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Abstract

Our goal is to explain the effects of perturba-
tions in procedural text, e.g., given a passage
describing a rabbit’s life cycle, explain why ill-
ness (the perturbation) may reduce the rabbit
population (the effect). Although modern sys-
tems are able to solve the original prediction
task well (e.g., illness results in less rabbits),
the explanation task - identifying the causal
chain of events from perturbation to effect - re-
mains largely unaddressed, and is the goal of
this research. We present QUARTET, a system
that constructs such explanations from para-
graphs, by modeling the explanation task as
a multitask learning problem. QUARTET con-
structs explanations from the sentences in the
procedural text, achieving ∼ 18 points better
on explanation accuracy compared to several
strong baselines on a recent process compre-
hension benchmark. On an end task on this
benchmark, we show a surprising finding that
good explanations do not have to come at the
expense of end task performance, in fact lead-
ing to a 7% F1 improvement over SOTA.

1 Introduction

Procedural text is common in natural language (in
recipes, how-to guides, etc.) and finds many ap-
plications such as automatic execution of biology
experiments (Mysore et al., 2019), cooking recipes
(Bollini et al., 2012) and everyday activities (Yang
and Nyberg, 2015). However, the goal of proce-
dural text understanding in these settings remains
a major challenge and requires two key abilities,
(i) understanding the dynamics of the world inside
a procedure by tracking entities and what events
happen as the narrative unfolds. (ii) understanding
the dynamics of the world outside the procedure
that can influence the procedure.

While recent systems for procedural text compre-
hension have focused on understanding the dynam-
ics of the world inside the process, such as tracking

Figure 1: Given a procedural text, the task is to explain
the effect of the perturbation using the input sentences.

entities and answering questions about what events
happen, e.g., (Tandon et al., 2018; Bosselut et al.,
2018; Henaff et al., 2017), the extent to which they
understand the influences of outside events remains
unclear. In particular, if a system fully understands
a process, it should be able to predict what would
happen if it was perturbed in some way due to an
event from the outside world. Such counterfac-
tual reasoning is particularly challenging because,
rather than asking what happened (described in
text), it asks about what would happen in an alter-
native world where the change occurred.

Recently, Tandon et al. (2019) introduced the
WIQA dataset that contains such problems, re-
quiring prediction of the effect of perturbations
in a procedural text. They also presented several
strong models on this task. However, it is unclear
whether those high scores indicate that the mod-
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els fully understand the described procedures, i.e.,
that the models have knowledge of the causal chain
from perturbation to effect. To test this, Tandon
et al. (2019) also proposed an explanation task.
While the general problem of synthesizing explana-
tions is hard, they proposed a simplified version in
which explanations were instead assembled from
sentences in the input paragraph and qualitative
indicators (more/less/unchanged). Although they
introduced this explanation task and dataset, they
did not present a model to address it. We fill this
gap by proposing the first solution to this task.

We present a model, QUARTET (QUAlitative
Reasoning wiTh ExplanaTions) that takes as input
a passage and a perturbation, and its qualitative
effect. The output contains the qualitative effect
and an explanation structure over the passage. See
Figure 1 for an example. The explanation struc-
ture includes up to two supporting sentences from
the procedural text, together with the qualitative ef-
fect of the perturbation on the supporting sentences
(more of or less of in Figure 1). QUARTET models
this qualitative reasoning task as a multitask learn-
ing problem to explain the effect of a perturbation.

Our main contributions are:

• We present the first model that explains the ef-
fects of perturbations in procedural text. On
a recent process comprehension benchmark,
QUARTET generates better explanations com-
pared to strong baselines.

• On an end task on this benchmark, we show a
finding that good explanations do not have to
come at the expense of end task performance,
in fact leading to a 7% F1 improvement over
SOTA. (refer §6). Prior work has found that
optimizing for explanation can hurt end-task
performance. Ours is a useful datapoint show-
ing that good explanations do not have to come
at the expense of end-task performance1.

2 Related work

Procedural text understanding: Machine read-
ing has seen tremendous progress. With ma-
chines reaching human performance in standard
QA benchmarks (Devlin et al., 2018; Rajpurkar
et al., 2016), more challenging datasets have been
proposed (Dua et al., 2019) that require background
knowledge, commonsense reasoning (Talmor et al.,
2019) and visual reasoning (Antol et al., 2015;

1All the code will be publicly shared upon acceptance

Zellers et al., 2018). In the context of procedu-
ral text understanding which has gained consider-
able amount of attention recently, (Bosselut et al.,
2018; Henaff et al., 2017; Dalvi et al., 2018) ad-
dress the task of tracking entity states throughout
the text. Recently, (Tandon et al., 2019) introduced
the WIQA task to predict the effect of perturbations.

Understanding the effects of perturbations,
specifically, qualitative change, has been studied
using formal frameworks in the qualitative reason-
ing community (Forbus, 1984; Weld and De Kleer,
2013) and counterfactual reasoning in the logic
community (Lewis, 2013). The WIQA dataset sit-
uates this task in terms of natural language rather
than formal reasoning, by treating the task as a
mixture of reading comprehension and common-
sense reasoning. However, existing models do not
explain the effects of perturbations.

Explanations: Despite large-scale QA bench-
marks, high scores do not necessarily reflect un-
derstanding (Min et al., 2019). Current models
may not be robust or exploit annotation artifacts
(Gururangan et al., 2018). This makes explanations
desirable for interpretation (Selvaraju et al., 2017).

Attention based explanation has been success-
fully used in vision tasks such as object detection
(Petsiuk et al., 2018) because pixel information
is explainable to humans. These and other token
level attention models used in NLP tasks (Wiegr-
effe and Pinter, 2019) do not provide full-sentence
explanations of a model’s decisions.

Recently, several datasets with natural language
explanations have been introduced, e.g., in natural
language inference (Camburu et al., 2018), visual
question answering (Park et al., 2018), and multi-
hop reading comprehension (HotpotQA dataset)
(Yang et al., 2018). In contrast to these datasets, we
explain the effects of perturbations in procedural
text. HotpotQA contains explanations based on two
sentences from a Wikipedia paragraph. Models on
the HotpotQA would not be directly applicable
to our task and require substantial modification
for the following reasons: (i) HotpotQA models
are not trained to predict the qualitative structure
(more or less of chosen explanation sentences in
Figure 1). (ii) HotpotQA involves reasoning over
named entities, whereas the current task focuses on
common nouns and actions (models that work well
on named entities need to be adapted to common
nouns and actions (Sedghi and Sabharwal, 2018)).
(iii) explanation paragraphs in HotpotQA are not
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ears less protected→ (MORE/+) sound enters the ear → (MORE/+) sound hits ear drum → (MORE/+) more sound detected
blood clotting disorder→ (LESS/-) blood clots → (LESS/-) scab forms → (MORE/+) less scab formation
breathing exercise→ (MORE/+) air enters lungs → (MORE/+) air enters windpipe → (MORE/+) oxygen enters bloodstream
squirrels store food→ (MORE/+) squirrels eat more → (MORE/+) squirrels gain weight → (MORE/+) hard survival in winter
less trucks run→ (LESS/-) trucks go to refineries → (LESS/-) trucks carry oil → (MORE/+) less fuel in gas stations
coal is expensive→ (LESS/-) coal burns → (LESS/-) heat produced from coal → (LESS/-) electricity produced
legible address→ (MORE/+) mailman reads address → (MORE/+) mail reaches destination → (MORE/+) on-time delivery
more water to roots→ (MORE/+) root attract water → MORE/+) roots suck up water → (LESS/-) plants malnourished
in a quiet place→ (LESS/-) sound enters the ear → (LESS/-) sound hits ear drum → (LESS/-) more sound detected
eagle hungry→ (MORE/+) eagle swoops down → (MORE/+) eagle catches mouse → (MORE/+) eagle gets more food

Table 1: Examples of our model’s predictions on the dev. set in the format: “qp → di xi → dj xj → de qe”.
Supporting sentences xi, xj are compressed e.g., “the person has his ears less protected”→ “ears less protected”

procedural while the current input is procedural in
nature with a specific chronological structure.

Another line of work provides more structure
and organization to explanations, e.g., using scene
graphs in computer vision (Ghosh et al., 2019).
For elementary science questions, Jansen et al.
(2018) uses a science knowledge graph. These
approaches rely on a knowledge structure or graph
but knowledge graphs are incomplete and costly to
construct for every domain (Weikum and Theobald,
2010). There are trade-offs between unstructured
and structured explanations. Unstructured expla-
nations are available abundantly while structured
explanations need to be constructed and hence are
less scalable (Camburu et al., 2018). Generating
free-form (unstructured) explanations is difficult
to evaluate (Cui et al., 2018; Zhang et al., 2019),
and adding qualitative structure over them is non-
trivial. Taking a middle ground between free-form
and knowledge graphs based explanations, we in-
fer a qualitative structure over the sentences in the
paragraph. This retains the rich interpretability
and simpler evaluation of structured explanations
as well as leverages the large-scale availability of
sentences required for these explanation.

It is an open research problem whether requiring
explanation helps or hurts the original task being
explained. On the natural language inference task
(e-SNLI), Camburu et al. (2018) observed that mod-
els generate correct explanations at the expense of
good performance. On the Cos-E task, recently
Rajani et al. (2019) showed that explanations help
the end-task. Our work extends along this line in
a new task setting that involves perturbations and
enriches natural language explanations with quali-
tative structure.

3 Problem definition

We adopt the problem definition described in Tan-
don et al. (2019), and summarize it here.

Input: 1. Procedural text with steps x1 . . . xK .
Here, xk denotes step k (i.e., a sentence) in a pro-
cedural text comprising K steps.
2. A perturbation qp to the procedural text and its
likely candidate effect qe.

Output: An explanation structure that explains
the effect of the perturbation qp:

qp → dixi → djxj → deqe

• i: step id for the first supporting sentence.

• j: step id for the second supporting sentence.

• di ∈ {+ − • }: how step id i is affected.

• dj ∈ {+ − • }: how step id j is affected.

• de ∈ {+ − • }: how qe is affected.

See Figure 1 for an example of the task, and
Table 1 for examples of explanations.

An explanation consists of up to two (i.e., zero,
one or two) supporting sentences i, j along with
their qualitative directions di, dj . If there is only
one supporting sentence, then j = i. If de = • ,
then i =Ø, j =Ø (there is no valid explanation for
no-effect).

While there can be potentially many correct ex-
planation paths in a passage, the WIQA dataset con-
sists of only one gold explanation considered best
by human annotators. Our task is to predict that
particular gold explanation.

Assumptions: In a procedural text, steps
x1 . . . xK are chronologically ordered and have
a forward flowing effect i.e., if j > i then
more/increase of xi will result in more/increase of
xj . Prior work on procedural text makes a sim-
ilar assumption (Dalvi et al., 2018). Note that
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this assumption does not hold for cyclic processes,
and cyclic processes have already been flattened in
WIQA dataset. We make the following observations
based on this forward-flow assumption.

a1: i <= j (forward-flow order)

a2: dj = di (forward-flow assumption)2

a3: For the WIQA task, de is the answer label
because it is the end node in the explanation
structure.

a4: If di = • then answer label = • (since qp does
not affect qe, there is no valid explanation.)

a5: 1 ≤ i ≤ K; if di = •, then i = Ø (see a4)

a6: i ≤ j ≤ K; if de = •, then j = Ø (see a4)

This assumption reduces the number of predic-
tions, removing dj and answer label (see a2, a3).
Given x1 . . . xK , qp, qe the model must predict four
labels: i, j, di, de .

4 QUARTET model

We can solve the problem as a classification task,
predicting four labels: i, j, di, de. If these predic-
tions are performed independently, it requires sev-
eral independent classifications and this can cause
error propagation: prediction errors that are made
in the initial stages cannot be fixed and can propa-
gate into larger errors later on (Goldberg, 2017).

To avoid this, QUARTET predicts and explains
the effect of qp as a multitask learning problem,
where the representation layer is shared across dif-
ferent tasks. We apply the widely used parame-
ter sharing approach, where a single representa-
tion layer is followed by task specific output layers
(Baxter, 1997). This reduces the risk of overfitting
to a single task and allows decisions on i, j, di, de
to influence each other in the hidden layers of the
network. We first describe our encoder and then
the other layers on top, see Figure 2 for the model
architecture.

Encoder: To encode x1 . . . xK and question q
we use the BERT architecture (Devlin et al., 2018)
that has achieved state-of-the-art performance
across several NLP tasks (Clark et al., 2019),

2Note that this does not assume all sentences have the same
directionality of influence. For example, a paragraph could
include both positive and negative influences: “Predators ar-
rive. Thus the rabbit population falls...”. Rather, the dj = di
assumption is one of narrative coherence: the more predators
arrive, the more the rabbit population falls. That is, within a
paragraph, we assume enhancing one step will have enhanced
effects (both positive or negative effects) on future steps - a
property of a coherently authored paragraph.

where the question q = qp ⊕ qe (⊕ stands for con-
catenation). We start with a byte-pair tokenization
(Sennrich et al., 2015) of the concatenated passage
and question (x1 . . . xK ⊕ q) . Let [xk] denote
the byte-pair tokens of sentence xk. The text
is encoded as [CLS] [x1] [unused1] [SEP]
[x2] [unused2] [SEP] .. [q] [SEP].
Here, [CLS] indicates a special classification
token. [SEP] and [unused1..K] are special next
sentence prediction tokens.

These byte-pair tokens are passed through a 12-
layered Transformer network, resulting in a contex-
tualized representation for every byte-pair token.
In this contextualized representation, the vector
u = [u1, ...uK,uq] where uk denotes the encod-
ing for [xk], and uq denotes question encoding. Let
El be the embedding size resulting from lth trans-
former layer. In that lth layer, [u1, ...uK] ∈ RK∗El

.
The hidden representation of all transformer layers
are initialized with weights from a self-supervised
pre-training phase, in line with contemporary re-
search that uses pre-trained language models (De-
vlin et al., 2018).

To compute the final logits, we add a linear layer
over the different transformer layers in BERT that
are individual winners for individual tasks in our
multitask problem. For instance, out of the total 12
transformer layers, lower layers (layer 2) are the
best predictors for [i, j] while upper layers (layer
10 and 11) are the best performing predictors for
[di, de]. Zhang et al. (2019) found that the last layer
is not necessarily the best performing layer. Differ-
ent layers seem to learn complementary informa-
tion because their fusion helps. Combining differ-
ent layers by weighted averaging of the layers has
been attempted with mixed success (Zhang et al.,
2019; Clark et al., 2019). We observed the same
trend for simple weighted transformation. How-
ever, we found that learning a linear layer over con-
catenated features from winning layers improves
performance. This is probably because there is very
different information encoded in a particular dimen-
sion across different layers, and the concatenation
preserves it better than simple weighted averaging.

Classification tasks: To predict the first support-
ing sentence xi, we obtain a softmax distribution
si ∈ RK over [u1, ...uK]. From the forward-flow
assumption made in the problem definition section
earlier, we know that i ≤ j, making it possible to
model this as a span prediction xi:j . Inline with
standard span based prediction models (Seo et al.,
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Figure 2: QUARTET model. Input: Concatenated passage and question using standard BERT word-piece tokeniza-
tion. Representation Layer: The input is encoded using BERT transformer. We obtain [CLS] and sentence level
representations. Prediction: From the sentence level representation, we use an MLP to model the distributions for
i and j (using attended sentence representation). From [CLS] representation, we use MLP for di (and dj , since
di = dj) and de distributions. Output: Softmax to predict {i, j, di, dj , de}

2017), we use an attended sentence representation
(si� [u1, ...uK])⊕ ([u1, ...uK]) ∈ RK∗2El

to pre-
dict a softmax distribution sj ∈ RK to obtain xj .
Here, � denotes element-wise multiplication and
⊕ denotes concatenation.

For classification of di (and dj , since di = dj),
we use the representation of the first token (i.e.,
CLS token ∈ REl

) and a linear layer followed by
softmax to predict di ∈ { + − • }. Classification
of de is performed in exactly the same manner.

The network is trained end-to-end to minimize
the sum of cross-entropy losses for the individual
classification tasks i, j, di, de. At prediction time,
we leverage assumptions (a4, a5, a6) to generate
consistent predictions.

5 Experiments

Dataset: We train and evaluate QUARTET on the
recently published WIQA dataset 3 comprising of
30,099 questions from 2107 paragraphs with ex-
planations (23K train, 5K dev, 2.5K test). The
perturbations qp are either linguistic variation (17%
examples) of a passage sentence (these are called
in-para questions) or require commonsense reason-
ing to connect to a passage sentence (41% exam-
ples) (called, out-of-para questions). Explanations
are supported by up to two sentences from the pas-

3WIQA dataset link: http://data.allenai.org/wiqa/

sage: 52.7% length 2, 5.5% length 1, 41.8% length
0. Length zero explanations indicate that de =•

(called, no-effect questions), and ensure that ran-
dom guessing on explanations gets low score on
the end task.

Metrics: We evaluate on both explainability and
the downstream end task (QA). For explainabil-
ity, we define explanation accuracy as the aver-
age accuracy of the four components of the ex-
planation: accexpl = 1

4 ∗
∑

i∈{i,j,di,de} acc(i) and
accqa = acc(de) (by assumption a3). The QA task
is measured in terms of accuracy.

Hyperparameters: QUARTET fine-tunes BERT,
allowing us to re-use the same hyperparameters as
BERT with small adjustments in the recommended
range (Devlin et al., 2018). We use the BERT-base-
uncased version with a hidden size of 768. We use
the standard adam optimizer with a learning rate
1e-05, weight decay 0.01, and dropout 0.2 across
all the layers4. All the models are trained on an
NVIDIA V-100 GPU.

Models: We measure the performance of the fol-
lowing baselines (two non-neural and three neural).
• RANDOM: Randomly predicts one of the three
labels {+ − • } to guess [di, de]. Supporting sen-
tences i and j are picked randomly from |avgsent|

4Hyperparameter search details in appendix §9.1

http://data.allenai.org/wiqa/
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sentences.
•MAJORITY: Predicts the most frequent label (no
effect i.e. de=• in the case of WIQA dataset.)
• qeONLY : Inspired by existing works (Gururan-
gan et al., 2018), this baseline exploits annotation
artifacts (if any) in the explanation dataset by re-
training QUARTET using only qe while hiding the
permutation qp in the question.
• HUMAN upper bound (Krippendorff’s alpha inter-
annotator values on [i, j, di]) on explainability re-
ported in (Tandon et al., 2019)5.
• TAGGING: We can reduce our task to a
structured prediction task. An explanation
i, j, di, de requires span prediction xi:j and
labels on that span. So, for example, the
explanation i = 1, j = 2, di =+, dj =−
for input x1 · x5 can be expressed as a tag
sequence: B-CORRECT E-OPPOSITE O
O O. Explanation i = 2, j = 4, di =+,
dj =− would be expressed as: O B-CORRECT
I-CORRECT E-OPPOSITE O. When de
= • , then the tag sequence will O O O O
O. This BIEO tagging scheme has seven
labels T = {B-CORRECT, I-CORRECT,
B-OPPOSITE, I-OPPOSITE,
E-CORRECT, E-OPPOSITE, O}.
Formulating as a sequence tagging task allows
us to use any standard sequence tagging model
such as CRF as baseline. The decoder invalidates
sequences that violate assumptions (a3 - a6). To
make the encoder strong and yet comparable to our
model, we use exactly the same BERT encoder as
QUARTET. For each sentence representation uk,
we predict a tag ∈ T . A CRF over these local pre-
dictions additionally provides global consistency.
The model is trained end-to-end by minimizing the
negative log likelihood from the CRF layer.
• BERT-NO-EXPL: State-of-the-art BERT model
(Tandon et al., 2019) that only predicts the final
answer de, but cannot predict the explanation.
• BERT-W/-EXPL: A standard BERT based ap-
proach to the explanation task that predicts the
explanation structure. This model minimizes only
the cross-entropy loss of the final answer de, pre-
dicting an explanation that provides the best an-
swer accuracy.
• DATAAUG: This baseline is adapted from Asai
and Hajishirzi (2020), where a RoBERTa model
is augmented with symbolic knowledge and uses
an additional consistency-based regularizer. Com-

5https://allenai.org/data/wiqa

pared to our model, this approach uses a more
robustly pre-trained BERT (RoBERTa) with data-
augmentation optimized for QA Accuracy.
• QUARTET: our model described in §4 that opti-
mizes for the best explanation structure.

5.1 Explanation accuracy

QUARTET is also the best model on explanation
accuracy. Table 2 shows the performance on
[i, j, di, de]. QUARTET also outperforms baselines
on every component of the explanation. QUARTET

performs better at predicting i than j. This trend
correlates with human performance- picking on the
second supporting sentence is harder because in a
procedural text neighboring steps can have similar
effects.

We found that the explanation dataset does
not contain substantial annotation artifacts for the
qeONLY model to leverage (qeONLY < MAJORITY)

Table 1 presents canonical examples of QUAR-
TET dev predictions.

acci accj accdi accde accexpl
RANDOM 12.50 12.50 33.33 33.33 22.91
qeONLY 32.77 32.77 33.50 44.82 36.00
MAJORITY 41.80 41.80 41.80 41.80 41.80
TAGGING 42.26 37.03 56.74 58.34 48.59
BERT-W/-EXPL 38.66 38.66 69.20 75.06 55.40
QUARTET 69.24 65.97 75.92 82.07 73.30
HUMAN 75.90 66.10 88.20 96.30 81.63

Table 2: Accuracy of the explanation structure
(i, j, di, de). Overall explanation accuracy is accexpl.
(Note that BERT-NO-EXPL and DATAAUG do not pro-
duce explanations).

We also tried a simple bag of words and embed-
ding vector based alignment between qp and xi in
order to pick the most similar xi. These baselines
perform worse than random, showing that aligning
qp and xi involves commonsense reasoning that the
these models cannot address.

6 Downstream Task

In this section, we investigate whether a good ex-
planation structure leads to better end-task perfor-
mance. QUARTET advocates explanations as a first
class citizen from which an answer can be derived.

6.1 Accuracy on a QA task

We compare against the existing SOTA on WIQA
no-explanation task. Table 3 shows that QUARTET

improves over the previous SOTA BERT-NO-EXPL

by 7%, achieving a new SOTA results. Both these
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models are trained on the same dataset6. The major
difference between BERT-NO-EXPL and QUARTET

is that BERT-NO-EXPL solves only the QA task,
whereas QUARTET solves explanations, and the an-
swer to the QA task is derived from the explanation.
Multi-tasking (i.e., explaining the answer) provides
the gains to QUARTET.

QA accuracy
RANDOM 33.33
MAJORITY 41.80
qeONLY 44.82
TAGGING 58.34
BERT-NO-EXPL 75.19
BERT-W/-EXPL 75.06
DATAAUG 78.50
QUARTET 82.07
HUMAN 96.30

Table 3: QUARTET improves accuracy on the QA (end
task) by 7% points.

All the models get strong improvements over
RANDOM and MAJORITY. The least perform-
ing model is TAGGING. The space of possible
sequences of correct labels is large, and we believe
that the current training data is sparse, so a larger
training data might help. QUARTET avoids this
sparsity problem because rather than a sequence it
learns on four separate explanation components.

Table 4 presents the accuracy based on question
types. QUARTET achieves large gains over BERT-
NO-EXPL on the most challenging out-of-para ques-
tions. This suggests that QUARTET improves the
alignment of qp and xi that involves some common-
sense reasoning.

6.2 Correlation between QA and Explanation
QUARTET not only improves QA accuracy but also
the explanation accuracy. We find that QA accuracy
(accde in Table 2) is positively correlated (Pearson
coeff. 0.98) with explanation accuracy (accexpl).
This shows that if a model is optimized for expla-
nations, it leads to better performance on end-task.
Thus, with this result we establish that (at least on

6We used the same code and parameters as provided by
the authors of WIQA-BERT. The WIQA with-explanations
dataset has about 20% fewer examples than WIQA without-
explanations dataset [http://data.allenai.org/wiqa/] This is be-
cause the authors removed about 20% instances with incorrect
explanations (e.g., where turkers didn’t have an agreement).
So we trained both QUARTET and WIQA-BERT on exactly
the same vetted dataset. This helped to increase the score of
WIQA-BERT by 1.5 points.

Model in-para out-of no-effect overall
para

RANDOM 33.33 33.33 33.33 33.33
MAJORITY 00.00 00.00 100.0 41.80
qeONLY 20.38 20.85 78.41 44.82
BERT-NO-EXPL 71.40 53.56 90.04 75.19
BERT-W/-EXPL 72.83 58.54 92.03 75.06
QUARTET 73.49 65.65 95.30 82.07

Table 4: QUARTET improves accuracy over SOTA
BERT-NO-EXPL across question types.

our task) models can make better predictions when
forced to generate a sensible explanation structure.
An educational psychology study (Dunlosky et al.,
2013) hypothesizes that student performance im-
proves when they are asked to explain while learn-
ing. However, their hypothesis is not conclusively
validated due to lack of evidence. Results in Table
2 hint that, at least on our task, machines that learn
to explain, ace the end task.

7 Error analysis

We analyze our model’s errors (marked in red) over
the dev set, and observe the following phenomena.

1. Multiple explanations: As mentioned in
Section 3, more than one explanations can be
correct. 22% of the incorrect explanations were
reasonable, suggesting that overall explanation
accuracy scores might under-estimate the explana-
tion quality. The following example illustrates that
while gathering firewood is appropriate
when fire is needed for survival,
one can argue that going to wilderness is
less precise but possibly correct.

Gold: need fire for survival → (MORE/+)
gather firewood → (MORE/+) build fire for warmth
→ (MORE/+) extensive camping trip

Pred: need fire for survival → (MORE/+)
go to wilderness → (MORE/+) build fire for warmth
→ (MORE/+) extensive camping trip

2. i, j errors: Fig. 3 shows that predicted and
gold distributions of i and j are similar. Here, sen-
tence id = −1 indicates no effect. The model has
learned from the data to never predict j < i without
any hard constraints.

The model is generally good at predicting i, j
and in many cases when the model errs, the ex-
planation seems plausible. Perhaps for the same
underlying reason, human upper bound is not high
on i (75.9%) and on j (66.1%). We show an exam-
ple where i, j are incorrectly predicted (in red), but
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Figure 3: Gold vs. predicted distribution of i & j resp.

sound plausible.
Gold: ear is not clogged by infection →
(OPP/-) sound hits ear → (OPP/-)

electrical impulse reaches brain → (OPP/-) more
sound detected

Pred: ear is not clogged by infection →
(OPP/-) sound hits ear → (OPP/-)

drum converts sound to electrical impulse → (OPP/-)

more sound detected

3. di, de errors: When the model incorrectly
predicts di, a major source of error is when ‘−’ is
misclassified. 70% of the ‘−’ mistakes, should
have been classified as ‘+’. A similar trend is
observed for de but the misclassification of ‘− is
less skewed. Table 5 shows the confusion matrix
of di and of de in { + − • } .

• + −
• 1972 91 47
+ 295 883 358
− 226 492 639

• + −
• 1972 89 49
+ 261 909 295
− 252 346 830

Table 5: Confusion matrix for di (left) and de overall
(right). (gold is on x-axis, predicted on y-axis.)

The following example shows an instance where
‘−’ is misclassified as ‘+’. It implies that there is
more scope for improvement here.

Gold: less seeds fall to the ground →
(OPP/-) seed falls to the ground → (OPP/-)

seeds germinate → (MORE/+) fewer plants
Pred: less seeds fall to the ground →
(OPP/-) seed falls to the ground → (OPP/-)

seeds germinate → (OPP/-) fewer plants

4. in-para vs. out-of-para: The model per-
forms better on in-para questions (typically, lin-
guistic variations) than out-of-para questions (typi-
cally, commonsense reasoning). Also see empirical
evidence of this in Table 4.

The model is challenged by questions involving
commonsense reasoning, especially to connect
qp with xi in out-of-para questions. For example,
in the following passage, the model incorrectly

predicts • (no effect) because it fails to draw a
connection between sleep and noise:

Pack up your camping gear, food. Drive to your campsite.
Set up your tent. Start a fire in the fire pit. Cook your food
in the fire. Put the fire out when you are finished. Go to
sleep. Wake up ...

qp: less noise from outside
qe: you will have more energy

Analogous to i and j, the model also makes more
errors between labels ‘+’ and ‘−’ in out-of-para
questions compared to in-para questions (39.4% vs
29.7%) – see Table 6.

• + −
+ 29 295 78
− 49 130 259

• + −
+ 266 588 280
− 177 362 380

Table 6: Confusion matrix di for in-para & out-of-para

(Tandon et al., 2019) discuss that some in-para
questions may involve commonsense reasoning
similar to out-of-para questions. The following is
an example of an in-para question where the model
fails to predict di correctly because it cannot find
the connection between protected ears and
amount of sound entering.

Gold: ears less protected→ (MORE/+) sound enters ear
→ (MORE/+) sound hits ear drum → (MORE/+)
more sound detected

Pred: ears less protected → (OPP/-)

sound enters the ear → (OPP/-) sound hits ear drum
→ (MORE/+) more sound detected

5. Injecting background knowledge: To study
whether additional background knowledge can im-
prove the model, we revisit the out-of-para question
that the model failed on. The model fails to draw
a connection between sleep and noise, leading
to an incorrect (no effect) ‘•’ prediction.

By adding the following relevant back-
ground knowledge sentence to the paragraph
“sleep requires quietness and
less noise”, the model was able to correctly
change probability mass from de = ‘•’ to ‘+’. This
shows that providing commonsense through Web
paragraphs and sentences is a useful direction.

Pack up your camping gear, food ... Sleeping requires
quietness and less noise. Go to sleep. Wake up ...

qp: less noise from outside
qe: you will have more energy
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8 Assumptions and Generality

QUARTET makes two simplifying assumptions:
(1) explanations are assembled from the provided
sentences (question + context), rather than gener-
ated, and (2) explanations are chains of qualitative,
causal influences, describing how an end-state is
influenced by a perturbation. Although these (help-
fully) bound this work, the scope of our solution is
still quite general: Assumption (1) is a common ap-
proach in other work on multihop explanation (e.g.,
HotpotQA), where authoritative sentences support
an answer. In our case, we are the first to apply
the same idea to chains of influences. Assumption
(2) bounds QUARTET to explaining the effects of
qualitative, causal influences. However, this still
covers a large class of problems, given the impor-
tance of causal and qualitative reasoning in AI. The
WIQA dataset provides the first large-scale dataset
that exemplifies this class: given a qualitative in-
fluence, assemble a causal chain of events leading
to a qualitative outcome. Thus QUARTET offers
a general solution within this class, as well as a
specific demonstration on a particular dataset.

9 Conclusion

Explaining the effects of a perturbation is criti-
cal, and we have presented the first system that
can do this reliably. QUARTET not only predicts
meaningful explanations, but also achieves a new
state-of-the-art on the end-task itself, leading to an
interesting finding that models can make better pre-
dictions when forced to explain. Our work opens
up new directions for future research: 1) Can addi-
tional background context from the Web improve
explainable reasoning? 2) Can such structured ex-
planations be applied to other NLP tasks? We look
forward to future progress in this area.
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Appendix

9.1 Hyperparameter Tuning
QUARTET fine-tunes BERT, allowing us to re-use
the same hyperparameters as BERT with small ad-
justments in the recommended range (Devlin et al.,
2018). We use the BERT-base-uncased version
with a hidden size of 768. We found the best hy-
perparameter settings by searching the space using
the following hyperparameters.

1. weight decay = { 0.1, 0.01, 0.05 }

2. dropout = {0.1, 0.2, 0.3 }

3. learning rate = {1e-05, 2e-05, 5e-05}


