
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 3764–3773
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

3764

Generating Accurate Electronic Health Assessment from Medical Graph

Zhichao Yang1, Hong Yu1,2

1 College of Information and Computer Sciences, University of Massachusetts Amherst
2 Department of Computer Science, University of Massachusetts Lowell

zhichaoyang@cs.umass.edu hong yu@uml.edu

Abstract

One of the fundamental goals of artificial in-
telligence is to build computer-based expert
systems. Inferring clinical diagnoses to gener-
ate a clinical assessment during a patient en-
counter is a crucial step towards building a
medical diagnostic system. Previous works
were mainly based on either medical domain-
specific knowledge, or patients’ prior diag-
noses and clinical encounters. In this paper,
we propose a novel model for automated clin-
ical assessment generation (MCAG). MCAG
is built on an innovative graph neural network,
where rich clinical knowledge is incorporated
into an end-to-end corpus-learning system.
Our evaluation results against physician gen-
erated gold standard show that MCAG signif-
icantly improves the BLEU and rouge score
compared with competitive baseline models.
Further, physicians’ evaluation showed that
MCAG could generate high-quality assess-
ments.

1 Introduction

Electronic health record (EHR) is widely used by
hospitals in the United States and other countries,
resulting in an unprecedented amount of digital
data or EHRs associated with patient encounters.
In recent years, secondary use of EHRs has helped
advance EHR-related computational approaches
to foster precision medicine and a learning health
system (Evans, 2017).

Rich clinical information is documented in the
EHRs. Among many structures and formats in
EHRs, a problem-oriented SOAP (Subjective, Ob-
jective, Assessment, and Plan) structure is com-
monly used by providers (Podder et al., 2020). Fig-
ure 1 illustrate an example of a SOAP note for an
outpatient encounter. Typically, Chief Complaint
includes a brief description of a patient’s condi-
tions and the reasons for the visit. The Subjec-

tive section is a detailed report of the patient’s cur-
rent conditions, such as source, onset, and duration
of symptoms, mainly based on the patient’s self-
report. This section usually includes a history of
present illness and symptoms, current medications,
and allergies. The Objective section documents
the results of physical exam findings, laboratory
data, vital signs, and descriptions of imaging re-
sults. The Assessment section typically contains
medical diagnoses and reasons that lead to medi-
cal diagnoses. The assessment is typically based
on the content from the chief complaint, and the
subjective and objective sections. The Plan section
addresses treatment plans based on the assessment.

Inferring clinical diagnosis to generate an assess-
ment is a crucial step during the patient encounter.
Earlier expert systems were mainly knowledge-
based, typically using decision rules. Later, ma-
chine learning approaches were developed, mainly
used longitudinal electronic health records (EHR)
to predict ICD codes (Subotin and Davis, 2014;
Amoia et al., 2018), the diagnostic codes assigned
to EHRs after each patient’s visit or encounter.
However, ICD codes are used mainly for billing
purposes and have limitations (e.g., incomplete as-
signment) when used as the gold standard diag-
noses labels (O’malley et al., 2005). In this study,
we propose an alternative task. Instead of predict-
ing ICD codes, we intend to build an expert sys-
tem by directly generating medical assessments.
We accomplish the task of automated assessment
text generation using supervised machine-learning.
Specifically, our system’s input is the free-text of
chief complaint, subjective sections, and objective
sections. The output is the assessment. We train
our supervised machine learning models based on
the SOAP-structured EHR notes as a text to text
generation NLP application. The challenges of this
text to text generation include:

1. The length of assessment varies, from being
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short to being verbose. Since a) the assessment is
mainly inferred (not a mere summary) from the cor-
responding subjective and objective sections, and
b) assessment also includes reasons for diagnoses,
thus the overlap between the input and output word
tokens is small. Our EHR data shows that there is
only 12.8% word overlap between subjective and
objective sections and the corresponding assess-
ments. This makes the text generation a challeng-
ing NLP task.

2. Both subjective and objective sections are
verbose, containing abundant medical jargon, many
of which are sparse (with low term frequency) and
therefore could be considered as out-of-vocabulary
words.

A strong baseline model for automated assess-
ment generation is a Pointer-Generator model
N2MAG (Hu et al., 2020). Although the model
helps mitigate the out-of-vocabulary challenge, it
however does not address the challenge of limited
word overlap between the subjective and objective
sections and the assessment.

Therefore, we propose a new model for auto-
mated clinical assessment generation (MCAG),
which generates assessment using knowledge
graph. Specifically, we treat our assessment gen-
eration as a concept-to-text generation problem.
We first build a local or patient-specific concept
graph by NLP-processing the free text of the sub-
jective and objective sections. We then expand
this patient-specific concept graph with background
knowledge extracted from an external and compre-
hensive knowledge resource, the Unified Medical
Language System (UMLS) (Bodenreider, 2004).
Once we build the concept-graph, we train the
MCAG model end-to-end. Our MCAG mitigates
both challenges mentioned above. First, concept
normalization (for example, “MI”, “myocardial in-
farction” and “heart attack” can be mapped to the
same concept) helps mitigate the out-of-vocabulary
word (e.g., MI) challenge. The patient-specific
concept graph helps generate the reasons for the
diagnosis, and the expanded concept graph with the
background knowledge helps infer novel text (di-
agnosis) not described in the input text (i.e., chief
complaint, subjective and objective sections).

The contributions of our work are threefold:
(1) To our knowledge, this is the first study that

explores using knowledge-graph to generate EHR
texts.

(2) Our knowledge graph incorporates not only

the local or patient specific concept relations ex-
tracted directly from EHR notes, but also rich back-
ground knowledge from an external knowledge
graph.

(3) Through extensive experiments, our results
show that both graph neural network architecture
and expanded medical background information
graph helps in generating accurate assessment.

2 Related work

2.1 Text generation in EHR

Motivated by sharing EHR note data without com-
promising patient privacy information, much work
in EHR-related text generation focused on generat-
ing synthetic EHR notes. However, most of their
work uses discrete features or text data as input,
while we use graph, discrete features connected
together with relations. Choi et al. (2017) pro-
posed generating synthetic patient records using a
combination of an autoencoder and generative ad-
versarial networks (GAN). However, this method
only generates high-dimensional discrete vaiables
(e.g., diagnosis, medication, or procedure codes)
that acts as patient records for secondary analy-
sis instead of free text. Lee (2018) developed an
encoder-decoder framework where the encoder’s
input consisted of numerous discrete variables (e.g.,
age and ICD codes), and the output of the decoder
was chief complaint text. Guan et al. (2018) used
the same GAN framework to generate the chief
complaint using its EHR note text as the input but
not the structured graph data formats that we pro-
pose. While most previous works generated short
EHR text (usually less than 30 words) from either
discrete variables or free text, our work targets a
novel task: generating document-wise text from
the medical graph.

The most relevant work is Hu et al. (2020),
who proposed augmented attention-over-attention
pointer-generator network to summarize the con-
tent from the “subjective” and “objective” sections.
However, this summarization approach usually gen-
erates short and concise summaries. While the di-
agnosis information can be copied and pasted from
the input text, the model is limited in generating
novel content, which in our application, include
differential diagnoses or other important related
discussions that do not appear in the input text.

2.2 Structured data to text

Wiseman et al. (2017) studied the challenges of
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Figure 1: An example of SOAP electronic health record note (deidentified). Colored words represent important
medical keywords found by metamap tool.

Figure 2: Our text to graph framework learns to build graph from electric health record text using automatic
information extraction tools and health database with a real-world example why drug Saxenda is recommended.
SOAP TEXT here are Subjective and Objective text in Figure 1.

applying neural networks to the data-to-text task.
They introduced a large-scale dataset where a text
review of a basketball game is paired with tables
of team and player statistics (points, field goals,
rebounds, etc.). However, these tasks focused on
text generation from tables, where relation info is
not included.

Due to the success of transformer model in ap-
plications such as machine translation and graph
neural network, there is a recent trend to gen-
erate longer text (such as paragraph-level text)
from structured data. Our work is most similar
to (Koncel-Kedziorski et al., 2019), which further
introduced a graph to text task by collecting 40k
Semantic Scholar Corpus taken from the proceed-
ings of AI conferences. Given a knowledge graph

constructed by an automatic information extraction
system and a scientific article’s title, the goal is to
generate a corresponding abstract. However, their
graph only captures relevant information parallel
to the text, but not extra info from the background.
More specific dataset differences are shown in table
1.

3 Method

3.1 Text to Graph

To build a concept graph used later for assessment
generation, we first need to build a Patient Specific
Information Graph by extracting triples from text
in the subjective and objective sections. We make
use of OPENIE (Stanovsky et al., 2018) to extract
triples, each of which consists of a subject (usually
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the patient), object, and their open domain rela-
tion specified in the text. This graph should share
most of patient’s key clinical information stated in
the subjective and objective sections of each EHR,
including past diagnosis, symptoms, current medi-
cations, allergies and etc.

However, we also need to increase word over-
lap between the subjective and objective sections
and the assessment section. Unified Medical Lan-
guage System (UMLS) (Bodenreider, 2004) is ap-
plied to build a Background Medical Knowledge
Graph. The UMLS includes a large biomedical
thesaurus that is organized by concept (meaning)
and concept relations from nearly 200 different pro-
fessional medical vocabularies. This step allows
nodes like symptoms, diagnosis, and treatment to
be linked together, which constitute the patient’s
relevant background knowledge.

Before we build a medical concept graph for
each EHR, we first need to extract all medical rele-
vant entities as key clinical info. We use MetaMap
(Aronson and Lang, 2010) to identify all key medi-
cal phrases and map them to certain medical con-
cepts named as Concept Unique Identifiers (CUIs)
in the Unified Medical Language System. The
use of MetaMap allows us to associate extracted
lexicons with their conceptual semantics, since
words/phrases will be mapped to the same CUIs
if they are semantically equivalent. For example,
“MI,” “myocardial infarction” and “heart attack”
can now be mapped to the same concept. This
mitigates the out-of-vocabulary word (e.g., MI)
challenge.

To build a Patient Specific Info Graph Gs, we
use OPENIE (Stanovsky et al., 2018) to extract
all relevant relations mentioned in the text. We
only include triples where CUIs exist because they
represent key clinical info with respect to the spe-
cific patient. Since sentences from EHR text are
not necessarily written in a grammatical manner,
with clear subject-predicate-object structure, we
rely on matching rules to identify spans of text cor-
responding to the symptomatic and other personal
information of each patient (gender, age, etc.). We
found that most graphs are centered around the
patient entity as the red dot shown in Figure 2.

To build a Background Medical Knowledge
Graph Gb for MCAG EXT model, we use UMLS
SNOMED Clinical Terms Database (Bodenreider,
2004) to search for all potential connections be-
tween every pair of CUIs. If a 1-hop connection is

Figure 3: Our graph to text framework: learns to gener-
ate assessment from objective and subjective sections
in graph and chief complaint in text.

found, we include both the new entity and relations
to the graph.

We then combine nodes and relations from both
the Background Medical Knowledge GraphGb and
Patient Specific Info Graph Gs, into a combined in-
formation graph G, by computing the graph union
( G = Gb ∪Gs).

3.2 Graph to Text
We first apply graph neural network to knowledge
graph with an encoder-decoder framework. As
shown in figure 3, given a knowledge graph con-
structed by an automatic information extraction
system in section 3.1 and the chief of complaint,
the goal is to generate a corresponding assessment
in text.

3.2.1 Encoder
To encode the graph, we use or graph attention
neural network. First, to associate a node (mostly
multiple words in a medical phrase) to the graph
with a continuous representation, we use the last
hidden state of a bidirectional RNN run over
embeddings of each word in the entity phrase.
The output of this embedding step is a matrix
H0 = {h00, h01, ..., h0N}, h0i ∈ RD, (where N is
is the number of nodes and D is the number of
features in each node) which will serve as input
(layer 0) to the graph transformer model. The
layer then produces a new set of node features
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H1 = {h10, h11, ..., h1N}, h1i ∈ RD′
, as its first layer

output. This step would be repeated for multiple
layers to embed graph extensively.

In order to better encode the input features into
next-level features, we use some extra parameters.
First, a linear transformation is carried out by two
weight matrix, WQ ∈ RD′×D to obtain a Query
matrix and WK ∈ RD′×D to obtain a Key matrix,
then we perform a self-attention to compute atten-
tion coefficients which indicate the importance of
node j’s features to node i.

e(hi, hj) = (WQhi)
TWKhj (1)

Then in order to match all attention weights of
a probability from 0 to 1, a softmax operation is
needed to re-scale the importance of all neighbor-
ing nodes Ni of node i.

αij =
exp(e(hi, hj))∑

k∈Ni
exp(e(hi, hk))

(2)

Once attention weight αij is obtained, the con-
textualized representation h′i of node i is obtained
from attending over the connected nodes weighted
by attention weight. To stabilize the learning pro-
cess of self-attention, we employ multi-head atten-
tion.

h′i = hi + ‖Kk=1(
∑
j∈Ni

αk
ijW

k
V hj) (3)

where ‖ denotes the concatenation of the K at-
tention heads, Ni denotes in neighborhood of node
i, WV ∈ RD′×D is used to obtain a Value matrix.
Note that, by using concatenating from all heads,
the returned output, h′i , will consist of K × D′
features (rather than D′) for each node. Similar
to their work (Vaswani et al., 2017), we use block
networks, which consists of feedforward network
with a non-linear transformation and layer normal-
ization, to reduce the dimension back to D′.

This stacking method enables information to
propagate through the majority of graph. Blocks
are stacked L times to encode information among
L hop nodes , with the layernorm output of layer
l − 1 taken as the input to layer l. The final output
matrix HL = {hL0 , hL1 , ..., hLN}, hLi ∈ RD repre-
sents contextual information stored in all nodes
and relations from the knowledge graph.

To encode the Chief Complaint section, we use
a BiLSTM for Chief Complaint word embedding
P = {p0, p1, ..., p|C|}, pi ∈ RD. where |C| is
the length of a Chief Complaint sentence. We use

BiLSTM encoder instead of graph encoder because
Chief Complaint is usually concise and each word
could contain lots of information.

3.2.2 Decoder

In order to generate assessment based on the pa-
tient and background information input, we train
an attention-based decoder with a copy mechanism
to extract relevant content from both the knowledge
graph and the chief complaint.

At each decoding timestep t we use decoder
hidden state st to compute context vectors cg for
the graph and context vectors cs for chief complaint
sequence.

To compute context vectors cg for the graph, we
use similar approach shown in equation. 2 and
3. Instead using a specific node as query to be
centered, here we replace it with decoder hidden
state st of previous timestep t. Instead of using
a neighborhood centered around a node, here we
allow hidden representation from last layer hLj from
every node V to attend on query.

cg = st + ‖Kk=1(
∑
j∈V

αk
jW

k
DGh

L
j ) (4)

αj =
exp(e(st, h

L
j ))∑

k∈V exp(e(st, h
L
k ))

(5)

Similarly to the above equations, we calculate
context vectors cs for chief complaint sequence P
following the functions below:

cs = st + ‖Kk=1(
∑
j∈|C|

αk
jW

k
DT pj) (6)

αj =
exp(e(st, pj))∑

k∈|C| exp(e(st, pk))
(7)

Here, WDG and WDT are separate trainable de-
coder weights that differ from query, key, value in
the encoder.

To predict the next hidden state, we construct the
final context vector by concatenation ct = [cg‖cs].
We then use an input-feeding decoder where both
st and ct are passed as input to the calculate the
next timestep hidden state st+1. To predict the next
word in abstract, the probability of each next token
is calculated by scaling [st‖ct] to the vocabulary
size with another weight matrix and taking a soft-
max.
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Abs ESO EAS
Vocab 77K 74K 39K
Tokens 5.8M 9.8M 2.2M
Avg Len 142 392 89
Entity Types 5 40 -
Avg Vert 12.42 7.91 (+5.29) -
Avg Edge 4.43 4.02 (+2.62) -

Table 1: Vocabulary size of document, number of total
document tokens, average document length, number of
unique entity types, average number of vertices, aver-
age number of edges for AGENDA Abstract(Abs), our
EHR subjective and objective part (ESO) and our EHR
assessment part (EAS). The average vertices and edges
of ESO split into two parts. The first part represents
data from patient specific Info graph, while the sec-
ond one represents data from patient background Info
graph.

4 Experiments

4.1 Datasets

We collected a corpus of 25.2K outpatient EHR
notes from hospitals and medical centers , from
which we randomly selected about 17.5K, 7.6K,
and 100 notes for training, development, and test
sets, respectively. Statistics of our dataset and a
similar AGENDA dataset are available in table 1.
However, our dataset is not parallel. Additional
background information is added within our graph.

4.2 Baselines

We compare our MCAG against several baselines.
In our graph model, we only keep Patient Spe-
cific Info Graph and left out Background Medical
Knowledge Graph to test the need for it (MCAG
Basic). Then, we compare it with augmented
attention-over-attention pointer-generator network
(N2MAG model) from Hu et al. (2020). We also
compare the result of MCAG Basic with self-
attention based architectures. We implemented a
text to text vanilla transformer with 6 layers of
encoder and decoder. To test the ability of Back-
ground Medical Knowledge Graph, we also com-
pare the result of MCAG Ext to pretrained genera-
tion model on large corpus T5(Raffel et al., 2019),
where T5-Small is the encoder-decoder model with
6 layers each, and T5-Base is the encoder-decoder
model with 12 layers each. We further finetune
these models on our dataset.

4.3 Implementation

Our models are trained end-to-end with EHR chief
complaint text and relevant graph as input and cor-
responding assessment as target. We use SGD op-
timization with momentum (Qian, 1999) the best
learning rate is 0.05 and momentum is 0.9 with
gradient clipping. Models are trained for 25 epochs
with early stopping (Prechelt, 1998) based on the
validation loss, with most models stopping between
15 epochs. Each word is embeded into 500 vectors
and the same dimension is used on hidden state
size. As for graph encoder, we use a graph atten-
tion network (Veličković et al., 2018) with 6 layers
with 4 heads. To encode chief complaint text, we
use a 2 layer BiLSTM. To avoid penalizing repeat-
edly attending to the same locations, coverage loss
weight is set to 0.5. During inference, we use beam
search with a beam size of 4 and beam width of 6
to generate EHR assessments. To prevent overfit-
ting, a dropout rate 0.1 (Srivastava et al., 2014) is
used. For each method, experiments is run for 4 tri-
als with random weight initialization, and the best
model is selected to do evaluation for each method.
We removed repeated sentences manually before
evaluation. The whole experiment is carried out
on 2 TITANX GPUs. Each model finished training
within 12 hours. 1

4.4 Evaluation Metrics

BLEU As a standard evaluation metric for text
generation, BLEU (Papineni et al., 2002) measures
the intersection of n-grams between the generated
assessment and the gold assessment. A better gen-
erated assessment usually achieves higher BLEU
score, as it shares more n-gram with the gold as-
sessment.
ROUGE As a standard evaluation metric for sum-
merization, ROUGE (Lin, 2004) also measures
the intersection of n-grams between the generated
assessment and the gold assessment. But unlike
BLEU, it focuses on the n-grams appearing in the
machine generated assessment as a measure of re-
call instead of precision. A better generated assess-
ment usually achieves higher ROUGE score, as it
shares more n-gram with the gold assessment.
Human evaluation While BLEU and other auto-
matic metrics are objective metrics that could be
applied to large-volume test set, we also ensure that
our model works by human evaluation. We hired 4

1Our code and setting will be publicly available at
https://github.com/whaleloops/mcag
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L
N2MAG 9.726 5.449 2.12 1.412 22.334
Transformer 27.053 16.761 11.488 8.457 20.613
MCAG Basic 27.926 17.117 12.158 9.046 23.289
T5 Small 28.534 17.720 12.323 9.190 20.419
T5 Base 30.542 18.006 12.124 8.772 19.155
MCAG Ext 38.731 26.667 20.299 15.942 30.662

Table 2: Automatic scores of generated assessment from previous EHR sections. Transformer is the vanilla trans-
former with 6 layers encoder-decoder. T5 Small uses the same architecture but is pretrained on large corpus and
T5 Base doubles the number of layers. MCAG Basic is the 6 layers encoder decoder model which generates assess-
ment from patient specific info graph. MCAG Ext is the the same model which generates assessment from patient
specific info graph and background info graph.

Model Sentence Fluency Keyword Coverage Clinical Accuracy Differential Discussion
N2MAG 2.92 2.14 2.07 1.97
MCAG Basic 3.31 (+0.39) 2.31 (+0.17) 2.10 (+0.03) 2.35 (+0.38)
MCAG Ext 3.48 (+0.17) 2.73 (+0.42) 3.13 (+1.03) 3.08 (+0.73)
Human 3.70 (+0.22) 3.23 (+0.50) 3.55 (+0.42) 3.38 (+0.30)

Table 3: Human evaluation results of generated assessment previous EHR sections. We report the mean scores for
each evaluation metric of 30 EHR notes. Scores improved the most in each category are highlighted.

doctor experts to join our human evaluation.
We ask evaluators to compare each generated

assessment and gold assessment from four perspec-
tives: 1) Sentence Fluency: Is the generated as-
sesssment semantic coherent and meaningful, (e.g.
“get a flu shot” is good and “drink a flu shot” is
bad). 2) Keywords Coverage: Does the keywords
match between assessment and background? (Is
the patient male or female? Age same? Times of
visit same? ). 3) Clinical Accuracy: Is the gener-
ated assessment semantically reasonable compared
to the given background. 4) Differential Discus-
sion: Coverage of elements in assessment (Does
it contain Problem ? Differential Diagnoses? Dis-
cussion? Care/Politeness to patient). The grading
scale for each perspective is from 1 to 5. For some
specific generated and doctor written EHR used for
evaluation, please refer to supplementary materials.

4.5 Results

As illustrated in Table 4. Given the chief com-
plaint and background of a patient, we generate
three assessments using our models mentioned in
section 4.2. Intuitively, the more the generated
assessments resembles the gold assessments, the
better the model is. We report BLEU and ROUGE-
L scores in Table 2 and mean human evaluation
scores in Table 3.

According to experiment results, BLEU scores
and scores in human evaluation are generally con-
sistent with each other. We observe all BLEU
scores are fairly low; we believe it is reasonable

as there could be multiple ways to compose an
assessment given background of a patient.

Graph based model leads to high precision.
Compared to the graph transformer based models,
the pointer generator are more susceptible to two
sources of errors: 1) the pointer generator tends to
generate shorter assessment centered upon a fewer
number of medical keywords; 2) the pointer genera-
tor also lacks the ability to select multiple keywords
and expand upon these keywords.

As shown in Table 4, the result produced from
pointer-generator only contains 2 medical key-
words in bold, while result produced from MCAG
Basic contains 5. Within the test dataset, the aver-
age number of medical keywords extracted from
N2MAG and MCAG Basic is 3.4 and 7.1 respec-
tively.

Recall that Bleu measures precision: how often
the tokens in the machine generated assessment
appear in the doctor reference assessment. Rouge
measures recall: how often the tokens in the doctor
reference assessment appear in the machine gener-
ated assessment. Although MCAG without graph
enhancement has much better BLEU score com-
pared to pointer-generator, it does not improve a lot
in ROUGE-L compared to pointer-generator. This
shows that pointer-generator works as a summariza-
tion model, and its ability is restricted in keyword
selection. As a result, it tends to generate shorter as-
sessments, hence gaining a more favorable score on
ROUGE-L (the gap between the pointer generator
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Model Text
N2MAG ASSESSMENT: The patient attends today’s OBESITY CONSULTATION . She seems to have a

good amount of past nutrition EDUCATION .

MCAG Basic ASSESSMENT: The patient attends today’s nutrition CONSULTATION to ADDRESS her OBE-
SITY issue . 1. She is doing better on all BLOOD SUGAR MANAGEMENT . 2. she is exercising
many times a week . At this point , I do feel comfortable having her move WEIGHT LOSS next step
in our program .

MCAG Ext ASSESSMENT: The patient attends today’s nutrition CONSULTATION to ADDRESS her struggle
with OBESITY . She is doing better on BLOOD SUGAR MANAGEMENT and suggestions made
by this provider . She has made a number of changes to her diet and lifestyle over the past few months
. She is very engaged in our appointment today and asked appropriate EXERCISE questions to the
education that was provided . We talked about using Saxenda as an alternative. At this point , I do
believe that her HEMOGLOBIN A1c step DOWNWARD .

Table 4: An example of assessment generated by different models. The input and gold assessment could be
found in Figure 1. MCAG Basic represents the model which generate assessment from patient specific info graph.
MCAG Ext is the model which generate assessment from patient specific info graph and background info graph.
Medical keywords selected from entities and relations in graph are marked as bold. N2MAG does not have graph,
so MetaMap and some rules are used to find these medical keywords. More examples could be found in appendix.

and graph is closer according to ROUGE-L). This
is also proven in human evaluation as well. MCAG
without graph enhancement achieves a +0.03 point
improvements in clinical accuracy, but +0.38 point
improvements in differential discussion and +0.39
point improvements in sentence fluency. Compar-
ing to pointer generator model, graph model shows
more capability to include medical keywords and
generate related discussions and differential diag-
noses.

We further compare our MCAG Basic model
with a non-pretrained text-to-text transformer
model. While transformers can be seen as GNNs
from an architecture perspective, our MCAG model
use only keywords (graph) extracted from text as
input, while this baseline transformer model uses
more text as input. However, as shown in Table
4, their performance is similar to ours without us-
ing external knowledge. This shows that the med-
ical assessment generation task relies mostly on
keywords, and more irrelevant input would not do
better in this task.

Incorporating background medical graphs
gives better agreement with experts. Among
two graph based models, enhancing the graph
by expanding relevant background entities with
UMLS would further improve the quality of the
generated assessments. By comparing clinical key-
word identified among the generated and gold as-
sessment, this expanding technique can increase the
clinical keyword overlap from 35% to 97%. Graph
enhancements further significantly improves Clini-

cal Accuracy by +1.03 and Differential Discussion
by +0.73. But not so much in sentence fluency as
the model architecture is not altered. This shows
the importance of expanding relevant background
entities from a graph level in this task as more in-
formation is given.

Explicit knowledge graph outperforms implicit
pre-trained model. Even though pre-trained lan-
guage models are able to answer queries struc-
tured as “fillin-the-blank” cloze statements, and
Petroni et al. (2019) have shown that factual rela-
tional knowledge already presents within these pre-
trained models, however, Poerner et al. (2019) have
demonstrated that these pre-trained language mod-
els could only capture shallow information stored
in the knowledge base, and incorporating BERT
with entity embedding outperforms original BERT
(Peters et al., 2019).

Here we present similar findings, but in text gen-
eration task. Within automatic evaluations shown
in Table 2, our MCAG Ext model with graph
enhancement outperforms pre-trained T5-Small,
where the number of parameters is about the same.
By doubling the number of layers, T5-Base only
increases a little in BLEU but decreases slightly
in ROUGE-L compared with T5-Small. Both
pre-trained models outperform the non-pretrianed
vanilla transformer. This may indicate that pre-
trained language models from general web corpus
contain only limited knowledge on a specific do-
main (i.e., medical). And explicitly integrate self-
attention encoder with knowledge graph would im-
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prove the quality of generation text compared to
the pre-trained language model.

We also show that assessment generation is an
arduous task. Even doctor written assessment gets
a medium score of about 3.5 in Table 3 instead of
the full 5 points.

5 Conclusion

In this paper, we propose a novel task of generating
medical assessment from not only patient specific
medical information but also relevant backgrounds.
We adapt the graph transformer model to our task
and meanwhile proposed an additional approach
to address the lack of relevant background medical
knowledge. Experiments show that graph trans-
former outperforms text pointer-generator model,
even without the help of additional background
medical knowledge. In addition, enhancing the
graph with relevant medical knowledge could fur-
ther improve the generated assessment quality. Ex-
periments also show the current Text-to-Text Trans-
former pretrained on large corpus may learn limit
medical domain-specific knowledge. Further gen-
eration quality improvements could be made by
incorporating domain-specific knowledge graphs.

In the future, we plan to explore: (1) Probing
tasks to randomly switch some entities to other
irrelevant and improper tokens, and see if graph
model is more resilient to these noises; (2) Many
EHRs are follow-up EHRs that is based on the
previous EHR. We wish to further expand EHRs
in time step by applying temporal graph models to
incorporate temporal information.
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