the representation degeneration
problem and theoretically analyze the limita-
tions of the previously proposed solution. Af-
terward, we propose an alternative regulariza-
tion method called Laplacian regularization to
tackle the problem. Experiments on language
modeling demonstrate the effectiveness of the
proposed Laplacian regularization.

1 Introduction

Language modeling is a fundamental task in natural
language processing, applications include machine
translation (Bahdanau et al., 2015; Vaswani et al.,
2017), image captioning (Vinyals et al., 2015; Xu
et al., 2015) and speech recognition (Yu and Deng,
2016), to name a few. In the era of deep learning, a
general model architecture usually contains a word
embedding layer as input, multiple layers to encode
word context as a fixed-size hidden state, and a
softmax layer to transform the hidden-state into a
categorical distribution of the next word (Merity
et al., 2018; Yang et al., 2018; Gong et al., 2018;
Wang et al., 2019; Gao et al., 2019). While in
practice, the parameters of the embedding layer
and the softmax layer are usually shared, which is
called weight tying (Inan et al., 2017; Press and
Wolf, 2017).
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(a) Vanilla (b) CosReg

Figure 1: Illustration of the degeneration phenomenon
from (Gao et al., 2019). (a). Word embeddings trained
from vanilla Transformer. (b). Word embeddings
trained with cosine regularization.

Despite the improvements from weight tying, a
recent work (Gao et al., 2019) discovers that, with
weight tying, the learned word embeddings are pos-
itively correlated and spread in a narrow cone as
visualized in Figure 1(a). A similar phenomenon is
observed in Gong et al. (2018). Thus, the seman-
tic expressiveness of word embeddings is limited.
They call it the representation degeneration prob-
lem. To tackle the problem, the authors propose
a cosine regularization that minimizes the cosine
similarities between any two word embeddings to
enlarge the aperture of the cone. They show that it
improves the language modeling performance and
eases the degeneration as visualized in Figure 1(b).

However, we argue that the cosine regularization
might not be the best choice for solving this prob-
lem, and the reasons are: i) The cosine regulariza-
tion minimizes similarities between any two word
embeddings without considering whether they are
semantically close or not. But we wish two words
with similar semantics stay close in the embedding
space. ii) Although the cosine regularization im-
proves language generation performance, it does
not fundamentally solve the representation degen-
eration problem. We prove that the degeneration
still exists when there exists a certain regularization
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structure. Finally, we analyze the general condition
of degeneration and show that there still are many
low-frequency words that meet the condition and
thus degenerate. Therefore, we argue that the de-
generation is still likely to happen even with cosine
regularization.

Motivated by these issues, we propose an alterna-
tive Laplacian regularization to tackle the represen-
tation degeneration problem. As the distributional
hypothesis (Harris, 1954) states: two words that
occur in similar contexts tend to have similar mean-
ings. The general idea of Laplacian regularization
is to minimize the squared Euclidean distance be-
tween two word embeddings when they have large
context similarity. In contrast to cosine regulariza-
tion, Laplacian regularization prevents minimizing
all similarities of word pairs indiscriminately. Al-
though the Laplacian regularization does not the-
oretically solve the degeneration problem either,
we empirically demonstrate that it achieves better
performance in most cases of language modeling
experiments, and word embeddings are less likely
to degenerate.

In summary, the main contributions of our work
are listed as follows.

• We revisit the representation degeneration
problem and theoretically analyze the limi-
tations of the previously proposed cosine reg-
ularization solution.

• We propose an alternative Laplacian regular-
ization to tackle the representation degenera-
tion problem. We show that it eases the de-
generation to an extent comparing with cosine
regularization.

• We conduct experiments on language model-
ing task to demonstrate the effectiveness of
our method.

2 Representation Degeneration Problem

In this section, we introduce the notations and re-
view the representation degeneration problem.

Given a vocabulary of words (indices) V =
{1, ..., N}, and a text corpus represented as a se-
quence of words y = (y1, ..., yM ), where yi ∈ V .
The joint probability of sequence y is factorized
into a product of conditional probabilities using the
chain rule.

P (Y = y) =

M∏
t=1

P (Yt = yt|Y<t = y<t), (1)

where y<t denotes the first t− 1 words in y. Cur-
rent neural language models encode variable-length
context as a fixed-size hidden state denoted as hi.
The conditional probability is calculated by the
softmax function, and the model is trained by mini-
mizing the negative log-likelihood loss as follows.

LNLL = − 1

M

M∑
i=1

log
exp(wT

yihi)∑N
l=1 exp(w

T
l hi)

, (2)

where w is the parameter of the softmax layer.
When using weight tying, wl is the embedding
for the l-th word.

Next, we investigate the optimization process
of word embeddings. We follow the analysis in
Gao et al. (2019) and only focus on the extreme
case of a non-appeared word wN in the following
analysis, since the analysis can be extended to the
case of rarely appeared words by applying Theorem
3 in Gao et al. (2019). Assume yi 6= N for all
i, which means the N -th word with embedding
wN does not appear in the corpus. Under the log-
likelihood maximization objective and fixing all
other parameters, we write the objective function
for optimizing variable wN as follows.

min
wN

1

M

M∑
i=1

log(exp(wT
Nhi) +Gi), (3)

where Gi =
∑N−1

l=1 exp(wT
l hi) and can be con-

sidered as a constant. Let v be a uniformly neg-
ative direction of hi, i.e., vThi < 0 for all i. It
is easy to see that the optimal solution of Eq. (3)
can be achieved by setting w∗N = limk→∞k · v
and the minimum objective value is bounded by
1
M

∑M
i=1 log(Gi). The authors prove that such a

uniformly negative direction v exists if and only
if the convex hull of the hidden states does not
contain the origin. They discuss that the condition
is very likely to hold, especially when layer nor-
malization is applied. We further observe that the
condition holds almost for sure in actual language
modeling, even without layer normalization.

From the above analysis, we have an intuition
for the representation degeneration problem. We
can see that the embedding wN can be optimized
along any uniformly negative direction to infinity.
As the set of uniformly negative direction is convex,
wN is likely to lie in a convex cone and move to
infinity during optimization. This conclusion also
applies to the case of rarely appeared words to a
large extent (Gao et al., 2019). As most words in
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natural language are low-frequency words accord-
ing to Zipf’s law, the learned word embeddings
tend to degenerate and lie in a narrow cone, which
limits the model’s semantic expressiveness. No-
tably, Gong et al. (2018) also show that the learned
word embeddings overly encode word frequency in-
formation rather than semantic information, which
implicitly supports the existence of the degenera-
tion problem.

3 Solutions to The Problem

In this section, we first introduce the solution pro-
posed in Gao et al. (2019). Then we theoretically
analyze the limitations of the previously proposed
method. Finally, we propose an alternative regular-
ization to tackle the problem.

3.1 Cosine Regularization

As word embeddings tend to lie in a narrow cone,
a straightforward solution is to enlarge the aperture
of the cone, which is defined as the maximum angle
between any two boundaries of the cone. However,
for the ease of optimization, Gao et al. (2019) pro-
poses to minimize the cosine similarities between
any two word embeddings. The overall loss is the
typical negative log-likelihood loss plus the regu-
larization term as follows.

L = LNLL + γ
1

N2

N∑
i

N∑
j 6=i

ŵT
i ŵj , (4)

where ŵ = w/||w|| is the normalized direction of
w, and γ > 0 is a hyperparameter.

The cosine regularization minimizes the similari-
ties of all word pairs indiscriminately, which might
not be a good idea, especially when two words are
semantically close and correlated. More impor-
tantly, this regularization technique is theoretically
insufficient to solve the representation degenera-
tion problem. We will show that in the following
analysis.

Following the previous study, we write the objec-
tive function with cosine regularization term w.r.t.
a non-appeared word wN as follows.

min
wN

1

M

M∑
i=1

log(exp(wT
Nhi) +Gi) + ŵT

NŵC ,

(5)

where ŵC = 2γ
N2

∑N−1
j=1 ŵj and can be considered

as a constant. As the cosine regularization term is a

function of wN , setting wN = limk→∞k · v may
not achieve the optimal solution of Eq. (5), which
prevents word embeddings from lying in the cone.
However, we find that the degeneration still exists
in certain cases. To show that, we first define the
uniformly negative direction cone as follows.

Definition 1. Let C denote the uniformly negative
direction cone of hidden states, i.e., C = {v ∈
Rn\{0}|vThi < 0,∀i = 1, ...,M}.

Note that C is a set of vectors, we use −C to de-
note the set of the negative vectors for convenience.
Since the cosine regularization term is the projec-
tion length of vector ŵC in direction of unit vector
ŵN , the objective value depends on ŵC . The fol-
lowing theorem states that the degeneration exists
when ŵC lies in certain directions.

Theorem 1. If the uniformly negative direction
cone C is not empty, and ŵC is in −C, then the
optimal solution of Eq. (5) can be achieved by set-
ting w∗N = limk→∞k ·v∗, ∃v∗ ∈ C. The minimum
objective value is 1

M

∑M
i=1 log(Gi)− ||ŵC ||.

Proof. Since ŵC is in −C, it is easy to check that
there exists a uniformly negative direction vector
v∗ that is in C and has the opposite direction of ŵC .
Note that the two terms in Eq. (5) have bounded
minimum values 1

M

∑M
i=1 log(Gi) and −||ŵC ||,

which can be both simultaneously achieved by set-
ting w∗N = limk→∞k · v∗.

We argue that the condition in Theorem 1 is
likely to happen in language modeling. Under
the log-likelihood maximization objective, each
appeared word embedding wyi tends to be opti-
mized to maximize the correlation between it and
its hidden state hi. Note that ŵC represents the
average direction of all appeared words. There-
fore, ŵC is likely to negatively correlate with a
uniformly negative direction v and lie in−C. From
Theorem 1, we can see that the degeneration still
exists as long as ŵC has an opposite direction of
C. Nevertheless, this condition still seems strong.
We will give a general condition under which the
degradation exists. We first provide a lemma as
follows.

Lemma 1. Let w∗N be the optimal solution of
Eq. (5). If w∗N is in C, then ||w∗N || = ∞ and
the minimum objective value is 1

M

∑M
i=1 log(Gi) +

ŵ∗
T
NŵC .

Proof. We prove the lemma by contradiction. Sup-
pose there is an optimal solution wN with a finite
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length that is in C. Let w∗N = limk→∞k · wN

and L(·) denote the objective function of Eq. (5).
Since ŵT

NŵC = ŵ∗
T
NŵC , it is easy to check

that the objective value L(wN ) > L(w∗N ) =
1
M

∑M
i=1 log(Gi)+ŵ∗

T
NŵC , which raises the con-

tradiction.

Denote Zi =
∑N

l=1 exp(w
T
l hi). Based on

Lemma 1, we give the following theorem.

Theorem 2. If the uniformly negative direction
cone C is not empty, and E

(
G
Z

)
< exp

(
−

4γ(N−1)
N2

)
, then the optimal solution of Eq. (5)

is in C.

Proof. Suppose there are two cases of optimal so-
lution: w∗

′
N ∈ C and w∗

′′
N /∈ C. From Lemma 1, we

have ||w∗′N || = ∞, and L(w∗
′
N ) is upper bounded.

We compare the maximum value of L(w∗
′
N ) and

the minimum value of L(w∗
′′
N ).

L(w∗
′
N )max − L(w∗

′′
N )min

=
1

M

M∑
i=1

log(Gi) + ||ŵC ||−

(
1

M

M∑
i=1

log(exp(w∗
′′T
N hi) +Gi)− ||ŵC ||)

=
1

M

M∑
i=1

log
Gi
Zi

+ 2||ŵC ||. (6)

Note that 0 ≤ ||ŵC || ≤ 2γ(N−1)
N2 . By letting Eq.

(6) < 0, we have

1

M

M∑
i=1

log
Gi
Zi

< −4γ(N − 1)

N2
. (7)

We write Eq. (7) as expectation form and apply
Jensen’s inequality.

E
(
log

G

Z

)
< −4γ(N − 1)

N2
(8)

log E
(G
Z

)
< −4γ(N − 1)

N2
(9)

E
(G
Z

)
< exp

(
− 4γ(N − 1)

N2

)
. (10)

Eq. (10) gives the condition of L(w∗
′
N ) is con-

stantly smaller than L(w∗
′′
N ), under which the opti-

mal solution is in C.

Note that the vocabulary size N is usually large
in language modeling, e.g., 10000 for Penn Tree-
bank data set and over 30000 for WikiText-2 data

set. Suppose γ = 1, the right side of the inequality
has a value of 0.9996 and 0.9999, respectively. It
makes the inequality very likely to hold in prac-
tice, especially for low-frequency words, and we
will empirically demonstrate it in the experiment.
Based on Theorem 2 and Lemma 1, we argue that
the cosine regularization is insufficient to solve the
representation degeneration problem.

3.2 Laplacian Regularization
The distributional hypothesis (Harris, 1954) is a
common assumption in various NLP tasks, which
states that two words that occur in similar contexts
tend to have similar meanings. We borrow this idea
and propose an alternative Laplacian regularization
technique. The overall objective is as follows.

L = LNLL + λ
1

2N2

N∑
i=1

N∑
j=1

||wi −wj ||2sij

= LNLL + λ
1

N2
Tr(W TLW ), (11)

where λ > 0 is a hyperparameter, and sij is a simi-
larity weight that measures the context similarity
between wi and wj . L = D − S is called graph
Laplacian matrix. D is a diagonal matrix whose
entries are column or row sums of S. sij can be
calculated by any similarity function, for example,
cosine similarity is used in this study.

sij =
hTi hj

||hi|| · ||hj ||
. (12)

Note that we detach h from the computational
graph to cut off the back propagation gradient flow
in implementation.

However, computing the Laplacian regulariza-
tion term with full vocabulary words is computa-
tionally expensive. Another issue is that computing
sij needs to sample appropriate contexts for word
wi and wj . To address these issues, we compute
the Laplacian regularization term in a stochastic
mini-batch way. Specifically, let H ∈ RB×T×D
be the hidden state matrix before the softmax layer,
where B is the batch size and T is the sequence
length in one batch. We only compute words that
are predicted by these B × T hidden states and use
the corresponding hidden states as contexts to cal-
culate sij . Here we use this simple way to calculate
sij only for the ease of implementation. Though,
one could design a sophisticated strategy to incor-
porate extra knowledge by selecting word pairs and
manipulating similarity weights.
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By contrast, Laplacian regularization minimizes
the similarities of word pairs discriminately. It
makes word embeddings with similar contexts
closer in Euclidean space, which better captures the
semantic correlation of words. More importantly,
we show that it is less affected by the representation
degeneration problem. We first write the objective
function with Laplacian regularization term w.r.t. a
non-appeared word wN as follows.

min
wN

1

M

M∑
i=1

log(exp(wT
Nhi) +Gi)

+
λ

N2

N∑
j=1

||wN −wj ||2sj . (13)

Theorem 3. Let w∗N be the optimal solution of Eq.
(13) and assume sj > 0. For any w∗N , ||w∗N || <
∞.

Proof. We prove the theorem by contradiction.
Suppose wN is an optimal solution with ||wN || =
∞. It is easy to check that

∑N
j=1 ||wN−wj ||2sj =

∞. Because the first term in Eq. (13) has bounded
minimum value, the overall objective value is infi-
nite. However, the objective function exists finite
values, which raises the contradiction.

Note that when using cosine similarity to cal-
culate sij , it does not guarantee positive weights.
However, we observe that in actual language mod-
eling experiments, it is nearly impossible to have
hTi hj ≤ 0, which further suggests the existence
of C. From the above theorem, we can see that
the optimal solution w∗N cannot go along with any
direction to infinity. However, it is difficult to give
a quantitative analysis of whether the optimal solu-
tion will lie in C or not. We only give a qualitative
analysis here. We first write the derivative of Eq.
(13) w.r.t. wN as follows.

∂L

∂wN
=

1

M

M∑
i=1

exp(wT
Nhi) · hi

exp(wT
Nhi) +Gi

+
2λ

N2

N∑
j=1

(wN −wj)sj . (14)

Qualitatively, the gradient direction involves
three directions: hi, wN and −wj . Suppose that
hi dominates the gradient direction, when apply-
ing gradient descent, the optimal solution is likely
to fall into the uniformly negative direction cone
C. However, as wj is an appeared word, it is

likely to positively correlated with hi under the
log-likelihood maximization objective. Therefore,
−wj could have the opposite direction of hi and
serve as a counterbalance to ease the degeneration
effect. As for wN , it can be considered as a regu-
larization to prevent having too large parameters.
We empirically demonstrate the effectiveness of
our method in the following experiments.

4 Experiments

In this section, we conduct experiments on lan-
guage modeling task to demonstrate the effective-
ness of our method.

4.1 Language Modeling

We conduct language modeling experiment on two
widely used data sets of Penn Treebank (PTB)
(Mikolov et al., 2010) and WikiText-2 (WT2) (Mer-
ity et al., 2017). We use two recent works as our
baselines: the AWD-LSTM model1 (Merity et al.,
2018) and the AWD-LSTM-MoS model2 (Yang
et al., 2018), which achieved the state-of-the-art
performance. Also, we compare with the cosine
regularization technique (Gao et al., 2019), as we
are all targeting the same representation degenera-
tion problem.

For experimental settings, we faithfully follow
all the settings3 in AWD-LSTM and AWD-LSTM-
MoS. There are no extra hyperparameters in our
method except for λ. We set it to 0.01 and 0.001
for PTB and WT2, respectively. For cosine regular-
ization, we set γ to 1 as described in its paper.

It is worth noting that the baseline papers’ re-
sults are based on an older Pytorch 0.4.1 version,
we find that the Pytorch version has a large im-
pact on the language modeling performance since
Pytorch 0.4.1 and > 1.0 have significant differ-
ences in implementation. On PTB data set, we
can get a better 57.39/54.94 perplexity comparing
with 58.34/56.18 by simply switching to a newer
Pytorch without other changes. We must point out
that building a new model upon the latest codebase,
but still borrowing the numbers directly from the
baseline paper could be misleading and result in
unfair comparison. To this end, all experiments
including the baselines are conducted under the

1https://github.com/salesforce/awd-ls
tm-lm

2https://github.com/zihangdai/mos
3The parameter settings are slightly different between the

papers and the Github code. We use the Github configurations
since they are consistent with the latest released code.

https://github.com/salesforce/awd-lstm-lm
https://github.com/salesforce/awd-lstm-lm
https://github.com/zihangdai/mos
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Data set Model #Param Val. Test

PTB

(Merity et al., 2018) - AWD-LSTM w.o. finetune 24M 61.49 59.14
(Gao et al., 2019) - AWD-LSTM-CosReg w.o. finetune 24M 61.29 58.94
Ours - AWD-LSTM-LapReg w.o. finetune 24M 61.38 59.07
(Merity et al., 2018) - AWD-LSTM w.t. finetune 24M 59.54 57.27
(Gao et al., 2019) - AWD-LSTM-CosReg w.t. finetune 24M 59.48 57.18
Ours - AWD-LSTM-LapReg w.t. finetune 24M 58.71 56.44

(Yang et al., 2018) - AWD-LSTM-MoS w.o. finetune 22M 58.34 56.18
(Gao et al., 2019) - AWD-LSTM-MoS-CosReg w.o. finetune 22M 58.26 56.18
Ours - AWD-LSTM-MoS-LapReg w.o. finetune 22M 57.92 55.92
(Yang et al., 2018) - AWD-LSTM-MoS w.t. finetune 22M 56.83 54.64
(Gao et al., 2019) - AWD-LSTM-MoS-CosReg w.t. finetune 22M 56.94 54.73
Ours - AWD-LSTM-MoS-LapReg w.t. finetune 22M 56.41 54.38

Table 1: Perplexity on validation and test sets on Penn Treebank. Smaller the perplexity, better the result.

same environment of Pytorch 0.4.1 to make a fair
comparison.

The language modeling results on PTB and WT2
data sets are presented in Table 1 and Table 2, re-
spectively. Our method generally outperforms base-
line methods with and without finetune. On PTB
data set, our method improves the AWD-LSTM and
AWD-LSTM-MoS baselines by up to 0.83/0.83 and
0.42/0.26 in terms of valid/test perplexity, respec-
tively. On WT2 data set, our method improves the
AWD-LSTM and AWD-LSTM-MoS baselines by
up to 0.46/0.04 and 0.47/0.62 in terms of valid/test
perplexity, respectively. When compared with
cosine regularization, our method equipped with
AWD-LSTM is sometimes underperformed. But
our method consistently outperforms cosine regu-
larization equipped with AWD-LSTM-MoS by up
to 0.53/0.35 and 0.71/0.48 in terms of valid/test
perplexity on PTB and WT2 data sets, respectively.
Note that we do not change any configuration in
baselines but only add regularization terms to the
loss function. Thus, the improvements purely come
from the regularization, which suggests that they
ease the degeneration to an extent. By comparison,
Laplacian regularization is generally better than
cosine regularization.

To see how the regularization strength λ af-
fects the language modeling performance, we run
AWD-LSTM-MoS-LapReg on the large data set
WT2 with λ tuned in the order of magnitude
{1.0, 0.1, 0.01, 0.001, 0.0001}. The test perplex-

ities are non-convergence, 62.60, 62.88, 62.83,
63.02, respectively. We can see that the perplexity
fluctuates in an acceptable range and achieves the
best at λ = 0.1.

4.2 Empirical Study for Theorem 2

We empirically examine whether the condition
in Theorem 2 holds in actual language model-
ing. We calculate E

(
G
Z

)
from the trained AWD-

LSTM-CosReg model on the PTB and WT2 data
sets, respectively. As we can see from Figure 2,
many low-frequency words’ E

(
G
Z

)
are smaller than

exp
(
− 4γ(N−1)

N2

)
, especially for the data set with

large vocabulary size, which shows that the condi-
tion in Theorem 2 is likely to hold in practice. It
suggests that the degeneration still exists even with
the cosine regularization, which is insufficient to
solve the problem.

(a) PTB (b) WT2

Figure 2: E
(
G
Z

)
on PTB and WT2 data sets, respec-

tively. The word indices are sorted by their frequencies
in descending order.
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Data set Model #Param Val. Test

WT2

(Merity et al., 2018) - AWD-LSTM w.o. finetune 33M 68.57 65.39
(Gao et al., 2019) - AWD-LSTM-CosReg w.o. finetune 33M 68.24 65.54
Ours - AWD-LSTM-LapReg w.o. finetune 33M 68.11 65.35
(Merity et al., 2018) - AWD-LSTM w.t. finetune 33M 67.33 64.30
(Gao et al., 2019) - AWD-LSTM-CosReg w.t. finetune 33M 66.75 64.13
Ours - AWD-LSTM-LapReg w.t. finetune 33M 66.94 64.46

(Yang et al., 2018) - AWD-LSTM-MoS w.o. finetune 35M 65.92 63.45
(Gao et al., 2019) - AWD-LSTM-MoS-CosReg w.o. finetune 35M 66.16 63.31
Ours - AWD-LSTM-MoS-LapReg w.o. finetune 35M 65.45 62.83
(Yang et al., 2018) - AWD-LSTM-MoS w.t. finetune 35M 64.31 61.75
(Gao et al., 2019) - AWD-LSTM-MoS-CosReg w.t. finetune 35M 64.08 61.48
Ours - AWD-LSTM-MoS-LapReg w.t. finetune 35M 63.80 61.28

Table 2: Perplexity on validation and test sets on WikiText-2. Smaller the perplexity, better the result.

4.3 Visualization of Word Embeddings

To empirically investigate the effect of regulariza-
tion techniques on word embeddings, we extract
word embeddings trained on PTB data set and
project them into 2-dimensional space for visual-
ization. As shown in Figure 3(a), the word embed-
dings are clustered by their frequencies rather than
semantics. The low-frequency words tend to cluster
in a local region, which suggests that word embed-
dings lie in a narrow cone in the embedding space
and the degeneration happens. However, when reg-
ularization techniques are applied, the learned word
embeddings are more uniformly distributed around
the origin and the degeneration effect is eased. As
we can see from Figure 3(b) and Figure 3(c), the
low/high-frequency word embeddings are better
mixed, while the Laplacian regularization looks
better than others.

5 Discussion and Future Work

From the above study, we analyze the limitations
of the cosine regularization and empirically demon-
strate the effectiveness of our proposed Laplacian
regularization method. However, there is also an
issue in it. To this end, we make further discussion
in this section. Hopefully, it will provide some
inspirations for later researches.

There is one question that must be asked: Does
the Laplacian regularization completely solve the
representation degeneration problem? Unfortu-
nately, we cannot give a definite positive answer.

From the above empirical studies, we have evi-
dence that the Laplacian regularization can ease
the degeneration to an extent. However, there is
also a failure case, the model cannot converge when
the value of λ is set too large. Because if λ is suffi-
ciently large, the regularization term will dominate
the objective value and all word embeddings will
be optimized to huddle together. The premise of
this failure case is that the similarity weights sij are
all positive. Interestingly, we observe that almost
similarity weights are positive, even though they
are calculated by the cosine function, which further
suggests that there may exist some intrinsic mech-
anism that causes the degeneration phenomenon.
We will leave it to future study. Despite this issue,
the Laplacian regularization is also a general frame-
work to incorporate the external knowledge of word
pair relations like semantic knowledge graph and
synonymy/antonymy, which might bring benefits
in certain applications.

In addition, we find that the representation de-
generation problem is highly related to the softmax
bottleneck problem (Yang et al., 2018). As a mat-
ter of fact, we consider they are two sides of the
same problem. The softmax bottleneck states that
a language model’s output log-probability matrix
should be high-rank for natural language. But the
rank is limited by the embedding dimension D
and thus the expressiveness of a model is compro-
mised. The softmax bottleneck problem roots in
an insufficient embedding dimension D. However,
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(a) Vanilla (b) CosReg (c) LapReg

Figure 3: Visualization of word embeddings on PTB data set using PCA. Points are dyed by log-normalized
frequencies, the lower the darker.

what really matters is the rank of the embedding
matrix rather than the dimension D. As for the
representation degeneration problem, it reveals that
for a N × D word embedding matrix, the rank
could be smaller than D since word embeddings
are correlated and lie in a narrow cone. Thus, the
true crux here is about the spectral density dis-
tribution of the embedding matrix. There is also
evidence (Mu and Viswanath, 2018) that an em-
bedding matrix with more uniformly distributed
singular values better improves downstream task
performance. Thus, we suggest two lines of re-
searches to enhance the expressiveness of a lan-
guage model. The first is to learn better expressive
word embeddings (Gao et al., 2019; Gong et al.,
2018; Wang et al., 2019). The second is to design
better expressive output/activation functions (Yang
et al., 2018; Ganea et al., 2019; Yang et al., 2019;
Kanai et al., 2018; Takase et al., 2018). Nonethe-
less, we want to clarify that only focusing on the
embedding/output layers is far more insufficient
for language modeling, since it is the middle layers
that provide the major non-linearity which matters
most for the expressiveness. Exploring new archi-
tectures like the BERT (Devlin et al., 2019) and the
Transformer-XL (Dai et al., 2019) is also essential
for the future study.

6 Related Work

For neural language modeling, Merity et al. (2018)
build an important baseline named AWD-LSTM
which applies various regularization techniques
to train LSTM. Melis et al. (2018) also achieve
similar results with highly regularized LSTMs.
Built on AWD-LSTM, Yang et al. (2018) propose
the AWD-LSTM-MoS model that achieves signif-
icantly lower perplexities by addressing the soft-
max bottleneck. Gong et al. (2018) find that word

embeddings in language modeling are biased to-
wards word frequency and propose an adversarial
training scheme to address the problem. Similarly,
Wang et al. (2019) introduce an adversarial noise to
the embedding layer while training language mod-
els. Recently, another promising trend of language
model that is built upon the self-attention mech-
anism like the Transformer-XL (Dai et al., 2019)
rapidly emerges.

Gao et al. (2019) first point out the representa-
tion degeneration problem in training neural lan-
guage models when applying the weight tying tech-
nique. A similar phenomenon can also be observed
in Gong et al. (2018), though it does not explic-
itly target the degeneration problem. Furthermore,
Ethayarajh (2019) observes that the contextualized
representations are also anisotropic and lie in a nar-
row cone in all non-input layers. Recently, Wang
et al. (2020) propose a new method that explicitly
controls the singular value distribution to tackle the
representation degeneration problem. We also con-
sider that the softmax bottleneck problem (Yang
et al., 2018) is highly related to the representation
degeneration problem. There are a series of works
(Ganea et al., 2019; Yang et al., 2019; Kanai et al.,
2018; Takase et al., 2018) that follow this line of
research.

The Laplacian regularization has been widely
used in various fields like semi-supervised learning
(Belkin and Niyogi, 2004), face recognition (Cai
et al., 2007), graph embedding (Yu et al., 2020),
and metric learning (Hoi et al., 2010), to name
a few. However, to the best of our knowledge,
it has not been applied for regularizing the word
embedding matrix yet. We are probably the first
to propose the Laplacian regularization on word
embeddings.
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7 Conclusion

In this paper, we study the representation degener-
ation problem that is first pointed out by Gao et al.
(2019). We theoretically analyze the limitations
of the previously proposed solution. Afterward,
we propose an alternative Laplacian regularization
method to tackle the problem. Experiments on lan-
guage modeling demonstrate the effectiveness of
our method. In the future study, we will try to fur-
ther investigate this problem from the perspective
of spectral density of embedding matrix.
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