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Abstract

A case-based reasoning (CBR) system solves a
new problem by retrieving ‘cases’ that are sim-
ilar to the given problem. If such a system can
achieve high accuracy, it is appealing owing to
its simplicity, interpretability, and scalability.
In this paper, we demonstrate that such a sys-
tem is achievable for reasoning in knowledge-
bases (KBs). Our approach predicts attributes
for an entity by gathering reasoning paths
from similar entities in the KB. Our proba-
bilistic model estimates the likelihood that a
path is effective at answering a query about
the given entity. The parameters of our model
can be efficiently computed using simple path
statistics and require no iterative optimization.
Our model is non-parametric, growing dynam-
ically as new entities and relations are added
to the KB. On several benchmark datasets
our approach significantly outperforms other
rule learning approaches and performs compa-
rably to state-of-the-art embedding-based ap-
proaches. Furthermore, we demonstrate the ef-
fectiveness of our model in an “open-world”
setting where new entities arrive in an online
fashion, significantly outperforming state-of-
the-art approaches and nearly matching the
best offline method.1

1 Introduction

We live in an evolving world with a lot of het-
erogeneity as well as new entities being created
continuously. For example, scientific papers and
Wikipedia pages describing facts about new enti-
ties, are being constantly added (e.g. COVID-19).
These new findings further trigger the inference of
newer facts, each with its own diverse reasoning.
We are interested in developing such automated rea-
soning systems for large knowledge-bases (KBs).

In machine learning, non-parametric methods
hold the promise of handling evolving data (Cover

1Code available at https://github.com/
ameyagodbole/Prob-CBR

and Hart, 1967; Rasmussen, 2000). Most current
KG completion models learn low dimensional
parametric representation of entities and relations
via tensor factorization or sophisticated neural ap-
proaches (Nickel et al., 2011; Bordes et al., 2013;
Socher et al., 2013; Sun et al., 2019; Vashishth
et al., 2020). Another line of work learns Horn-
clause style reasoning rules from the KG and stores
them in its parameters (Rocktäschel and Riedel,
2017; Das et al., 2018; Minervini et al., 2020).
However, these parametric approaches work with
a fixed set of entities and it is unclear how these
models will adapt to new entities.

This paper presents a k-nearest neighbor (KNN)
based approach for KG reasoning that is reminis-
cent of case-based reasoning (CBR) in classical
AI. A CBR system solves a new problem by re-
trieving ‘cases’ that are similar to the given prob-
lem, revising the solution to retrieved cases (if
necessary) and reusing it for the new problem
(Schank, 1982; Leake, 1996, inter-alia). For the
task of finding a target entity given a source entity
and binary KG relation (e.g. (JOHN VON NEU-
MAN, PLACE OF DEATH, ?) in Figure 1), our ap-
proach first retrieves k similar entities (cases) to
the query entity. Next, for each retrieved entity,
it finds multiple KG paths2 (each path is a solu-
tion to retrieved cases) to the entity they are con-
nected by the query relation (e.g. paths between
(RICHARD FEYNMAN, USA)). However, one so-
lution seldom works for all queries. For exam-
ple, even though the path ‘BORN IN’ is predictive
of ‘PLACE OF DEATH’ for US-born scientists (fig-
ure 1), it does not work for scientists who have
immigrated to USA. To handle this, we present a
probabilistic CBR approach which learns to weighs
paths with respect to an estimate of its prior and its
precision, given the query. The prior of a path rep-

2A path is a contiguous sequence of KG facts such as
RICHARD FEYNMAN → AFFILIATED → CALTECH → LO-
CATED→ USA.

https://github.com/ameyagodbole/Prob-CBR
https://github.com/ameyagodbole/Prob-CBR
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Paths gathered from KNN entities:
1) place_of_death(x,y) ⇐ born(x,y)
2) place_of_death(x,y) ⇐ 
affiliation(x,z) ^ located(z,y)

Figure 1: Given the query, (JON VON NEUMANN, PLACE OF DEATH, ?), our model gathers reasoning paths from
similar entities such as other scientists. However, not all gathered paths work for a query e.g. the path (‘BORN(x,
y)’) would not work for VON NEUMANN. This highlights the importance of learning path weights for clusters of
similar entities. Even though ‘BORN IN’ could be a reasonable path for predicting PLACE OF DEATH, this does not
apply for VON NEUMANN and other scientists in his cluster. The precision parameter of the path given the cluster
helps in penalizing the ‘BORN IN’ path. Note that the node USA is repeated twice in the figure to reduce clutter.

resents its frequency while the precision represents
the likelihood that the path will lead to a correct an-
swer entity. To obtain robust estimates of the path
parameters, we cluster similar entities together and
compute them by simple count statistics (§2.2.3).

Apart from computing these estimates, our
method needs no further training. Overall, our sim-
ple approach outperforms several recent parametric
rule learning methods (Das et al., 2018; Minervini
et al., 2020) and performs competitively with var-
ious state-of-the-art KG completion approaches
(Dettmers et al., 2018) on multiple datasets.

An advantage of non-parametric models is that
it can adapt to growing data by adjusting its num-
ber of parameters. In the same spirit, we show that
our model can seamlessly handle an ‘open-world’
setting in which new entities arrive in the KG. This
is made possible by several design choices such
as (a) representing entities as sparse (non-learned)
vector of its relation types (§2.2.1), (b) our use of
an online non-parametric hierarchical clustering
algorithm (Monath et al., 2019) that can efficiently
recompute changes in cluster assignments because
of the newly added entity (§2.3), (c) and a sim-
ple and efficient way of recomputing the prior and
precision parameters for paths per cluster (§2.2.3).

Current models for KG completion that learn en-
tity representations for a fixed set of entities cannot
handle the open-world setting. In fact we show that,
retraining the models continually with new data
leads to severe degradation of the model perfor-
mance with models forgetting what it had learned
before. For example, the performance (MRR) of

ROTATE model (Sun et al., 2019) drops by 11
points (absolute) on WN18RR in this setting (§3.4).
On the other hand, we show that with new data, the
performance of our model is consistent as it is able
to seamlessly reason with the newly arrived data.

Our work is most closely related to a recent con-
current work by Das et al. (2020) where they pro-
pose a model that gathers paths from entities similar
to the query entity. However, Das et al. (2020) en-
courages path that occur frequently in the KG and
does not learn to weigh paths differently for queries.
This often leads to wrong inference leading to low
performance. For example, on the test-II evaluation
subset of FB122 where all triples can be inferred
by logical rules, Das et al. (2020) scores quite low
(63 MRR) because of learning incorrect rules. On
the other hand, we score significantly higher (94.83
MRR) demonstrating that we can learn more effec-
tive rules. In fact, we consistently and significantly
outperform Das et al. (2020) on several benchmark
datasets. Also, unlike us, they do not test them-
selves in the challenging open-world setting.

The contributions of this paper are as follows:
(a) We present a KNN based approach for KG com-
pletion that gathers reasoning paths from entities
that are similar to the query entity. Following a
principled probabilistic approach (§2.2), our model
weighs each path by its likelihood of reaching a
correct answer which penalizes paths that are spu-
rious in nature. (b) The parameters of our model
grow with data and can be estimated efficiently us-
ing simple count statistics (§2.3). Apart from this,
our approach needs no training. We show that our
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simple approach significantly outperforms various
rule learning methods (Das et al., 2018; Minervini
et al., 2020; Das et al., 2020) on many benchmark
datasets. (c) We also show that our model can eas-
ily handle addition of facts about new entities and
is able to seamlessly integrate and reason with the
newly added data significantly outperforming para-
metric embedding based models.

2 Non-parametric Reasoning in KGs

2.1 Notation and Task Description

Let V denote the set of entities, R denote the
set of binary relations and G denote a KB or
equivalently a Knowledge Graph (KG). Formally,
G = (V ,E,R ) is a directed labeled multigraph
where V and E denote the vertices and edges of
the graph respectively. Note that, E ⊆ V ×R ×V .
Let (e1,r,e2) denote a fact in G where e1, e2 ∈ V
and r ∈ E. Also, following previous approaches
(Bordes et al., 2013), we add the inverse relation
of every edge, i.e., for an fact (e1,r,e2) ∈ E, we
add the edge (e2,r−1,e1) to the graph. (If the set
of binary relations R does not contain the inverse
relation r−1, it is added to R as well).

Task: We consider the task of query answer-
ing on KGs, i.e., answering questions of the form
(e1q,rq,?), where answer is an entity in the KG.

Paths in KG: A path in a KG between two enti-
ties es, et is defined as a sequence of alternating en-
tity and relations that connect es and et . A length of
a path is the number of relation (edges) in the path.
Formally, let a path p = (e1,r1,e2, . . . ,rn,en+1)
with st(p) = e1, en(p) = en+1 and len(p) = n. We
also define a path type as the sequence of the re-
lations in p, i.e., type(p) = (r1,r2, . . . ,rn). Let P
denote the set of all paths in G . Let Pn ⊆ P = {p |
len(p)≤ n} be the set of all paths of length up to
n. Also, let Pn denote the set of all path types with
length up to n, i.e. Pn = {type(p) | p ∈ Pn}. Let
Pn(e1,r) ⊆ Pn denote all path types of length up
to n that originate at e1 and end at the entities that
are connected to e1 by a direct edge of type r. In
other words, if Se1r = {e2 | (e1,r,e2) ∈ G} denotes
the set of entities that are connected to e1 via a
direct edge r, then Pn(e1,r) denotes the set of all
path types of length up to n that start from e1 and
end at entities in Se1r. By definition, r ∈ Pn(e1,r).
Similarly, we define Pn(e1,r) which contain paths
instead of path types.

2.2 Model

Given a query, our approach gathers KG path types
from entities that are similar to the query entity.
Each path type is weighed with respect to an esti-
mate of both its frequency and precision (§2.2.1).
By clustering similar entities together (§2.2.2), our
model obtains robust estimate of the path statistics
(§2.2.3). Our approach is non-parametric because
- (a) Instead of storing reasoning rules in param-
eters (Das et al., 2018; Minervini et al., 2020), it
derives them dynamically from k-similar entities
(like a non-parametric k-nn classifier (Cover and
Hart, 1967)). (b) We cluster entities together using
a non-parametric clustering approach and provide
an efficient way of adding / estimating parameters
when entities are added to the KG (§2.3).

2.2.1 Reasoning from contextual entities
Our approach first finds k similar entities to the
query entity that have atleast an edge of type rq.
For example, for the query (MELINDA GATES,
WORKS IN CITY, ?), we would consider WAR-
REN BUFFET if we observe (WARREN BUFFET,
WORKS IN CITY, OMAHA). We refer to these en-
tities as ‘contextual entities’. Each entity is repre-
sented as a sparse vector of its outgoing edge types,
i.e. ei ∈ {0,1}|R |. If entity ei has m distinct outgo-
ing edge types, then the dimension corresponding
to those types are set to 1. This is an extremely sim-
ple and flexible way of representing entities which
we find to work well. Also note that, as more data
is added about an entity, this sparse representation
makes it trivial to update the embeddings.

Let Ec,q denote the set of contextual entities for
the query q. To compute Ec,q, we first sort entities
with respect to their cosine distance with respect
to query entity and select the k entities with the
least distance and which have the query relation
rq. For each contextual entity ec, we gather the
path types (up to length n) that connect ec to the
entities it is connected by the edge rq (i.e. Pn(ec,rq)
in §2.1). These extracted path types will be used
to reason about the query entity. Let Pn(Ec,q,rq) =⋃

ec∈Ec,q
Pn(ec,rq) represent the set of unique path

types from the contextual entities. The probability
of finding the answer entity e2 given the query is
given by:

P(e2 | e1q,rq) = ∑
p∈Pn(E(c,q),rq)

P(e2, p | e1q,rq)

= ∑
p

P(p | e1q,rq)P(e2 | p,e1q,rq) (1)
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We marginalize the random variable represent-
ing the path types obtained from Ec,q. P(p | e1q,rq)
denotes the probability of finding a path type given
the query. This term captures how frequently each
path type co-occurs with a query and represents
the prior probability for a path type. On the other
hand, P(e2 | p,e1q,rq) captures the proportion of
times, when a path type p is traversed starting from
the query entity, we reach the correct answer in-
stead of some other entity. This term can be un-
derstood as capturing the likelihood of reaching
the right answer or the ’precision’ of a reasoning
path type. This is crucial in penalizing ‘spurious’
path types that sometimes coincidentally find the
right answer entity. For example, for the query re-
lation WORKS IN CITY, the path type (FRIEND∧
LIVES IN CITY) might have a high prior probabil-
ity (since people often have many friends in the city
where they work). However, this path is ‘spurious’
with respect to WORKS IN CITY, since they might
have friends living in various cities and hence this
path type will not necessarily return the correct
answer.

2.2.2 Entity Clustering
Equation 1 has parameters for each entity in the KG.
For large KGs, this can quickly lead to parameter
explosion. Also, estimating per-entity parameter
leads to noisy estimates due to sparsity. Instead,
we choose to cluster similar entities together. Let
c be a random variable representing the cluster
assignment of the query entity. Then for the path-
prior term, we have

P(p | e1q,rq) = ∑
c

P(c | e1q,rq)P(p | c,e1q,rq)

We assume that each entity is assigned to one
cluster, so P(c | e1q,rq) is zero for all clusters ex-
cept the cluster in which the query entity belongs to.
Secondly we assume, that the prior probability of a
path given the entity and cluster can be determined
from the cluster alone and is independent of each
entity in the cluster. In other words, if ce1q is the
cluster in which the e1,q has been assigned, then
P(p | ce1q ,e1q,rq) = P(p | ce1q ,rq). Instead of per-
entity parameters, we now aggregate statistics over
entities in the same cluster and have per-cluster
parameters. We also show that this leads to signif-
icantly better performance (§3.3). A similar argu-
ment applies for the path-precision term in which
we calculate the proportion of times, a path leads to
the correct answer entity starting from each entity
in the cluster.

To perform clustering, we use hierarchical ag-
glomerative clustering with average linkage with
the entity-entity similarity defined in §2.2.1. We ex-
tract a non-parameteric number of clusters from the
hierarchy using a threshold on the linkage function.
Agglomerative clustering has been shown to be ef-
fective in many knowledge-base related tasks such
as entity resolution (Lee et al., 2012; Vashishth
et al., 2018) and in general has shown to outperform
flat clustering methods such as K-means (Green
et al., 2012; Kobren et al., 2017). A flat cluster-
ing is extracted from the hierarchical clustering
by using a threshold on the linkage function score.
We perform a breadth first search from the root of
the tree stopping at nodes for which the linkage
is above the given threshold. The nodes where the
search stops give a flat clustering (refer to §A.2 for
more detail on this).

2.2.3 Parameter Estimation
Next we discuss how to estimate path prior and
precision terms. There exists abundant modeling
choices to estimate them. For example, following
Chen et al. (2018), we could train a neural net-
work model to estimate P(p | ce1q ,rq). However,
with our original goal of designing a simple and
efficient non-parametric model, we estimate these
parameters by simple count statistics from the KG.
E.g., the path prior P(p | c,rq) is estimated as

∑ec∈c ∑p′∈Pn(ec,rq)1 [type(p′) = p]

∑ec∈c ∑p′∈Pn(ec,rq)1
(2)

For each entity in cluster c, we consider the paths
that connect ec to entities it is directly connected to
via edge type rq (Pn(ec,rq) in §2.1). The path prior
for a path type p is computed as the proportion of
times the type of paths in Pn(ec,rq) is equal to p.
Note that in equation 2, if a path type appears mul-
tiple times, we count all instances. For example,
for the query relation WORKS IN CITY, a path of
the form (CO WORKER ∧WORKS IN CITY) can
occur multiple times, since a person can have mul-
tiple different co-workers. Considering just path
types will lead to under-weighing of such impor-
tant paths. Similarly, the path-precision probability
(P(e2 | p,c,rq)) can be estimated as,

∑ec∈c ∑p′∈Pn(ec)1[type(p′) = p] ·1[en(p′) ∈ Secrq ]

∑ec∈c ∑p′∈Pn(ec)1[type(p′) = p]
(3)

Let Pn(ec) denote the paths of up to length n start-
ing from the entity ec. Note, unlike Pn(ec,rq), the
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Figure 2: We consider a setting where new entities and facts are added continuously to the KG. Our non-parametric
approach can seamlessly reason with the newly added entities and can infer new facts about them (e.g. (MELINDA,
WORKS IN CITY, ?) or (DUKE UNIV., LOCATED IN COUNTRY, ?)) without requiring expensive training.

paths in Pn(ec) do not have to end at specific enti-
ties. Also from §2.1, en(p) denotes the end entity
for a path p and Secrq denotes the set of entities
that are connected to ec via a direct edge of type
rq. Equation 3, therefore, estimates the proportion
of times the path p successfully ends at one of the
answer entities when starting from ec, given rq.

There are several advantages in estimating the
parameters using simple count statistics. Firstly,
they are extremely simple, and statistics for each
entity in clusters can be computed in parallel mak-
ing them extremely time efficient. Secondly once
they are computed, our approach needs no further
training. Lastly, when new data is added, it makes
it easy to update the parameters without training
from scratch.

To summarize, given a query entity (e1q,rq), our
method gathers reasoning paths from k similar enti-
ties to e1q. These reasoning paths are then traversed
in the KG starting from e1q, leading to a set of can-
didate answer entities. The score of each answer
entity candidate is computed as a weighted sum of
the reasoning paths the lead to them (Equation 1).
Each path is weighed with an estimate of its fre-
quency (Equation 2) and precision (Equation 3)
given the query relation. The next section describes
how we extend our model for open-world setting
where new entities and facts are added to the KB.

2.3 Open-world Setting

A great benefit of non-parametric models is that it
can seamlessly handle growing data by adding new
parameters. New entities constantly arrive in the
world (e.g. new Wikipedia articles about entities
are frequently created). We consider a setting (Fig-
ure 2) in which new entities with few facts (edges)
about them keep getting added to the KG. This
setting is challenging for parametric models (Das
et al., 2018; Sun et al., 2019) as it is unclear how

these models can incorporate new entities with-
out retraining from scratch. However, retraining to
obtain entity embeddings on industrial scale KGs
might be impractical (e.g. consider Facebook social
graph where new users are joining continuously).
Next, we show that our approach can handle this
setting efficiently in the following way:
(a) Adding/updating entity representations:
First we need to create entity representations for
the newly arrived entities. Also, for some existing
entities for which new edges were added (e.g. BILL

GATES, DURHAM, etc. in figure 2), their represen-
tations need to be updated. Recall, that we repre-
sent entities as a sparse vector of its edge types and
hence this step is trivial for our approach.
(b) Updating cluster assignments: Next the new
entities needs to be added to clusters of similar
entities. Also, the cluster assingments of entities
that got updated can also change as well and their
change can further trigger changes to the clustering
of other entities. To handle this, one could naively
cluster all entities in the KG, however that could
be wasteful and time-consuming for large KGs.
Instead, we use an online hierarchical clustering
algorithm - GRINCH (Monath et al., 2019), which
has shown to perform as well as agglomerative
clustering in the online setting. GRINCH observes
one entity at a time, placing it next to its nearest
neighbor and performing local re-arrangements in
the form of rotations of tree nodes and global re-
arrangments in the form of grafting a subtrees from
part of the tree to another. Entities can be deleted
from a hierarchy by simply removing the corre-
sponding leaf node. We first use GRINCH to delete
the entities whose representations had changed be-
cause of the addition of the new node and then
incrementally add those entities back along with
the newly added entities in the KG. We extract a
flat clustering from the hierarchical clustering built
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|V | |R | |E|

NELL-995 75,492 200 154,213
FB122 9,738 122 112,476

WN18RR 40,943 11 93,003

Table 1: Dataset Statistics

by GRINCH using the same method as in §2.2.2.
(c) Re-estimating new parameters: After re-
assigning clusters, the final step is to estimate the
per-cluster parameters. This computation is effi-
cient as it is clear from equations 2 and 3 that the
contribution from each entity in a cluster can be
computed independently (and hence can be easily
parallelized). However, even for each entity, this
computation needs path traversal in the KG which
is expensive. We show that we do not have to re-
compute for all entities in the clusters.

Let n denote the maximum length of a reasoning
path considered by our model. For every new entity
ei added to the KG, we need to recompute statistics
for entities that lie within cycles of length up to
(n+ 1) starting from ei. Please refer to appendix
(A.4) for a justification of this result.

3 Experiments

In this section, we evaluate our proposed approach
on a wide array of knowledge-base completion
(KBC) benchmarks (§3.3). To evaluate the non-
parametric nature of our approach, we also evalu-
ate on an ‘open-world’ setting (§2.3) in which new
entities are added to the KG. We demonstrate our
proposed approach is competitive to several state-
of-the-art methods on benchmarks in the standard
setting, but it greatly outperforms other methods in
the online setting (§3.4). The best hyper-parameters
for all experiments including the range of hyper-
parameter tried and results on validation set are
noted in §A.6.

3.1 Data and Evaluation Protocol

Data. We evaluate on the following KBC datasets:
NELL-995, FB122 (Guo et al., 2016), WN18RR
(Dettmers et al., 2018). FB122 is a subset of the
dataset derived from Freebase, FB15K (Bordes
et al., 2013), containing 122 relations regarding
people, locations, and sports. NELL-995 (Xiong
et al., 2017) a subset of the NELL derived from
the 995th iteration of the system. WN18RR was
created by Dettmers et al. (2018) from WN18 by
removing inverse relation test-leakage.

Evaluation metrics. Following previous work,
we evaluate our method using HITS@N and mean
reciprocal rank (MRR), which are standard metrics
for evaluating a ranked list.

3.2 Experimental Setting

Knowledge Base Completion. Given an entity e1
and a relation r, our task is retrieve all entities e2
such that (e1,r,e2) belongs in the edges E in a KG
G . This task is known as tail prediction. If the rela-
tion is instead the inverse relation r−1, we assume
that we are given an e′2 and asked to predict enti-
ties e′1 such that (e′1,r

−1,e′2) belongs in the edges
E (head prediction). To be exactly comparable to
baselines, we report an average of head and tail pre-
diction results3. We are given a knowledge graph
with three partitions of edges, Etrain, Edev, Etest.

For this task, we evaluate against several state-
of-the-art embeddings based models such as Dist-
Mult (Yang et al., 2015), ComplEx (Trouillon et al.,
2016), ConvE (Dettmers et al., 2018), RotatE (Sun
et al., 2019). We also compare against several para-
metric rule learning methods — NTP (Rocktäschel
and Riedel, 2017), NeuralLP (Yang et al., 2017),
MINERVA (Das et al., 2018), GNTP (Minervini
et al., 2020) and also the closely related CBR ap-
proach of Das et al. (2020).
Open-world Knowledge Base Completion. In
this setting, we begin with the top 10% of the most
popular nodes (with several edges going out from
them) and add more randomly selected nodes such
that the initial seed KB contains 50% of all the
entities in V . This is to ensure, that the seed KB
is not too sparse and the initial models trained on
them are meaningful. Next, any edges between the
nodes selected are added to the seed KB. We divide
the rest of the entities randomly into 10 batches.
Each batch of entities is incrementally added to
the KB along with the edges contained in it. The
validation and test set are also divided in the same
way, i.e. if both the head and tail entity of a triple
are present in the KB, only then the triple is put in
the corresponding splits.

Parametric models for KBC that learn represen-
tations for a fixed set of entities can not handle
‘open-world’ setting out-of-the-box. We extend the
most competitive embedding based model - RotatE
(Sun et al., 2019) for this task. For every new en-
tity arriving in a batch, we initialize a new entity
embedding for it. We explore two ways of initial-

3except for NELL-995 dataset where like our baselines,
we report tail-prediction performance.
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Hits@N (%)

MRR
Hits@N (%)

MRR
3 5 10 3 5 10 3 5 10

W
ith

R
ul

es
KALE-Pre (Guo et al., 2016) 35.8 41.9 49.8 0.291 82.9 86.1 89.9 0.713 61.7 66.2 71.8 0.523
KALE-Joint (Guo et al., 2016) 38.4 44.7 52.2 0.325 79.7 84.1 89.6 0.684 61.2 66.4 72.8 0.523
ASR-DistMult (Minervini et al., 2017) 36.3 40.3 44.9 0.330 98.0 99.0 99.2 0.948 70.7 73.1 75.2 0.675
ASR-ComplEx (Minervini et al., 2017) 37.3 41.0 45.9 0.338 99.2 99.3 99.4 0.984 71.7 73.6 75.7 0.698
KBLR (Garcia-Duran and Niepert, 2018) – – – – – – – – 74.0 77.0 79.7 0.702

W
ith

ou
t

R
ul

es

TransE (Bordes et al., 2013) 36.0 41.5 48.1 0.296 77.5 82.8 88.4 0.630 58.9 64.2 70.2 0.480
DistMult (Yang et al., 2015) 36.0 40.3 45.3 0.313 92.3 93.8 94.7 0.874 67.4 70.2 72.9 0.628
ComplEx (Trouillon et al., 2016) 37.0 41.3 46.2 0.329 91.4 91.9 92.4 0.887 67.3 69.5 71.9 0.641
GNTPs (Minervini et al., 2020) 33.7 36.9 41.2 0.313 98.2 99.0 99.3 0.977 69.2 71.1 73.2 0.678
RotatE (Sun et al., 2019) 51.1 55.1 60.3 0.471 86.8 88.6 90.7 0.846 70.8 73.57 77.0 0.678
CBR (Das et al., 2020) 40.0 44.5 48.8 0.359 67.8 71.8 75.9 0.636 57.0 61.2 65.3 0.527
Our Model 49.0 52.7 57.1 0.457 94.8 95.0 95.3 0.948 74.2 76.0 78.2 0.727

Table 2: Link prediction results on FB122. Test-II denotes a subset of triples that can be inferred via logical rules.

Metric TransE DistMult ComplEx ConvE RotatE GNTP MINERVA CBR Our Model

HITS@1 - 0.39 0.41 0.40 0.43 0.41 0.40 0.38 0.43
HITS@3 - 0.44 0.46 0.44 0.49 0.44 0.43 0.46 0.49
HITS@10 0.50 0.49 0.51 0.52 0.57 0.48 0.49 0.51 0.55
MRR 0.23 0.43 0.44 0.43 0.48 0.43 0.43 0.43 0.48

HITS@1 0.53 0.61 0.61 0.67 0.65 - 0.66 0.70 0.77
HITS@3 0.79 0.73 0.76 0.81 0.82 - 0.77 0.83 0.85
HITS@10 0.87 0.79 0.83 0.86 0.87 - 0.83 0.87 0.89
MRR 0.67 0.68 0.69 0.75 0.74 - 0.72 0.77 0.81

Table 3: Results on WN18RR (above) and NELL-995 (tail-prediction;below)

izing the new entity embeddings — (a) random
initialization, and (b) average of element-wise ro-
tation of entity embeddings w.r.t the relation that
this new entity is connected to. Specifically, let t
denote the new entity and let S = {(h,r, t)} be the
facts associated with entity t. Then the embedding
et is computed as

et =
∑(h,r,t)∈S eh ◦ er

|S|
(4)

Here, ◦ represents the Hadamard (or element-wise)
product. This initialization minimizes the RotatE
objective for the new embedding ensuring that it
is “well-placed” according to the model in the pre-
vious time step. Embeddings for new relations are
initialized randomly. Next, the model is further
trained on the new batch of triples so that the new
entity embeddings get trained. Note, for massive
KGs, it might be impractical to re-train on the en-
tire data as new batches of data arrive frequently,
however to still prevent the model to forget what it
had learned before, we also sample m% of triples
that it had already been trained on and re-train on
them. We ensure that triples in the neighborhood
of the newly added entities are ten times likely to
be sampled more than other triples. We also try a
setting where we try freezing the initially trained
entity embeddings and only training the new entity

and relation embeddings.

3.3 Results on KBC benchmarks
The results for KBC tasks are presented in Table 2
and 34. Our method does significantly better than
parametric rule learning approaches such as MIN-
ERVA, GNTPs and the recent case-based approach
of Das et al. (2020). We would like to highlight the
difference between the performance of our model
and that of Das et al. (2020) on the test-II evalu-
ation of FB122 where triples can be answered by
learning logical rules. This results emphasizes the
importance of our probabilistic weighing of paths.
We also perform comparably to most embedding
based models and achieve state-of-the-art results
on the overall test sets of FB122 and NELL-995.
We report the mean over 3 runs for our model.

We perform an ablation where we do not cluster
entities (i.e. every entity has its own cluster) and
have per-entity parameters. Table 4 notes the drop
in performance due to the noisy estimates of path
prior and precision parameters because of sparsity.
Table 6 shows an example where our model learns
to score different paths based on the type of entities
present in the cluster.

Effect of path length on WN18RR: On the
dev set of WN18RR, out of 2985 queries where

4There are no reported results of GNTPs on NELL-995
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Our Method Our Method
w/o clustering

HITS@1 0.42 0.29
HITS@3 0.46 0.36
HITS@10 0.51 0.45
MRR 0.45 0.34

Table 4: Impact of clustering on WN18RR

RotatE Our Method Our Method
(n = 3) (n = 5)

HITS@1 0.43 0.42 0.43
HITS@3 0.49 0.46 0.49
HITS@10 0.57 0.51 0.55
MRR 0.48 0.45 0.48

Table 5: Impact of path length on WN18RR

our method does not rank the answer in the top-
10, 2030 queries require a minimum path length
greater than 3. Path-based reasoning models have
no power to answer these queries. To correct for
this, we perform an experiment with the path length
n = 5 (950 of 2030 answers are reachable). The re-
sults in Table 5 show that our method recovers a
significant portion of performance when allowed
to use longer reasoning paths.

3.4 Open-World KBC results

Figure 3 reports the result for this task. We report
results on the RotatE model with randomly ini-
tialized embeddings for new entities (RotatE) and
the model with systematic initialization of new en-
tity embeddings (RotatE+). We experiment with
m = {10%,30%} of previously seen edges and re-
train on them. We find that not including previ-
ously seen edges leads to severe degradation of
overall performance due to the model forgetting
what it had learned in the past. We also report re-
sults with freezing the already seen entity represen-
tations and only learning representations for new
entities (RotatE-Freeze). All models were trained
till the validation set (containing both new and old
triples) performance stopped improving. For our
approach, we also report results for an oracle set-
ting where we re-cluster all entities as new data
arrives and re-estimate all parameters from scratch
(instead of using GRINCH and recomputing only
required parameters (§2.3). For both datasets, the
offline-best results were obtained by RotatE (47.1
for FB122 test-I, 48 for WN18RR). We report per-
formance on the entire evaluation set (full) and also
on the set containing the newly added edges (new).

The main summary of the results are (i) RotatE
model converges to a much lower performance in
the online setting losing at least 8 MRR points

in FB122 and at least 11 points in WN18RR. On
FB122, we observe that the model prefers to learn
new information more by sacrificing previously
learned facts (2nd subfigure in figure 3) (ii) In the
freeze setting, the model performance deteriorates
quickly after a certain point indicating saturation,
i.e. it becomes hard for the model to learn new
information about arriving entities by keeping the
parameters of the existing entities fixed. (iii) On
the full evaluation, RotatE+ performs better than
RotatE showing that bad initialization deteriorates
performance over time, however, there is still a
large gap between the best performance (iv) Our
approach almost matches our performance in oracle
setting indicating the effectiveness of the online
clustering and fast parameter approximation. (v)
Lastly, we perform closest to the offline best results
outperforming all variants of RotatE.

4 Related Work

Open-world KG completion. Shi and Weninger
(2018) consider the task of open-world KG comple-
tion. However, they use text descriptions to learn
entity representations using convolutional neural
networks. Our model does not use additional text
data and we use very simple entity representations
that helps us to perform well. Tang et al. (2019)
learns to update a KG with new links by reading
news. Even though they handle adding or deleting
new edges, they do not observe new entities. Lastly,
none of them learn from similar entities using a
CBR approach.
Inductive representation learning on KGs. Re-
cent works (Teru et al., 2020; Wang et al., 2020)
learn entity independent relation representations
and hence allow them to handle unseen entities.
However, they do not perform contextual reasoning
by gathering reasoning paths from similar entities.
Moreoever, in our open-world setting, we consider
the more challenging setting, where new facts and
entities are arriving in a streaming fashion and we
give an efficient way of updating parameters us-
ing online hierarchical clustering. This allows our
method to be applicable in settings where the initial
KG is small and it grows continuously.
Rule induction in knowledge graphs. Classic
work in inductive logic programming (ILP) (Mug-
gleton et al., 1992; Quinlan, 1990) induce rules
from grounded facts. However, they need explicit
counter-examples which are not present in KBs
and they do not scale to large KBs. Recent ILP
approaches (Galárraga et al., 2013, 2015) try to fix
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Figure 3: Results for open-world setting when trained with 10% (top row) and 30% (bottom row) of already seen
edges. Our online method matches the offline version of our approach and outperforms the online variants of
RotatE. After all data is observed our online method achieves results closest to the best offline method’s results.

Athlete Cluster (athlete-led-sports-team, team-plays-in-league)
(athlete-home-stadium, league-stadiums−1)

Politician Cluster
(politician-us-member-of-political-group, person-belongs-to-organization−1,

agent-belongs-to-organization)
(agent-collaborates-with-agent, agent-belongs-to-organization)

Table 6: High scoring paths in different clusters for the query agent-belongs-to-organization in NELL-995

this deficiency by guessing counter examples from
rules and making it more scalable. Statistical rela-
tional learning methods (Getoor and Taskar, 2007;
Kok and Domingos, 2007; Schoenmackers et al.,
2010) and probabilistic logic approaches (Richard-
son and Domingos, 2006; Broecheler et al., 2010;
Wang et al., 2013) combine machine learning and
logic to learn rules. However, none of these work
derive reasoning rules dynamically from similar
entities in the knowledge graph.

Bayesian non-parametric approaches for link-
prediction. There is a rich body of work in
bayesian non-parametrics to automatically learn
the latent dimension of entities (Kemp et al., 2006;
Xu et al., 2006). Our method does not learn la-
tent dimension of entities, instead our work is non-
parametric because it gathers reasoning paths from
nearest neighbors and can seamlessly reason with
new entities by efficiently updating parameters us-
ing online non-parametric hierarchical clustering.

Embedding-based approach for link predic-
tion. We also compare to the more popular embed-
dings based models based on tensor factorization
or neural approaches (Nickel et al., 2011; Bordes
et al., 2013; Dettmers et al., 2018; Sun et al., 2019).
Our simple approach which needs no iterative opti-

mization outperforms most of them and performs
comparably to the latest RotatE model. Moreover
we outperform RotatE in the online experiments.

CBR for KG completion. There has been few
attempts to apply CBR for knowledge management
(Dubitzky et al., 1999; Bartlmae and Riemenschnei-
der, 2000), however they do not do contextualized
reasoning or consider online settings. Our work is
most closely related to the recent work of Das et al.
(2020). However, since it does not take in to ac-
count the importance of each path, it suffers from
low performance, with our model outperforming it
in several benchmarks.

5 Conclusion

We present a simple yet accurate approach for prob-
abilistic case-based reasoning in knowledge bases.
Our method is non-parametric, deriving reasoning
rules dynamically from similar entities in the KB
and is capable of handling new entities. We cluster
similar entities together and estimate per-cluster
parameters that measures the prior and precision
of paths using simple count statistics. Our simple
approach performs competitively to the best em-
beddings based models on several benchmarks and
outperforms all models in the open-world setting.
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Algorithm 1 Select a flat clustering from a tree
structure.

1: input: V : Entities , root: Root of tree, τ:
Threshold

2: output: C1,C2, . . . ,CK : A flat partition
3: f rontier← [root]
4: result←{}
5: while f rontier is not empty do
6: n← f rontier.pop()
7: if linkage(n)> τ then
8: result←{n}∪ result
9: else

10: for c in n.children do
11: f rontier.push(c)
12: end for
13: end if
14: end while
15: return result

A Appendix

A.1 Entity Clusters
Both clustering methods used in this paper, hi-
erarchical agglomerative clustering (HAC) and
GRINCH measure similarities between sets of clus-
ters via a linkage function. In particular, we use
average pairwise linkage. For two sets A and B,
this is defined as:

1
|A||B| ∑a∈A

∑
a∈B

sim(a,b) (5)

A.2 Selecting Flat Clusterings
A hierarchical clustering T over the entities V ,
encodes a large number of flat partitions of the
entities, often referred to as tree consistent parti-
tions in the clustering literature. We select one of
these tree consistent partitions using a threshold on
the linkage function, τ. The algorithm performs a
breadth first search starting at the root node. The
search stops at any node for which the linkage is
above the given value τ. Pseudocode is given in
Algorithm 1.

A.3 Number of Entity Updates Per Batch In
Online Setting

We analyze the number of entities that need to be
re-clustered and added in each round. We observe
that it is significantly fewer than the number of
entities in the KB. Note that an online method like
the one proposed in this paper just needs to run
on the new and modified entities while a batch
algorithm would need to run on the entire KB.
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Figure 4: Number of entities added to KB in each batch
and number of entities modified in each batch. These
new and modified entities need to be updated in the
clustering algorithm in each update.

A.4 Finding entities for re-estimating
parameters

Proposition: Let n denote the maximum length of a
reasoning path considered by our model. For every
new entity ei added to the KG, we need to recom-
pute statistics for entities that lie within cycles of
length up to (n+1) starting from ei.

We see from Eq 2, that the estimate for the prior
for a path type p depends on Pn(ec,rq) i.e. the set of
paths that lead from ec to entities that are connected
to ec via relation rq. WLOG, say et is such an en-
tity i.e. (ec,rq,et) ∈ G . When a new entity/edge is
added to the KG, this set of paths might increase.
It is easy to see that the set Pn(ec,rq) is updated iff
a new path pnew of length ≤ n appears between ec
and et . In this case, the edges in pnew would form
a cycle with the edge (ec,rq,et). The length of the
cycle would be at most len(pnew)+1 which in turn
is at most of length n+1. This, to find entities for
which the prior has changed after the addition of a
new edge/entity, it is sufficient to find entities lying
on cycles of length up to n+ 1 starting from the
new entity/edge.

This mechanism for finding entities for re-
computation is only approximate when computing
the precision. We see from Eq 3, that the numera-
tor depends on paths that lead to the answer entity
(as with prior) while denominator depends on all
n length paths around ec. So, if the numerator is
ever to be increased, we would catch that update by
the proposed cycle finding method. However, even
if an entity does not lie on a cycle with the new
edge/entity, if there is a path of length n from ec to
the new edge/entity, the denominator count would
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People Professions Sports Org. Religious Entities

Marvin Gay Statistician St. Louis Blues Isalm
At time Shaquille O’Neal Assoc. football manager Orlando Pirates Russian Orthodox church

t−1 Avril Lavinge Structural Engineer Sheffield Wednesday FC Buddhism
Woody Harrleson Financial backer Malaya national football team United Church of Christ

At time Elliot Smith Harpsichordist Excelsior Rotterdam The Mormons
t Barbara Stanwick Child Actor Seattle Super Sonic Eastern Rite Catholic

Table 7: Example Clusters discovered in online setting. We show the assignment of new entities to the clusters in
the particular time step (below line).

WN18RR FB122 NELL-995

HITS@1 0.422 0.694 0.296
HITS@3 0.461 0.739 0.405
HITS@10 0.508 0.779 0.502
MRR 0.451 0.724 0.367

Table 8: Results on Validation set

WN18RR NELL-995

HITS@1 41.8 ± (5.7e-2) 76.5 ± 2e-1
HITS@3 46.5 ± 0 85.2 ± 7e-2
HITS@10 51.3 ± (5.7e-2) 89.5 ± 1.4e-2
MRR 45 ± (5.7e-2) 81.45 ± 2e-1

Table 9: Mean and Variance across different hyper-
params

be incremented. Thus, the precision estimates for
some entities might be an over-estimate of the path
precision (had it been recomputed after new edges
are added to the KB).

A.5 Example Clusters

Table 7 shows some example of new entities arriv-
ing and getting assigned to their respective clusters
by GRINCH.

A.6 Reproducibility Checklist

Computing Infrastructure: All our experiments
were run on a Xeon E5-2680 v4 @ 2.40GHz CPU
with 128 GB RAM. No GPUs were needed for the
experiments.

The results on the validation set are reported in
table 8 and avg. of 3 runs are reported in table
9. The NELL-995 does not come with a valida-
tion set, and therefore we selected 3000 edges ran-
domly from the full NELL KB. As a result, many
of the query relations were different from what was
present in the splits of NELL-995 and hence is not
a good representative. However, we report test re-
sults for the best hyper-parameter values that we
got on this validation set.

The fixed number of parameters in our model

are essentially the sparse non-learned entity vectors
(which can be easily stored in COO format without
taking much space). Other than that, our model is
non-parametric with the number of parameters tied
to the data.

For experiments on WN18RR:

• Inference time: 18.9 queries/s (total of 6268
queries)

• Train time: around 20 mins.

• Best Hyper-parameters:

– Number of nearest-neighbor entities (K):
40

– Number of paths from neighbors (N): 60
– Max length of path (n): 5
– Linkage for hierarchical clustering (λ):

0.25

• Hyper-parameter method / bounds: Grid
search

– K: [5, 10 , 15, 20, 30 , 40, 50]
– N: [5, 10, 20, 40, 60 , 80]
– λ: [0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6]

For experiments on FB122:

• Inference time:

• Train time: around 90 mins

• Best Hyper-parameters:

– Number of nearest-neighbor entities (K):
10

– Number of paths from neighbors (N): 80
– Max length of path (n): 3
– Linkage for hierarchical clustering (λ):

0.6

• Hyper-parameter method / bounds: Grid
search
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– K: [5, 10 , 15, 20, 30 , 40, 50]
– N: [5, 10, 15, 25, 60, 80]
– λ: [0.4, 0.45, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8,

0.95]

For experiments on NELL-995:

• Inference time: 9.05 queries/s (total of 2825
queries)

• Train time: around 90 mins

• Best Hyper-parameters:

– Number of nearest-neighbor entities (K):
15

– Number of paths from neighbors (N): 25
– Max length of path (n): 3
– Linkage for hierarchical clustering (λ):

0.95

• Hyper-parameter method / bounds: Random
search

– K: [5, 10 , 15, 20, 30 , 40, 50]
– N: [5, 10, 20, 40, 60, 80]
– λ: [0.4, 0.45, 0.5, 0.6, 0.65, 0.7, 0.75]


