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Abstract

Domain adaptation or transfer learning using
pre-trained language models such as BERT
has proven to be an effective approach for
many natural language processing tasks. In
this work, we propose to formulate word sense
disambiguation as a relevance ranking task,
and fine-tune BERT on sequence-pair ranking
task to select the most probable sense defini-
tion given a context sentence and a list of can-
didate sense definitions. We also introduce
a data augmentation technique for WSD us-
ing existing example sentences from WordNet.
Using the proposed training objective and data
augmentation technique, our models are able
to achieve state-of-the-art results on the En-
glish all-words benchmark datasets.1

1 Introduction

In natural language processing, Word Sense Disam-
biguation (WSD) refers to the task of identifying
the exact sense of an ambiguous word given the
context (Navigli, 2009). More specifically, WSD
associates ambiguous words with predefined senses
from an external sense inventory, e.g. WordNet
(Miller, 1995) and BabelNet (Navigli and Ponzetto,
2010).

Recent studies in learning contextualized word
representations from language models, e.g. ELMo
(Peters et al., 2018), BERT (Devlin et al., 2019)
and GPT-2 (Radford et al., 2019) attempt to alle-
viate the issue of insufficient labeled data by first
pre-training a language model on a large text cor-
pus through self-supervised learning. The weights
from the pre-trained language model can then be
fine-tuned on downstream NLP tasks such as ques-
tion answering and natural language inference. For
WSD, pre-trained BERT has been utilized in multi-
ple ways with varying degrees of success. Notably,

1Codes and pre-trained models are available at https:
//github.com/BPYap/BERT-WSD.

Huang et al. (2019) proposed GlossBERT, a model
based on fine-tuning BERT on sequence-pair binary
classification task, and achieved state-of-the-art re-
sults in terms of single model performance on sev-
eral English all-words WSD benchmark datasets.

In this paper, we extend the sequence-pair WSD
model and propose a new task objective that can
better exploit the inherent relationships within pos-
itive and negative sequence pairs. Briefly, our con-
tribution is two-fold: (1) we formulate WSD as
gloss selection task, in which the model learns to
select the best context-gloss pair from a group of
related pairs; (2) we demonstrate how to make use
of additional lexical resources, namely the example
sentences from WordNet to further improve WSD
performance.

We fine-tune BERT using the gloss selection ob-
jective on SemCor (Miller et al., 1994) plus ad-
ditional training instances constructed from the
WordNet example sentences and evaluate its im-
pact on several commonly used benchmark datasets
for English all-words WSD. Experimental results
show that the gloss selection objective can indeed
improve WSD performance; and using WordNet
example sentences as additional training data can
offer further performance boost.

2 Related Work

BERT (Devlin et al., 2019) is a language repre-
sentation model based on multi-layer bidirectional
Transformer encoder (Vaswani et al., 2017). Pre-
vious experiment results have showed that signifi-
cant improvement can be achieved in many down-
stream NLP tasks through fine-tuning BERT on
those tasks. Several methods have been proposed
to apply BERT for WSD. In this section, we briefly
describe two commonly used approaches: feature-
based and fine-tuning approach.

https://github.com/BPYap/BERT-WSD
https://github.com/BPYap/BERT-WSD
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2.1 Feature-based Approaches

Feature-based WSD systems make use of contex-
tualized word embeddings from BERT as input
features for task-specific architectures. Vial et al.
(2019) used the contextual embeddings as inputs in
a Transformer-based classifier. They proposed two
sense vocabulary compression techniques to reduce
the number of output classes by exploiting the se-
mantic relationships between different senses. The
Transformer-based classifiers were trained from
scratch using the reduced output classes on Sem-
Cor and WordNet Gloss Corpus (WNGC). Their
ensemble model, which consists of 8 independently
trained classifiers achieved state-of-the-art results
on the English all-words WSD benchmark datasets.

Besides deep learning-based approach, Loureiro
and Jorge (2019) and Scarlini et al. (2020) con-
struct sense embeddings using the contextual em-
beddings from BERT. The former generates sense
embeddings by averaging the contextual embed-
dings of sense-annotated tokens taken from Sem-
Cor while the latter constructs sense embeddings
by concatenating the contextual embeddings of Ba-
belNet definitions with the contextual embeddings
of Wikipedia contexts. For WSD, both approaches
make use of the constructed sense embeddings in
nearest neighbor classification (kNN), in which the
simple 1-nearest neighbor approach from Scarlini
et al. (2020) showed substantial improvement over
the nominal category of the English all-words WSD
benchmark datasets.

2.2 Fine-tuning Approaches

Fine-tuning WSD systems directly adjust the pre-
trained weights on annotated corpora rather than
learning new weights from scratch. Du et al.
(2019) fine-tuned two separate and independent
BERT models simultaneously: one to encode sense-
annotated sentences and another one to encode
sense definitions from WordNet. The hidden states
from the 2 encoders are then concatenated and used
to train a multilayer perceptron classifier for WSD.

Huang et al. (2019) proposed GlossBERT which
fine-tunes BERT on sequence-pair binary classifi-
cation tasks. The training data consists of context-
gloss pairs constructed using annotated sentences
from SemCor and sense definitions from Word-
Net 3.0. Each context-gloss pair contains a sen-
tence from SemCor with a target word to be disam-
biguated (context) and a candidate sense definition
of the target word from WordNet (gloss). Dur-

ing fine-tuning, GlossBERT classifies each context-
gloss pair as either positive or negative depending
on whether the sense definition corresponds to the
correct sense of the target word in the context. Each
context-gloss pair is treated as independent training
instance and will be shuffled to a random position
at the start of each training epoch. At inference
stage, the context-gloss pair with the highest out-
put score from the positive neuron among other
candidates is chosen as the best answer.

In this paper, we use similar context-gloss pairs
as inputs for our proposed WSD model. How-
ever, instead of treating individual context-gloss
pair as independent training instance, we group re-
lated context-gloss pairs as 1 training instance, i.e.
context-gloss pairs with the same context but dif-
ferent candidate glosses are considered as 1 group.
Using groups of context-gloss pairs as training data,
we formulate WSD as a ranking/selection problem
where the most probable sense is ranked first. By
processing all related candidate senses in one go,
the WSD model will be able to learn better dis-
criminating features between positive and negative
context-gloss pairs.

3 Methodology

We describe the implementation details of our ap-
proaches in this section. When customizing BERT
for WSD, we use a linear layer consisting of just 1
neuron in the output layer to compute the relevance
score for each context-gloss pair, in contrast to the
binary classification layer used in GlossBERT.

Additionally, we also extract example sentences
from WordNet 3.0 and use them as additional train-
ing data on top of the sense-annotated sentences
from SemCor.

3.1 Gloss Selection Objective

Following Huang et al. (2019), we construct posi-
tive and negative context-gloss pairs by combining
annotated sentences from SemCor and sense defini-
tions from WordNet 3.0. The positive pair contains
a gloss representing the correct sense of the target
word while a negative pair contains a negative can-
didate gloss. Each target word in the contexts is
surrounded with two special [TGT] tokens. We
group context-gloss pairs with the same context
and target word as a single training instance so that
they are processed sequentially by the neural net-
work. As illustrated in Figure 1, the output layer
takes the hidden states of the [CLS] token from
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Figure 1: Visualisation of the gloss selection objective when computing the loss value for a training instance. The
context “He turned slowly and began to crawl back up the bank toward the rampart.” is annotated with the target
word “bank”. A training instance consists of n context-gloss pairs (n=4 in this case), including 1 positive pair
(shown in green) and n-1 negative pairs (shown in red). The order of the context-gloss pairs within each training
instance is randomized during the dataset construction step.

each context-gloss pair as input and calculate the
corresponding relevance score. A softmax layer
then aggregates the relevance scores from the same
group and computes the training loss using cross
entropy as loss function. Formally, the gloss selec-
tion objective is given as follow:

loss = − 1

m

m∑
i=1

[
ni∑
j=1

1(yi, j)log(pij)] (1)

where m is the batch size, ni is number of candi-
date glosses for the i-th training instance, 1(yi, j)
is the binary indicator if index j is the same as the
index of the positive context-gloss pair yi, and pij
is the softmax value for the j-th candidate sense of
i-th training instance, computed using the follow-
ing equation:

pij =
exp(Rel(contexti, glossij))∑ni
k exp(Rel(contexti, glossik))

(2)

where Rel(context, gloss) denotes the relevance
score of a context-gloss pair from the output layer.
Similar formulation was presented for web docu-
ment ranking (Huang et al., 2013) and question-
answering natural language inference (Liu et al.,
2019). In the case of WSD, we are only inter-
ested in the top-1 context-gloss pair. Hence, during
testing, we select the context-gloss pair with the
highest relevance score and its corresponding sense
as the most probable sense for the target word.

3.2 Data Augmentation using Example
Sentences

Most synsets in WordNet 3.0 include one or more
short sentences illustrating the usage of the synset

members (i.e. synonyms). We introduce a rela-
tively straightforward data augmentation technique
that combines the example sentences with posi-
tive/negative glosses into additional context-gloss
pairs. First, example sentences (context) are ex-
tracted from each synset and target words are identi-
fied via keyword matching and annotated with two
[TGT] tokens. Then, context-gloss pairs are con-
structed by combining the annotated contexts with
positive and negative glosses. Using this technique,
we were able to obtain 37,596 additional training
instances (about 17% more training instances).

4 Experiments

In this section, we introduce the datasets and ex-
periment settings used to fine-tune BERT. We also
present the evaluation results of each model and
compare them against existing WSD systems.

4.1 Datasets
Both training and testing datasets were obtained
from the unified evaluation framework for WSD
(Raganato et al., 2017b). Our training dataset
for gloss selection consists of 2 parts: a base-
line dataset with 226,036 training instances con-
structed from SemCor and an augmented dataset
with 37,596 training instances constructed using
the data augmentation method. When constructing
the context-gloss pairs for the training datasets, we
select a maximum of n = 6 context-gloss pairs per
training instance; for testing datasets, all possible
candidate context-gloss pairs are considered.

The testing dataset contains 5 benchmark
datasets from previous Senseval and SemEval com-
petitions, including Senseval-2 (SE2), Senseval-3
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System Dev Test Concatenation of all datasets

SE07 SE2 SE3 SE13 SE15 Noun Verb Adj Adv ALL

K
B

Most frequent sense baseline 54.5 65.6 66.0 63.8 67.1 67.7 49.8 73.1 80.5 65.5
Leskext+emb 56.7 63.0 63.7 66.2 64.6 70.0 51.1 51.7 80.6 64.2
Babelfy 51.6 67.0 63.5 66.4 70.3 68.9 50.7 73.2 79.8 66.4

Su
p

IMS+emb 62.6 72.2 70.4 65.9 71.5 71.9 56.6 75.9 84.7 70.1
LSTM-LP 63.5 73.8 71.8 69.5 72.6 - - - - -
Bi-LSTM - 71.1 68.4 64.8 68.3 69.5 55.9 76.2 82.4 68.4
HCAN - 72.8 70.3 68.5 72.8 72.7 58.2 77.4 84.1 71.1

Fe
at

LMMS2348 (BERT) 68.1 76.3 75.6 75.1 77.0 - - - - 75.4
SemCor+WNGC, hypernyms (single) - - - - - - - - - 77.1
SemCor+WNGC, hypernyms (ensemble) 73.4 79.7 77.8 78.7 82.6 81.4 68.7 83.7 85.5 79.0
SENSEMBERTsup - - - - - 80.4 - - - -
BEM2 74.5 79.4 77.4 79.7 81.7 81.4 68.5 83.0 87.9 79.0
EWISERhyper

2 75.2 80.8 79.0 80.7 81.8 82.9 69.4 83.6 87.3 80.1

F
T BERTdef - 76.4 74.9 76.3 78.3 78.3 65.2 80.5 83.8 76.3

GlossBERT (Sent-CLS-WS) 72.5 77.7 75.2 76.1 80.4 79.3 66.9 78.2 86.4 77.0

O
ur

s

BERTbase (baseline) 73.6 79.4 76.8 77.4 81.5 80.6 67.9 82.2 87.3 78.2
BERTbase (augmented) 73.6 79.3 76.9 79.1 82.0 81.3 67.7 82.2 87.9 78.7
BERTlarge (baseline) 73.0 79.9 77.4 78.2 81.8 81.2 68.8 81.5 88.2 78.7
BERTlarge (augmented) 72.7 79.8 77.8 79.7 84.4 82.6 68.5 82.1 86.4 79.5

Table 1: F1-score (%) on the English all-words WSD benchmark datasets in Raganato et al. (2017b). The systems
are grouped into 5 categories: i) knowledge-based system (KB), i.e. the most frequent sense baseline, Leskext+emb
(Basile et al., 2014) and Babelfy (Moro et al., 2014), ii) supervised models (Sup), i.e. IMS+emb (Iacobacci et al.,
2016), LSTM-LP (Yuan et al., 2016), Bi-LSTM (Raganato et al., 2017a) and HCAN (Luo et al., 2018), iii) featured-
based approach using contextual embeddings from BERT (Feat), i.e. LMMS2348 (Loureiro and Jorge, 2019),
SemCor+WNGC (Vial et al., 2019), SENSEMBERTsup (Scarlini et al., 2020), BEM (Blevins and Zettlemoyer,
2020) and EWISERhyper (Bevilacqua and Navigli, 2020), iv) fine-tuning approach using BERT (FT), i.e. BERTdef
(Du et al., 2019) and GlossBERT (Huang et al., 2019), v) our models (Ours).

(SE3), SemEval-07 (SE07), SemEval-13 (SE13),
and SemEval-15 (SE15). Following Huang et al.
(2019) and others, we choose SemEval-07 as the
development set for tuning hyperparameters.

4.2 Experiment Settings

We experiment with both uncased BERTbase and
BERTlarge models. BERTbase consists of 110M pa-
rameters with 12 Transformer layers, 768 hidden
units and 12 self-attention heads while BERTlarge
consists of 340M parameters with 24 Transformer
layers, 1024 hidden units and 16 self-attention
heads. We use the implementation from the trans-
formers package (Wolf et al., 2019). In total, we
trained 4 models on 2 setups: (1) BERTbase/large
(baseline), using only the baseline dataset; (2)
BERTbase/large (augmented), using the concatena-
tion of baseline and augmented dataset.

At fine-tuning, we set the initial learning rate to
2e-5 with batch size of 128 over 4 training epochs.
The remaining hyperparameters are kept at the de-
fault values specified in the transformers package.

2For reference, we included the results from ACL2020.
Since these results were not available at the time of writing
this paper, we did not compare with the results in Section 4.3.

4.3 Evaluation Results

We evaluate the performance of each model and
report the F1-scores in Table 1, along with the
results from other WSD systems.

All 4 of our models trained on the proposed gloss
selection objective show substantial improvement
over the non-ensemble systems across all bench-
mark datasets, which signifies the effectiveness of
this task formulation3. The addition of augmented
training set further improves the performance, par-
ticularly in the noun category. It is worth noting
that Du et al. (2019) and Huang et al. (2019) re-
ported slightly worse or identical results when fine-
tuning on BERTlarge, but both of our models fine-
tuned on BERTlarge obtain considerable better re-
sults than the BERTbase counterparts. This may
be partially attributed to the fact that we were us-
ing the recently released whole-word masking vari-
ant of BERTlarge, which was shown to have a bet-
ter performance on the Multi-Genre Natural Lan-
guage Inference (MultiNLI) benchmark. Although
the BERTlarge (augmented) model has lower F1-

3Statistically different from previously reported results
(with p=0.05) under one-sided randomization test on the F1-
scores in concatenated dataset.
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score on the development dataset, it outperforms
the ensemble system consisting of eight indepen-
dent BERTlarge models on three testing datasets and
achieves the best F1-score on the concatenation of
all datasets.

To illustrate that the improvement of WSD per-
formance comes from the gloss selection objective
instead of hyperparameter settings, we fine-tune a
BERTbase model on the unagumented training set
using the same hyperparameter settings as Gloss-
BERT (Huang et al., 2019), i.e. setting learning
rate and batch size to 2e-5 and 64 respectively, and
using 4 context-gloss pairs for each target word. As
shown in Table 2, our model fine-tuned on the pro-
posed gloss selection objective consistently outper-
forms GlossBERT across all benchmark datasets
under the same hyperparameter settings.

SE07 SE2 SE3 SE13 SE15
GlossBERT 72.5 77.7 75.2 76.1 80.4
BERTbase 73.0 79.1 77.3 77.4 81.0

Table 2: Comparison of F1-score (%) on differ-
ent benchmark datasets between GlossBERT and a
BERTbase model fine-tuned with gloss selection objec-
tive.

5 Conclusion

We proposed the gloss selection objective for super-
vised WSD, which formulates WSD as a relevance
ranking task based on context-gloss pairs. Our mod-
els fine-tuned on this objective outperform other
non-ensemble systems on five English all-words
benchmark datasets. Furthermore, we demonstrate
how to generate additional training data without
external annotations using existing example sen-
tences from WordNet, which provides extra perfor-
mance boost and enable our single-model system
to surpass the state-of-the-art ensemble system by
a considerable margin on a number of benchmark
datasets.
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Appendix

A Additional Details on Experiment Settings
All models are trained using a single Nvidia Tesla
K40 GPU with 12 GB of memory. Gradient ac-
cumulation is used to accommodate large batch
size.

For hyperparameters search, we manually tune
for the optimal hyperparameter combinations using
the following candidate values:

• BERT variant: {cased, uncased}

• Maximum number of glosses per context:
{4, 6}

• Batch size: {32, 64, 128}

• Initial learning rate: {2e-5, 3e-5, 5e-5}

• Warm-up steps: {0, 0.1 * total steps}

At testing stage, model checkpoints with the
highest F1 score on the development dataset,
i.e. SemEval-07, evaluated at every 1000 steps
over 4 training epochs, are selected for evalua-
tion on the testing dataset. We use the scoring
script downloaded from http://lcl.uniroma1.

it/wsdeval/home.

http://lcl.uniroma1.it/wsdeval/home
http://lcl.uniroma1.it/wsdeval/home

