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Abstract

Morphologically Rich Languages (MRLs)
such as Arabic, Hebrew and Turkish often
require Morphological Disambiguation (MD),
i.e., the prediction of the correct morphologi-
cal decomposition of tokens into morphemes,
early in the pipeline. Neural MD may be ad-
dressed as a simple pipeline, where segmen-
tation is followed by sequence tagging, or as
an end-to-end model, predicting morphemes
from raw tokens. Both approaches are sub-
optimal; the former is heavily prone to er-
ror propagation, and the latter does not enjoy
explicit access to the basic processing units
called morphemes. This paper offers an MD ar-
chitecture that combines the symbolic knowl-
edge of morphemes with the learning capacity
of neural end-to-end modeling. We propose
a new, general and easy-to-implement Pointer
Network model where the input is a morpho-
logical lattice and the output is a sequence
of indices pointing at a single disambiguated
path of morphemes. We demonstrate the ef-
ficacy of the model on segmentation and tag-
ging, for Hebrew and Turkish texts, based on
their respective Universal Dependencies (UD)
treebanks. Our experiments show that with
complete lattices, our model outperforms all
shared-task results on segmenting and tagging
these languages. On the SPMRL treebank, our
model outperforms all previously reported re-
sults for Hebrew MD in realistic scenarios.

1 Introduction

In Morphologically Rich Languages (MRLs) (Tsar-
faty et al., 2010), raw tokens are morphologically
ambiguous, complex, and consist of sub-token
units referred to as morphemes.1 Morphological
Disambiguation (MD) is the task of decompos-
ing the tokens into their constituent morphemes,

1In Universal Dependencies terms, these are called syntac-
tic words, to be distinguished from raw input tokens.

to be used as the basic processing units for NLP
tasks down the pipeline (Mueller et al., 2013; More
and Tsarfaty, 2016). As opposed to the commonly
known scenario of morphological tagging (Bohnet
et al., 2013), where every input token is assigned
a single morphological signature (containing its
lemma, part-of-speech tag, and morphological fea-
tures such as gender, number, person, tense, etc.),
in the MD scenario internally-complex input to-
kens may consist of multiple distinct units, each of
which gets assigned its own morphological signa-
ture.

Pre-neural statistical approaches for MD (Bar-
haim et al., 2008; Adler and Elhadad, 2006a; Lee
et al., 2011; Habash et al., 2013) typically used
weighted finite-state machines to unravel the pos-
sible morphological decompositions, and classic
machine learning models to select the most likely
decomposition. Current neural models, however,
take radically different paths.

One neural approach to MD employs pipeline,
where a predicted segmentation of words into mor-
phemes is passed on to sequence labeling com-
ponent that performs tagging of each segment in
context. This segmentation-first scenario employs
sequence tagging to assign a single morphological
tag to each segment similar to POS tagging in En-
glish, where each token in the input sequence is
assigned a single label by the tagger. This method
might be expected to work for MRLs just as well as
standard NLP models do for English tagging, how-
ever, in actuality, such pipeline architectures are
prone to error propagation, which undermines the
accuracy of almost any task down the NLP pipeline
(tagging, parsing, named entity recognition, rela-
tion extraction, etc.) (Tsarfaty et al., 2020; Klein
and Tsarfaty, 2020; Bareket and Tsarfaty, 2020).

A second conceivable approach is an end-to-end
sequence-to-sequence model that consumes a se-
quence of tokens (or characters) and produces a
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Hebrew Token Morphological Analysis English Translation
bbit b/ADP bit/NOUN in a house

b/ADP h/DET bit/NOUN in the house
hlbn h/DET lbn/NOUN the buttermilk

h/DET lbn/ADJ the white
hlbn/VERB whitened

Table 1: Partial list of Morphological Analyses for the
Hebrew tokens: bbit hlbn. Each analysis is expressed
as a list of morphological properties. In this example
we only list the Segment/Tag properties.

sequence of morphological signatures. Notably,
the number of morphological signatures may vastly
exceed the number of input tokens, (e.g., with an
average of 1.4 tags per word in Hebrew). The
drawback of this approach is that the model has
no access to morphological information in the in-
put, and is expected to extract all morphological
information directly from the raw text. Tokens in
MRLs are lexically and syntactically ambiguous,
and carry many possible interpretations, so it is un-
clear if the surface signal is in fact sufficient. This
fact is exacerbated by the fact that some MRLs are
low resourced and even with pre-trained word em-
beddings, many forms are lacking when operating
on internally-complex tokens.

In this paper we propose an alternative approach,
that enjoys the power of end-to-end neural model-
ing while maintaining access to morphemes. We
frame the problem as a Morphological Analysis and
Disambiguation (MA&D) task, in which every raw
token in the input sequence first goes through Mor-
phological Analysis (MA) that exposes all of its
possible morphological decompositions as a lattice
(see Figure 1). This morphological lattice is then
passed to the MD component, based on a Pointer
Network, which selects a sequence of most likely
arcs in the context of the sentence being processed.
Since every lattice arc contains rich information
that is made available by the MA — namely, seg-
mentation boundaries, lemma, Part-of-Speech tag
and a set of morphological features — this MA&D
framework can jointly predict rich morphological
layers while avoiding the pipeline pitfall.

Based on this architecture, we design a neural
model for joint segmentation and tagging and apply
it to two MRLs, Hebrew and Turkish. In realistic
circumstances, the lexical coverage of the lattice
may be partial, and we report MD results in both
ideal and realistic scenarios. Our results on the
Hebrew and Turkish UD treebanks show state-of-
the-art performance for complete morphological

Figure 1: Lattice of the Hebrew tokens ‘bbit hlbn’ cor-
responding to the example in Table 1. Edges are mor-
phemes. Nodes are segmentation boundaries. Bold
nodes are token boundaries. Every path through the
lattice represents a single morphological analysis.

lattices, and on the Hebrew SPMRL treebank we
outperform all previous results in realistic scenar-
ios. Our MA&D solution is generic and can be
applied to any language, e.g., assuming MA compo-
nents as provided in More et al. (2018). In addition,
our proposed architecture is suitable for any other
task that encodes information in a lattice towards
further disambiguation.

2 Linguistic Data and Task Setup

Input tokens in MRLs are internally complex, and
bear multiple units of meaning. Morphological
Analysis (MA) is aimed to convert each of the to-
kens to a set of all possible morphological decom-
positions licensed by the rules of the language. A
single decomposition represents a possible inter-
pretation of the token being analyzed. Consider the
Hebrew phrase bbit hlbn.2 A partial list of analyses
is presented in Table 1. A lattice representation of
the analyses is illustrated in Figure 1.

Morphological Disambiguation (MD) is the task
of selecting a single most-likely analysis for each
token in the context of the sentence. The resulting
morpheme sequence may then serve as the input
processing units for downstream tasks (similarly
to space-delimited words in English). Our above
example, bbit hlbn is likely to be disambiguated as:

(1) b/ADP+h/DET+bit/NOUN+h/DET+lbn/ADJ
literally: in+the+house+the+white
translated: “in the white house”.

The ambiguous MA output is stored in a lattice
data structure. A Lattice is Directed Acyclic Graph
(DAG) often used to encode ambiguity in NLP. In a
morphological lattice, every node represents a seg-
ment boundary, and every edge represents a mor-
pheme. Every path through the lattice represents

2We assume the transliteration of (Sima’any et al., 2001).
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a single possible analysis of the entire sentence.
Notably, not all segmental forms in the lattice are
overt in the input stream. Some are implicit, due
to intricate morpho-phonological and orthographic
processes. For example, the analysis of the token
bbit contains three morphological segments b, h,
bit in the chosen path, yet the h segment is not
visible in the input token bbit (Figure 1).

3 Proposed Method

The Task The input to our MA&D framework is
a sequence of tokens and the output is a sequence of
disambiguated morphological analyses, one per to-
ken. We assume a symbolic MA that generates am-
biguous lattices containing all possible morpholog-
ical analyses per token, based on a broad-coverage
lexicon and/or symbolic rules of the language.

Given an input lattice, we frame MD as a lat-
tice disambiguation task. Sperber et al. (2019) ap-
proached this task by constructing a specific archi-
tecture that captures the lattice representation. We,
in contrast, choose to modify the lattice representa-
tion and feed it to an existing network architecture.

The key idea, in a nutshell, is to linearize the
lattice into a sequence of partially-ordered analyses,
and feed this partial order to a pointer network. For
each token, the network will then learn to point
to (select) the most likely analysis, preserving the
linear constraints captured in the lattice structure.

Pointer Network (PtrNet) Pointer networks
(Vinyals et al., 2015) are designed as a special
case of Sequence-to-Sequence (Seq2Seq) networks.
Seq2Seq models take an input sequence and pro-
duce an output sequence which may differ in length
and vocabulary. PtrNet in addition can handle out-
put vocabulary depending on the input sequence
which can be variable in length.

Seq2Seq is composed of an encoder and a de-
coder. The encoder consumes and encodes the
entire (embedded) input sequence. Then, the de-
coder is fed the entire encoded input representation
and step by step produces discrete outputs which
are fed back as input to the next decoding step.

PtrNets have an additional Copy Attention layer.
The attention layer focuses on specific elements of
the encoded input sequence at each decoding step
(Luong et al., 2015). Copy Attention is a special
case where the attention weights determine which
input element the decoder’s state is most aligned
with, which can then be copied to the output.

Pointer Networks for MD (PtrNetMD) The
PtrNet architecture is designed to learn the con-
ditional probability of an output sequence with el-
ements that are discrete tokens corresponding to
positions in an input sequence (Vinyals et al., 2015).
Our goal is then to encode the morphological lattice
as a sequence, and then feed it to the PtrNet so that
the individual analyses in the lattice can be pointed,
selected and copied into the output sequence, while
respecting the lattice ordering constraints.

Given a lattice we serialize it by going over each
token and listing all of its analyses. The lineariza-
tion function maps a sequence of n tokens into a
sequence of m analyses while preserving the partial
order of the tokens, and where m is the sum of all
token analyses. That is, for input tokens t1, ...tn, let
aj

i denote the i’th analysis of the j’th token. Then
the following holds, such that

∑n
i=1 ki = m.

(2) linearize(t1, t2, t3, ..., tn) =
a11, ..., a

k1
1 , a12, ..., a

k2
2 , ..., a1n, ..., a

kn
n

An analysis aij is expressed as a list of mor-
phemes where each morpheme is represented as
a tuple of morphological properties. Both the
SPMRL and UD scheme specify four properties
Form, Lemma, POS Tag, Morphological Features.
For example, (3) is an analysis composed of three
morphemes:

(3) aj
i := [(form1, lemma1, tag1, features1),

(form2, lemma2, tag2, features2),
(form3, lemma3, tag3, features3)]

We design a Morphological Embedding layer
which acts as an interface between the symbolic
MA and the neural MD. Figure 2 describes the en-
coding of a single morphological analysis into an
embedded vector: Each property is embedded and
averaged across all the morphemes in a single anal-
ysis, and all of the averaged embedded properties
are concatenated to form a single embedded vec-
tor of a fixed size. The entire MA&D process is
depicted in Figure 3.

4 Experimental Setup

The Data The PtrNetMD architecture we pro-
pose does not depend on any specific definition
of morphological signature. To showcase this, we
experiment with data from two different languages
and two different annotation schemes. We use the
Universal Dependencies v2.2 dataset (Nivre et al.,
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Figure 2: Morphological Embedding Layer Architec-
ture. An analysis composed of 3 morphemes is trans-
formed into a single embedded vector.

Figure 3: Our Proposed MA&D Architecture. A se-
quence of tokens is transformed into a sequence of anal-
yses while preserving the token order. The sequence of
analyses is embedded and fed into an encoder. Then
at each decoding step the entire encoded representation
along with the current decoded state are used as input
to an attention layer, and the attention weights are used
to choose an element from the input sequence.

2016) from the CoNLL18 UD Shared task.3 In ad-
dition we download the corresponding lattice files
of each treebank from the CoNLL-UL project.4

Since our approach is sensitive to the lexical cov-
erage of the MA lattices, we focus on the Hebrew
(he htb) and Turkish (tr imst) treebanks. Unlike
the other languages in the shared task, Hebrew and
Turkish provided lattice files generated by broad-
coverage analyzers (HEBLEX and TRMorph2).5

For comparability with previous work on Modern
Hebrew, we also train and test our model on the
Hebrew SPMRL treebank standard split.6

3The UD treebanks from the shared task are available at
lindat.mff.cuni.cz/repository/xmlui/handle/11234/1-2837

4https://conllul.github.io/
5The Arabic (ar padt) Calima-Star lattice files exhibited a

number of incompatibilities with the corresponding gold UD
annotations and therefore cannot be considered

6The treebank is publicly available as open source at
https://github.com/OnlpLab/HebrewResources/
tree/master/HebrewTreebank

Lattice Embedding We use pre-trained FastText
models to embed the forms and lemmas. Fast-
Text models generate vectors for any word using
character ngrams, thus handling Out-of-Vocabulary
forms and lemmas (Bojanowski et al., 2017). For
POS tags and features we instantiate and train from
scratch two embedding modules. Together, these
4 embedded properties are combined to produce a
single morphological analysis vector.

Lattice Encoding The above-mentioned mor-
phological embedding layer turns the input analysis
sequence into an embedded sequence. The partially
ordered sequence of embedded analyses is fed to an
encoder layer thus encoding the entire lattice. Next
a step-by-step decoding process begins in which a
decoder is using an Attention mechanism in order
to score the alignment between each of the relevant
encoded analyses and the token currently being de-
coded. Our Copy Attention module is the global
dot-product of Luong et al. (2015) using mask-
ing mechanism to make sure each decoding step
is focused only on the corresponding input token
analyses (in figure 3 the masks are represented by
the grouped arrows pointing from the decoder back
to the encoded sequence). The decoder chooses the
highest scoring analysis. The full output sequence
contains a list of indices, one per token, pointing to
the selected analyses from the input lattice (Fig. 2).

4.1 Baseline Models
MD may be considered a special case of POS tag-
ging, performed on the morpheme sequence. To
compare our PtrNetMD architecture to existing
modeling solutions we consider three baseline vari-
ations of POS tagging-based MD models imple-
mented end-to-end, defined as follows.

Pipeline Straka and Straková (2017) approach
the MD problem as a two-phased pipeline, first
performing segmentation of the input tokens fol-
lowed by sequence tagging on the morpheme se-
quence. This approach mimics the way English
POS tagging is performed, with the exception that
the tagging is done on the morphological forms
as opposed to directly on input tokens. While it
is straight forward to design, POS tagging accu-
racy suffers from error propagation from the earlier
segmentation. We compare the tagging accuracy
provided by gold (oracle) segments as opposed to
realistically predicted segments, for Turkish, He-
brew, Arabic and English, to gauge the drop in the
accuracy in English in comparison to MRLs.
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Token sequence multi-tagging In order to avoid
error propagation and train our neural model end-
to-end, we implement a baseline model predicting
a complex analysis, referred to as multi-tag, for
each token. That is, we assign a single complex
label composed of multiple POS tags to each raw
token. We define a multi-tag as a concatenated
list of basic tags, one per segment. In training, a
word such as bbit, which is gold-segmented into
the basic tag sequence b/IN, h/DET, bit/NOUN, is
assigned a single multi-tag bbit/IN-DET-NOUN.
Similar to the form and lemma embedding in the
PtrNetMD we use FastText for embedding the input
token sequence. In addition, in order to inform the
model about sub-token information, we combined
each embedded token with a vector encoding the
sequence of characters in the token, as suggested
by Ling et al. (2015). A notable disadvantage of
this model compared to the pipeline, and the pro-
posed PtrNet model, is that it does not provide any
information concerning segmentation boundaries.

Sequence-to-sequence tagging Our multi-
tagging model has the drawback of operating
on a large and non-compositional output-labels
space. So, it cannot assign previously unseen tag
compositions to previously unseen tokens. To over-
come this, we implement a sequence-to-sequence
model in which the input again consists of raw
input tokens but the output is a tag sequence, of a
possibly different length, predicted (decoded) one
by one. Here again we use the combined token
and character embedding layer as described in
the previous paragraph. This model too, does not
provide explicit segmentation boundaries.

4.2 Evaluation

Aligned Segment The CoNLL18 UD Shared
task evaluation campaign7 reports scores for seg-
mentation and POS tagging8 for all participating
languages. The shared task provides an evaluation
script producing various levels of F1 scores, based
on aligned token-level segments. Since the focus
of the shared task was to reflect word segmentation
and relations between content words, the script dis-
cards unmatched word segments, so in effect the
POS tagging scores are in fact joint segmentation-
and-tagging. We run this script to compare tagging
scores between oracle (gold) segmentation and re-

7https://universaldependencies.org/conll18/results.html
8respectively referred to as ’Segmented Words’ and

’UPOS’ in the CoNLL18 evaluation script

alistic (predicted) segmentation in a pipeline model.
In addition, since our PtrNetMD jointly predicts
both segments and tags, we can compare our Ptr-
NetMD against the shared task leaders for Hebrew
and Turkish.

Aligned Multi-Set In addition to the shared task
scores, we compute F1 scores similar to the afor-
mentioned with a slight but important difference.
Token counts are based on multi-set intersections
of the gold and predicted labels. A multi-set (mset)
is a modification of the set concept, allowing mul-
tiple instances of its items. In our case we use a
multi-set to count intersection of morphological
signatures in each token. To illustrate the differ-
ence between aligned segment and aligned mset,
let us take for example the gold segmented tag se-
quence: b/IN, h/DET, bit/NOUN and the predicted
segmented tag sequence b/IN, bit/NOUN. Accord-
ing to aligned segment, the first segment (b/IN) is
aligned and counted as a true positive, the second
segment however is considered as a false positive
(bit/NOUN) and false negative (h/DET) while the
third gold segment is also counted as a false neg-
ative (bit/NOUN). The aligned mset on the other
hand is based on set difference. In this case both
b/IN and bit/NOUN exist in the gold and predicted
sets and counted as true positives, while h/DET
is mismatched and counted as a false negative. In
both cases the total counts across the entire datasets
are then incremented accordingly and finally used
for computing Precision, Recall and F1.

Formally, aligned mset F1 metric is calculated as
follows: For each token we first create a multi-set
based on the morphological signatures (morpho-
logical signature is defined by the properties of
interest: Segments only, POS tag only, joint seg-
ment and tag, etc.) for both the predicted (Pred)
and gold (Gold) morphemes:

(4) Predtoken = ](p1, p2, ..., pk)
Goldtoken = ](g1, g2, ..., gl)
]: multi-set addition operator

We then calculate the token level true and false
positives (TP, FP) as well as false negatives (FN):

(5) TP token = Predtoken ∩Goldtoken
FP token = Predtoken −Goldtoken
FN token = Goldtoken − Predtoken

Finally we add up the token counts over the en-
tire dataset to produce the F1 metric:
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(6) TP total =
∑
|TP token|

FP total =
∑
|FP token|

FN total =
∑
|FN token|

Precision = TP total/(TP total + FP total)
Recall = TP total/(TP total + FN total)

F1 = 2×Precision×Recall)
Precision+Recall

Having morphemes available even if out of order
or partially, has merit to downstream tasks that
consume and further process them. Aligned mset
accounts for this quality. Furthermore, both our
multi-tagging and sequence-to-sequence tagging
baseline models produce a tag sequence without
segmentation boundaries, and aligned mset can
be used to compare them against our PtrNetMD
model. Finally since this computation was also
used by More et al. (2019) we are able to compare
our results to their non-neural MA&D framework
applied to the Hebrew SPRML treebank, which
is so far considered the current state-of-the-art for
Hebrew segmentation and tagging.

Ideal vs Realistic Analysis Scenarios Follow-
ing More et al. (2019) we distinguish between two
evaluation scenarios. An Infused scenario is an
idealised scenario in which the input lattice to our
model has complete lexical coverage, and is guar-
anteed to include the correct analysis as one of its
many internal paths. An Uninfused scenario is a
realistic case in which the lexical coverage might
be partial, and might lack certain gold analyses. 9

5 Results

CoNLL18 UD Shared Task Table 2 shows
aligned segment F1 scores for joint segmentation-
and-tagging on four languages that exhibit different
degrees of morphological richness. The top two
models are variants of the UDPipe pipeline system
— UDPipe Oracle scores were obtained by running
the UDPipe tagger on gold segments, and UDPipe
Predicted scores were obtained by segmenting the
raw text first and then tagging the predicted seg-
ments.10

The top two rows in Table 2 allow us to gauge the
effect of error propagation for different languages,
as reflected in the performance difference between

9Like More et al. (2019) we refer to the idealized scenario
as infused since we make sure the gold annotation is present in
each token lattice or else we manually infuse it. The realistic
scenario is thus referred to as uninfused.

10The UDPipe Predicted model served as the baseline
model for the CoNLL18 UD Shared Task participants.

English Turkish Arabic Hebrew
UDPipe Oracle 94.62 93.24 95.30 95.13
UDPipe Predicted 93.62 91.64 89.34 80.87
Shared Task Leader 95.94 94.78 93.63 91.36
PtrNetMD Infused 96.6 94.41
PtrNetMD Uninfused 89.54 91.3

Table 2: Joint Segmentation-and-Tagging F1, Aligned
Segment, CoNLL18 UD Shared Task Test Set. Top two
rows are pipeline baseline. Bottom three rows are Ptr-
NetMD compared to shared task leaders.

English Turkish Arabic Hebrew
UDPipe Oracle 100.00 100.00 100.00 100.00
UDPipe Predicted 99.03 97.92 93.71 85.16
Shared Task Leader 99.26 97.92 96.81 93.98
PtrNetMD Infused 99.41 96.36
PtrNetMD Uninfused 97.78 94.74

Table 3: Segmentation-only F1, Aligned Segment,
CoNLL18 UD Shared Task Test Set. Top two rows
are pipeline baseline. Bottom three rows are PtrNetMD
compared to shared task leaders.

tagging gold (Oracle) segments and tagging pre-
dicted segments. These results are remarkable —
in an ideal (gold-oracle) scenario there is no sig-
nificant difference in the tagging accuracy between
English and MRLs, but in the realistic scenarios
where segmentation precedes tagging, the differ-
ence is large.

The bottom three models in Table 2 report the
leading scores from the CoNLL18 UD Shared
Task as well as our PtrNetMD results. The Ptr-
NetMD achieves state-of-the-art results for joint
segmentation-tagging, on both Hebrew and Turk-
ish, in infused settings. Moreover, the PtrNetMD
ties the state-of-the-art on the Hebrew treebank
even with uninfused (realistic) lattices with partial
lexical coverage.

In Table 3 we see aligned segment F1 scores
for segmentation-only on the same four languages.
The results clearly indicate that segmenting He-
brew is harder than segmenting Arabic, which is
then harder to segment than Turkish, and English
requires essentially no segmentation. As in Table 2,
we see similar behavior comparing PtrNetMD to
shared task leaders on the segmentation task —
PtrNetMD with infused lattices outperforms the
shared-task leader on Turkish, and it outperforms
the shared-task leader in both infused and unin-
fused scenarios on Hebrew.

There are two possible explanations for predic-
tion errors in uninfused scenarios. Either the cor-
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Turkish Arabic Hebrew
Token Multi-Tag 92.57 94.2 93.82
Token Seq-Tag 92.77 95.05 93.75
PtrNetMD infused 96.76 96.40
PtrNetMD uninfused 90.01 94.02

Table 4: Tagging F1, Aligned MSet, CoNLL18 UD
Shared Task Test Set

rect analysis (gold annotation) is part of the lattice
but the model makes a wrong selection, or, the
correct analysis is not in the lattice. Acknowledg-
ing the notable gap in Table 2 between PtrNetMD
infused and uninfused scores on Turkish, we com-
pared the number of prediction errors with the num-
ber of missing analyses in the uninfused lattices.
Out of 1028 wrong predictions, 652 of them were
also missing the correct analysis which accounts to
60% of the uninfused errors. Interestingly there is
a 60% error reduction when moving to the infused
lattices. The missing analyses could account for the
difference between infused and uninfused scores.
The same holds for Hebrew as well: out of 850
made, 330 do not have the correct analysis in the
lattice, which is also very close to the difference
between the infused and uninfused scores. Another
insight into the coverage difference between the
Turkish and Hebrew lattices is revealed by the fact
that the average number of analyses per token is
2.6 for Turkish compared to 10 in Hebrew.

Table 4 contains the aligned mset scores of our
two baselines, as well as the PtrNetMD infused and
uninfused settings (since both baselines don’t pre-
dict segments they are inapplicable for aligned seg-
ment evaluation). In both Turkish and Hebrew, the
infused PtrNetMD performs much better than end-
to-end tagging models. The Hebrew PtrNetMD
even outperforms both baselines in uninfused cir-
cumstances. The high infused scores on both tree-
banks suggest that the PtrNetMD model is more
than capable to select the correct analysis as long
as one is present in the lattice. The difference be-
tween infused and uninfused scores highlight the
importance of generating full coverage lattices by
the MA component.

SPMRL Hebrew Treebank To put our results
in context, Table 5 compares PtrNetMD on the
Hebrew SPMRL treebank with the state of the
art results of More et al. (2019), who used
the same aligned mset scores for performing
joint segmentation-and-tagging evaluation. The

Dev-Inf Dev-Uninf Test-Inf Test-Uninf
MoreMD 94.09 90.83 92.92 87.53
MoreMD-DEP 95.49 92.36 93.92 89.08
PtrNetMD 95.09 93.9 93.51 90.49

Table 5: Joint Segmentation-and-Tagging F1, Aligned
MSet, Hebrew SPMRL treebank

MoreMD lattice disambiguation approach is sim-
ilar to our PtrNetMD, albeit non-neural, using
feature-based structured perceptron for disambigua-
tion.

As can be seen in the table, the PtrNetMD out-
performs the MoreMD model in all settings. The
MoreMD-DEP model, jointly performs MD and
dependency parsing, taking advantage of additional
syntactic information that is predicted jointly with
the segmentation and tags. The syntactic informa-
tion contributes to the MD performance as can be
seen in the Infused columns. However, our Ptr-
NetMD handles incomplete morphological infor-
mation better than MoreMD-DEP, as can be seen
in the Uninfused columns.

6 Related Work

Initial work on MD viewed it as a special case of
POS tagging and applied generative probabilistic
frameworks such as Hidden Markov Models (Bar-
haim et al., 2008) as well as discriminative feature-
based models (Sak et al., 2009; Lee et al., 2011;
Bohnet et al., 2013; Habash et al., 2013). When
used as input to parsing, Goldberg and Elhadad
(2010) showed that consuming the predicted MD
output of Adler and Elhadad (2006b) as input to
dependency parsing significantly reduced parsing
performance on Hebrew.

To address this error propagation inherent in the
pipeline approach, More et al. (2019) and Seeker
and Çetinoğlu (2015) proposed joint morpho-
syntactic frameworks which enable interaction
between the morphological and syntactic layers.
While proving to be state-of-the-art for both MD
and dependency parsing, on Hebrew and Turkish
respectively, these solutions involved massive hand-
crafted feature engineering.

MA&D on Arabic was addressed by Habash
and Rambow (2005); Roth et al. (2008) using MA
output and applying a set of classification and lan-
guage models to make grammatical and lexical
predictions. A ranking component then scored the
analyses produced by the MA using a weighted
sum of matched predicted features. Zalmout and
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Habash (2017) presented a neural version of the
above system using LSTM networks in several con-
figurations and embedding levels to model the vari-
ous morphological features and use them to score
and rank the MA analyses. In addition, they in-
corporated features based on the space of possible
analyses from the MA into the MD component.
By enriching the input word embedding with these
additional morphological features they increased
MD accuracy drastically. This ranking technique
requires building several models - language models
to predict form and lemma and sequence labeling
models to predict non-lexical features such as POS,
gender, number etc. Our solution on the other hand
involves a single model to score the joint analyses
and choose the best one. In addition, our neural
MD component is language agnostic and doesn’t
depend on any language-specific properties, and as
a result can be easily applied to any language.

Yildiz et al. (2016) proposed a MA&D frame-
work with a neural MD model, however their MD
component was implemented as a binary classifier
predicting whether or not a current property value
is correct, and was trained in a semi-supervised
fashion. Such simple topology is focused on pre-
dicting POS tags and morphological feature but
is inappropriate for the general case that includes
segmentation.

Most recently, Khalifa et al. (2020) provided
further validation of the hypothesis that in low-
resource settings, morphological analyzers help
boost the performance of the full morphological
disambiguation task. We support this claim as well
with our results on Hebrew and Turkish, which
are considered low-resource languages, at least in
terms of the resources the UD treebank collection
provides. In the same vein, incorporating sym-
bolic morphological information in MRLs has long
shown to improve NLP tasks; see for instance Mar-
ton et al. (2013) for the contribution of morpholog-
ical knowledge on parsing quality on Arabic.

End-to-end neural modeling for word segmen-
tation was addressed by Shao et al. (2018) who
modeled segmentation as character-level sequence
labeling, and applied it to the UD data collection.
While improving the results averaged over the en-
tire UD set, Hebrew and Arabic accuracy remained
low. Wang et al. (2016) tackled the segmentation
challenge by taking an unsupervised approach for
learning segment boundaries, but did not address
POS and morphological features assignments.

A pre-requisite for our proposed approach is
the availabilty of a morphological analyzer (MA)
component. Over the past years several MA re-
sources have been published and are available for
MA&D research. The CoNLL-UL project (More
et al., 2018) provides static lattice files generated
for the CoNLL18 UD shared task (Zeman et al.,
2018). Other MA resources are available for spe-
cific languages, for example: HEBLEX (Adler
and Elhadad, 2006a), TRMorph2 (Çağrı Çöltekin,
2014), and Calima-Star (Taji et al., 2018). To fa-
cilitate MA for the UD treebanks, Sagot (2018)
produced a collection of multilingual lexicons in
the CoNLL-UL format covering many of the UD
languages. The Universal Morphology (UniMorph)
project contains morphological data annotated in a
canonical schema for many languages, which has
been shown to improve, e.g., low-resource machine
translation (Shearing et al., 2018).

Encoding complete lattices into vector represen-
tations was previously achieved by modifying the
implementation of the LSTM cells to keep track
of the history of multiple node children (Ladhak
et al., 2016; Su et al., 2017; Sperber et al., 2017).
More recently, Sperber et al. (2019) applied self-
attention layers coupled with reachability masks
and positional embedding to efficiently handle lat-
tice inputs. All of these lattice-aware networks
were applied to speech recognition tasks, where
the segmentation of the input stream refers only
to overt elements, with no covert elements as in
morphology. In this work, in contrast, we cope
with non-concatenative morphological phenomena
where not all segments are covert. Finally, our sys-
tem is simple to apply and easy to comprehend.
In contrast with the non-trivial modification to the
internals of the neural model, we parse and encode
the lattice as a sequence to be fed into (any) existing
neural components.

7 Conclusions and Future Work

In this work we addressed the challenge of mor-
phological disambiguation for MRLs. We design a
general framework that consumes lattice files and
output a sequence of disambiguated morphemes,
each containing the segmentation boundary, lemma,
part-of-speech tag and morphological features. Our
solution is language agnostic and we apply it on
two different languages and two different annota-
tion schemes. We show that access to symbolic
morphological information aids the neural disam-
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biguation model, compared to end-to-end strong
baselines that only have access to the raw tokens.

We empirically evaluate our model using two
evaluation methods. The CoNLL18 UD Shared
Task evaluation, and a multi-set intersection-based
evaluation, which is a more informative metric for
downstream tasks that operate directly on mor-
pheme sequences. In an ideal scenario, where
full lexical coverage is assumed, our model outper-
formed the shared task leaders in the word segmen-
tation task as well as the joint segmentation-and-
tagging task, in both Turkish and Hebrew. Further-
more, we match the leading joint segmentation and
tagging scores in realistic scenario with only par-
tial lexical coverage on Hebrew. We further show
superior performance of our model compared to
previous models on the Hebrew SPMRL treebank.

This work motivates two future research direc-
tions. Our infused-vs-uninfused analysis suggests
that most errors on uninfused lattices are due to
partial MA coverage. Our disambiguation model
proves to be very reliable in selecting the correct
analysis, when available. It follows that a broad-
coverage MA component may improve the over-
all quality of the disambiguation in realistic (unin-
fused) scenarios. This motivates learning to induce
universal, high-recall, MA which is free to generate
large lattices, and rather than focusing on precision,
reward high recall. A second research path towards
improving realistic partial-coverage (uninfused) lat-
tices is by combining our morphologically-aware
Pointer Network with an end-to-end model that op-
erates on the raw token sequence.

Finally, we intend to extend this lattice-based
architecture for complete Joint Morpho-Syntactic
and Morpho-Semantic tasks. That is, in addition
to morphological segmentation and tagging, the
pointer network can be trained to predict span la-
bels (as in NER), headedness relations (as in de-
pendency parsing) and possibly more properties
for the lattice arcs, so that these multiple layers of
information may be jointly predicted as part of the
lattice-disambiguation task.
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