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Abstract

Recently, end-to-end neural network-based
approaches have shown significant improve-
ments over traditional pipeline-based models
in English coreference resolution. However,
such advancements came at a cost of com-
putational complexity and recent works have
not focused on tackling this problem. Hence,
in this paper, to cope with this issue, we pro-
pose BERT-SRU-based Pointer Networks that
leverages the linguistic property of head-final
languages. Applying this model to the Korean
coreference resolution, we significantly reduce
the coreference linking search space. Combin-
ing this with Ensemble Knowledge Distilla-
tion, we maintain state-of-the-art performance
66.9% of CoNLL F1 on ETRI test set while
achieving 2x speedup (30 doc/sec) in docu-
ment processing time.

1 Introduction

Coreference resolution is one of the fundamen-
tal sub-tasks for Machine Reading Comprehen-
sion and Dialogue Systems that groups mentions
of a same entity in a given sentence or docu-
ment (Soon et al., 2001; Raghunathan et al., 2010;
Ng, 2010; Lee et al., 2013). Recently, for En-
glish coreference resolution, span-based end-to-
end trained models such as e2e-coref (Lee
et al., 2017), c2f-coref (Lee et al., 2018), and
BERT-coref (Joshi et al., 2019b) have shown to
outperform previous rule-based or mention-pairing
approaches.

However, such approaches suffer from the com-
putational complexity effectively-being O(n4),
where n is the length of the input document. Fur-
thermore, as coreference resolution is a very im-
portant and complicated task, most of the research
efforts have been focused on how to solve the prob-
lem through better modeling, such as higher-order
coreference resolution (Lee et al., 2018). Inevitably,

[훈민정음을창제한세종]은 [조선의 4대왕]이다.

[Sejong, who created the Hunminjeongeum,] is [Joseon’s fourth king.]

Korean: head-final language

English: mixed head-directional language

Figure 1: The brackets are mention boundaries, bold-
faced words are the nouns, and underlined words are
the heads of each mention. The red line is a dependency
relation arc and Korean (top) shows the left-branching
property (Dryer, 2009) where the heads are always at
the end of the mention. On the other hand, the head
locations for English is different across mentions.

these approaches lead to more complicated mod-
els that are more computation heavy, but there are
not many studies on solving this complexity issue.
Hence, this paper aims to cope with this problem by
infusing relevant linguistic features into the model.

One of the underlying reasons for such high com-
putational complexity was the creation of O(n2)
spans caused by the mixed head directionality of
English, as shown in Figure 1. This makes it hard to
locate the heads in the mentions because the head
location is not deterministic. On the other hand,
having deterministic head locations is a very desir-
able linguistic trait for solving the aforementioned
computational complexity issue. This effectively
reduces the search space for coreference linking as
we can use only the heads of the mentions.

Korean is not only a new domain for end-to-
end coreference resolution but also considered a
strongly head-final language (Kwon et al., 2006),
which motivates us to focus on Korean. In this
paper, we present the first end-to-end model in
Korean coreference resolution. Our model lever-
ages such head-final properties using Pointer Net-
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works (Vinyals et al., 2015) and achieves compara-
ble performance to that of state-of-the-art models
with a 2x speedup. Our contributions can be sum-
marized as the following:

• First end-to-end coreference resolution model
for Korean

• 2x speed up than state-of-the-art models

• Achieve state-of-the-art with Ensemble and
maintain 2x speedup using Knowledge Distil-
lation

2 Background

Coreference resolution is basically about linking
mention pairs (which are often noun phrases). Es-
sentially, this is finding heads of noun phrases
that refer to the same entity, but the head loca-
tions within mentions are unknown. While previ-
ous rule-based approaches (Wiseman et al., 2016;
Clark and Manning, 2016a,b) relied on several
hand-engineered features including head-related
ones, recent end-to-end methods attempt to directly
model the mention distribution using span-based
neural networks.

Span-based Coreference Resolution To elabo-
rate, Lee et al. (2017, 2018); Joshi et al. (2019b)
have formulated the task of end-to-end coreference
resolution for English as a set of decisions for ev-
ery possible spans in the document. The input is
a document consisted of n words and there are
S = n(n+1)

2 = O(n2) possible spans in it. For each
span, the task is to assign an antecedent that refers
to the same entity. Hence, as all of these spans have
to be ranked against each other, the final corefer-
ence resolution search space is S(S+1)

2 = O(n4).
Finally, the entity resolutions are recovered by
grouping all spans that are connected.

Head-final Coreference Resolution In this sec-
tion, we introduce the concept of our proposed
head-final coreference resolution. Head-final lan-
guages are left-branching in which the heads of
mention phrases are at the end of the phrase (Dryer,
2009). This allows to easily extract accurate coref-
erence linking between nouns across the men-
tions and use them for training directly. On the
other hand, in English, it is impossible to know
which nouns in the mentions are supposed to be
linked together because the head locations are
non-deterministic. Hence, using such head-final

property, we can effectively reduce a search over
span candidates to a search over head candidates,
which are simply the nouns. In short, this yields a
coreference resolution search space of O(n2).

3 BERT-SRU Pointer Networks

We propose a novel model, BERT-SRU Pointer
Network, that is suitable for head-final coreference
resolution. This model combines bidirectional en-
coder representation from transformer (BERT) (De-
vlin et al., 2019) with bidirectional simple recur-
rent units (SRUs) (Lei et al., 2017) and Pointer
Networks (Vinyals et al., 2015), as shown in Fig-
ure 2, to perform the head-final coreference reso-
lution. Initially, the encoder part (which is BERT)
receives morphologically analyzed texts along with
their POS-tags as inputs. Then the decoder extracts
the hidden state corresponding to the head candi-
dates (which are all nouns) and uses them as the
inputs. After that, the gated self-attention layer in
decoder models head information, and the decoder
outputs position corresponding to the input using
the pointer networks. We use deep biaffine (Dozat
and Manning, 2016) as the attention score of the
pointer networks, and this model performs both the
mention detection and the coreference resolution.

3.1 Model Inputs
To elaborate on the BERT encoder layer, we use
a BERT model that is pre-trained with morpho-
logically analyzed large-scale Korean corpus and
apply byte pair encoding (BPE) (Sennrich et al.,
2016) to the input morpheme sequence. When us-
ing BPE, we add a [CLS] and [SEP] token to the
beginning and end of the input sequence and dis-
tinguish morphemes on the subword by attaching
’ ’ in the last syllable of morphemes. We use fea-
tures that are appropriate for Korean coreference
resolution. The features are morpheme boundary,
word boundary, dependency parsing, named entity
recognition (NER), and candidate head distance.

3.1.1 Input Text Preprocessing
The following example shows the use of morpho-
logical analysis and BPE for a given raw text. In
the example below, the entity is바카스 (Bacchus).

• Raw text: ”그리스로마신화에서바카스라
고도불리는술의신” (A god of wine called
Bacchus in Greek Rome mythology)

• Morphological analysis with POS tag-
ging: ”그리스/NNP로마/NNG신화/NNG에
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Sejong, who created the Hunminjeongeum, is Joseon’s fourth king.

Attention

Pointer of mention detection

Pointer of coreference resolution

을
훈민
정음

창제 한 세종 은 조선 의 4 대 왕 이다 .[CLS]
noun noun noun noun noun noundummy

Figure 2: Our Fast Head-final coreference resolution model for Korean. We use BERT to obtain embeddings
corresponds to input tokens. Along with the five features, embeddings are used as SRU encoder inputs, and encoder
outputs are fed to SRU-based decoder inputs through self-attention. Finally, decoder outputs are transformed to
predict 1) mention start boundary, and 2) coreference resolution. All parameters are trained through an end-to-
end manner. After training, the model could further be extended with ensemble knowledge distillation, achieving
comparable performance to that of the state-of-the-art with 2x inference speed.

서/JKB바카스/NNP이/VCP라고/EC도/JX
불리/VV는/ETM술/NNG의/JKG신/NNG”

• Applying BPE: ”그리스/NNP 로마/NNG
신화/NNG 에서/JKB 바 카스/NNP
이/VCP 라고/EC 도/JX 불리/VV
는/ETM 술/NNG 의/JKG 신/NNG ”

If the following input text is given, morpholog-
ical analysis is performed using a part-of-speech
(POS)-tagger and BPE is applied. In this paper, we
use the POS-tag together with the morphological
analysis results to specify the POS information of
each morpheme. After applying BPE, ’로마/NNG’
(Rome/NNG) and ’바카스/NNP’ (Bacchus/NNP)
were divided into ’로’ (Ro), ’마/NNG ’ (me/NNG )
and ’바’ (Ba), ’카스/NNP ’ (cchus/NNP ) accord-
ing to BPE dictionary matching.

3.1.2 Additional Input Features
In this study, We use five features for Korean
coreference resolution, which are word boundary,
morpheme (morp) boundary, dependency parsing,
NER, and head distance. The description of each
feature is as follows:
Word boundary: This studies the boundary fea-
ture of the coreference resolution in word units.

The starting token of the word is divided into B,
and the following token is divided into I tags.
Morpheme boundary: This reflects the mor-
pheme boundary characteristics of the morpheme
analysis results. Morp-B is the beginning token,
and morp-I is the inside token of the morpheme.
Dependency parsing: We use the dependency
parsing label as a feature to reflect the structural
and semantic information of the sentences.
NER: We use type information for each entity ap-
pearing in the document as a feature.
Head distance: To use distance information be-
tween extracted candidate nouns and we measure
the distance from the immediately preceding noun,
the following buckets [1, 2, 3, 4, 5-7, 8-15, 16-31,
32-63, 64+] (Clark and Manning, 2016b).

3.2 Model Architecture

3.2.1 Encoder
As shown in Figure 2, each token input to the
encoder gets the hidden state of BERT bi =
BERT(xi) from the pre-trained BERT model. The
hidden state for the input feature is generated as
follows: hfi = embfeat(fi). We concatenate the
hidden state of the BERT and the hidden state of
the features to make the hidden state ei = [bi; hfi ].
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Then, according to equation 1, the encoder encodes
ei into bidirectional SRU (biSRU) to generate a
hidden state ri.

ri = biSRU(ri−1, ei) (1)

3.2.2 Decoder
In Figure 2, the input of the decoder is rht =
copy(ryit) that extracts the hidden state correspond-
ing to the head yit from the encoded hidden state ri.
The decoder performs biSRU(.), as shown in equa-
tion 2, to model the context information between
heads.

hht = biSRU(hht−1, r
h
t ) (2)

Self-attention Module To model the scores be-
tween similar head, we apply a gated self-matching
layer (Wang et al., 2017), the equation follows as:

ht = biSRU(ht−1, gt)

gt = sigmoid(Wg[hht ; ct])� [hht ; ct]

ct =
m∑
j=1

αt,khht

αt,k = exp(hhkWαhh
t′

)/
∑
j

exp(hhkWαhht )

(3)

Where ct is the context vector of the whole heads.
gt is a hidden state generated from the additional
gate. The additional gate concatenates the hidden
state hht and the context vector ct, and applies a
sigmoid gate to convert the significant value of the
two vectors to larger ones, and otherwise to smaller
ones. BiSRU(.) models gt with gate applied and
generated ht.

Deep Biaffine Score To output the mention start
boundary and coreference resolution, we apply elu
(Clevert et al., 2015) to the last hidden state ht of
the decoder as shown in Dozat and Manning (2016),
and create the hidden states as hmen srct , hcoref srct ,
hcoref tgtt . In this case, the hidden state to be used
for the output of the mention boundary is hmen tgti

based on the output hidden state ri of the encoder.

hmen srct = elu(FFNN(men src)(ht))

hmen tgti = elu(FFNN(men tgt)(ri))

hcoref srct = elu(FFNN(coref src)(ht))

hcoref tgtt = elu(FFNN(coref tgt)(ht))

(4)

Encoder
BERT-SRU

Decoder

Input

Encoder
BERT-SRU

Decoder

Input

Encoder
BERT-SRU

Decoder

Input

Encoder
BERT-SRU

Decoder

Input

Decoder

Encoder
BERT-SRU

Decoder

Input

KD-loss CE-loss

MD-gold

KD-loss CE-loss

Coref-gold

Teacher Student

Figure 3: Ensemble knowledge distillation for BERT-
SRU Pointer Networks.

We apply the deep biaffine score when perform-
ing the attention to output the mention boundary
and the coreference resolution, and the equation
follows as:

sment,i = h>men tgti Uhmen srct + w>hmen srct

scoreft,t = h>coref tgtt Uhcoref srct + w>hcoref srct

(5)

3.3 Model Extension: Ensemble Knowledge
Distillation

An ensemble is a model that combines the output
results of several single models into a single re-
sult. When performing the ensemble, we use the
method of averaging all the softmax probability
distributions of single models. Meanwhile, knowl-
edge distillation is a model compression technique
to reduce the size of a single model (Hinton et al.,
2015). A small student model is trained to learn
the output distribution of a large teacher model us-
ing a loss function that compares the distribution,
such as Kullback Leibler distance (KLD, Kullback
and Leibler (1951)). As shown in Figure 3, we
use the ensemble model as the distribution of the
teacher model and we distill its knowledge to a
single model as the student model. The loss func-
tion that we use to train the knowledge distillation
is KLD, and the final loss function equation is as
follows:

Lkd =
∑

pT (y|x) log (
pT (y|x)

pS(y|x)
) (6)

L = αLcorefce + (1− α)Lmence

+β(γLcorefkd + (1− γ)Lmenkd )
(7)
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Training Dev Test
#Document 2,819 645 571
#Sentence 8,299 1,086 1,167
#Word 126,720 12,834 14,334
#Morpheme 295,076 30,396 34,657
#Mention 30,923 1,978 2,431
#Entity 10,416 799 931

Table 1: Dataset statistics of ETRI dataset for Korean
coreference resolution

In equation 6, pT (y|x) is the result distribution of
the teacher model, and pS(y|x) is the result distri-
bution of the student model. Equation 7 calculates
the final loss by adding the cross-entropy loss (Nasr
et al., 2002) and the knowledge distillation loss
of the mention detection and coreference solution.
Cross-entropy losses for mention and coreference
resolution areLmence andLcorefce , and knowledge dis-
tillation losses are Lmenkd and Lcorefkd , respectively.
Here, the weight α is a hyper-parameter that deter-
mines the loss reflection ratio between coreference
resolution and mention boundary. β is the weight of
knowledge distillation loss. γ determines the loss
reflection ratio between coreference resolution and
mention boundary in the teacher model. α, β and
γ all perform optimization and the values are 0.9,
0.2 and 0.9, respectively.

4 Experiments

Dataset and Measures We use the Korean coref-
erence resolution data (Park et al., 2016) from the
ETRI quiz domain of AIOpen1. Table 1 summa-
rizes the dataset statistics. We use CoNLL F1 aver-
aged MUC, B3, and CEAFφ4 according to the offi-
cial CoNLL-2012 evaluation script. However, we
evaluate coreference resolution using only heads of
mentions as it is more suitable for Korean corefer-
ence resolution because the positional weighting in
the script is tailored for English.

Pre-training Korean BERT BERT consists of
a bidirectional transformer encoder with several
layers. For pre-training BERT, we reuse the hy-
perparameters from Devlin et al. (2019). We used
Wikipedia and news data (total 23.5 GB) collected
from the web. After performing morpheme analy-
sis on all input words, tokenization was done on
the subwords using BPE. The dictionary consists
of 30,349 BPE tokens. We used the ETRI language

1http://aiopen.etri.re.kr/

analyzer for morpheme analysis which is also avail-
able in AIOpen as a tool for Korean NLP.

Implementation Hyper-parameters of the BERT-
SRU-based Pointer Networks model are as follows.
We fine-tune all models on the ETRI Korean data
for 70 epochs with a batch size of six for each
GPU. The model trained on 2 GEFORCE GTX
1080 Ti GPU cards. The number of hidden layer
dimensions and feature dimensions of the SRU
was optimized to 800 and 1,600, respectively. We
have optimized the stack of the SRU hidden layer
to two. We set the dropout as 0.1. The training
algorithm we used is Adam (Kingma and Ba, 2014),
and Adam weight decay was set to 1× 10−2. The
learning rate was set to 5 × 10−5, and the linear
method was used in the learning rate schedule. The
maximum length of the input sequence was limited
to 430 because the most extended input sequence
length in the test set was 428. We used the ETRI
language analyzer to obtain POS-tagging, NER,
and dependency parsing features.

Head Candidates In general, pointer networks’
target outputs align with those of the decoder in-
puts. For our head-final coreference resolution, we
set the inputs of the decoder as the list of head
candidates. These head candidates are all nouns of
the source document and they is extracted using
the POS-tags. By doing so, we can effectively re-
duce the computational complexity to O(n2), as
the search for coreference links is only done be-
tween the head candidates.

Attention Masking In coreference resolution,
the antecedent at position i comes before the head
at j, where i <= j. Similarly, in mention detec-
tion, the beginning boundary of a mention always
appears before the head. Accordingly, when cal-
culating the attention score, we perform attention
masking to prevent attention from being calculated
for the element that is later than the j-th position.

5 Results

In this section, we show our experimental results
for Korean coreference resolution. We denote the
BERT-SRU-based ptr-net as our model for head-
based coreference resolution. The performance of
the models is measured and compared using the
CoNLL Average F1-score.
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Word CoNLL Doc/ Time
Model Embedding Avg. F1 sec complexity
e2e-coref (Lee et al., 2017) NNLM 59.4 24 O(n4)
c2f-coref (Lee et al., 2018) ELMo 60.2 23 O(n4)
BERT-coref (Joshi et al., 2019b) BERT 67.0 15 O(n4)
BERT-SRU ptr-net (Google) BERT 63.5 28 O(n2)
BERT-SRU ptr-net (single) BERT 66.2 30 O(n2)
BERT-SRU ptr-net (KD) BERT 66.9 30 O(n2)
BERT-SRU ptr-net (ensemble) BERT 68.6 - O(n2)

Table 2: Experimental results on the test set of the Korean data from ETRI wiseQA. The first column shows which
word embedding method is used. The CoNLL Avg. F1 is the main evaluation metric that is averaged by the F1 of
MUC, B3, and CEAFφ4

(Full results are in the Appendix). Based on the head-final trait of Korean, the coreference
resolution score is calculated based on the head candidates. In the second column, we use NNLM and ELMo pre-
trained in Korean (Lee et al., 2014; Park et al., 2019b). The third column (Doc/sec) is the number of documents
processing per second. The final column shows a time complexity for each model.

5.1 Coreference Resolution

Table 2 compares our model with several previ-
ous systems for the Korean coreference resolution.
We calculate the averaged F1 score of MUC, B3,
CEAFφ4 , according to the official CoNLL−2012
evaluation scripts. We evaluate performance us-
ing only the head, the last word of mention. Our
main baselines are the span-ranking models from
(Lee et al., 2017, 2018; Joshi et al., 2019b) Korean
word vector representation, and they are denoted as
e2e-coref, c2f-coref, BERT-coref, re-
spectively. We extend the original Tensorflow im-
plementations of e2e-coref , c2f-coref2

and BERT-coref3 for Korean coreference res-
olution.

The e2e-coref shows average F1 of 59.4
and c2f-coref from (Lee et al., 2018) uses
second-order span representations achieves a
slightly higher performance of 60.2 F1 for head-
based Korean coreference resolution. Our pro-
posed model achieves 66.2 of CoNLL F1, which
is 6.8 and 6.0 points higher than e2e-coref
and c2f-coref, respectively. However, this im-
provement is most likely due to the usage of
BERT because BERT-coref also shows a sig-
nificantly higher performance (67.0 F1) than the
other two baselines, and its main difference with
c2f-coref is the usage of BERT.

Meanwhile, by ensembling 10 models, we
achieve state-of-the-art performance in this Korean
dataset with F1 of 68.6, which is 2.4 points higher
than our single model and 1.6 points more than
BERT-coref. However, as ensembling models is
notoriously expensive in terms of inference time

2https://github.com/kentonl/e2e-coref
3https://github.com/mandarjoshi90/coref

and memory usage, we also provide a knowledge
distilled model of the ensemble that solves this
problem which is referred to as BERT-SRU ptr-net
(KD). This distilled model has the same size as
the single model while having 0.7 points higher
in F1, and only 0.1 point difference with the best
single model, BERT-coref. It is noteworthy that
not only our ensemble KD model can achieve sim-
ilar performance to BERT-coref without using
any higher-order modeling, it also has a 2x faster
document processing speed (30 vs 15 doc/sec) due
to the much smaller computational complexity.

We also compare the usage of different pre-
trained BERT embeddings. Table 2 shows that our
pre-trained version is more suitable for this task
than Google’s multilingual BERT4 (BERT-SRU
ptr-net (Google)).

5.2 Ensemble Knowledge Distillation
Ensemble We perform an ensemble using ten
single models with different random seeds on the
dev set. The lowest performance among the 10-
models is 70.04% F1, and the average F1 score
is 70.37% and Std. deviation is 0.253, both of
which still outperforms the 68.62 F1 of the Ko-
rean BERT-coref from Joshi et al. (2019b). We
perform a maximum score ensemble and an av-
erage score of the ensemble for 10-models. The
maximum score ensemble is 72.26% F1, and the
average score of the ensemble is 72.23% F1. But
we choose the average score of the ensemble be-
cause the average ensemble is 1.28% higher than
the maximum score ensemble in the test set.

Knowledge Distillation We optimize the weight
option β of knowledge distillation, such that we

4https://github.com/google-research/bert
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Feature Avg. F1 ∆

BERT-SRU ptr-net (single) 70.83 −
− morp boundary 70.03 −0.80
− dependency parsing 69.71 −1.12
− NER 69.63 −1.20
− head distance 69.56 −1.27
− word boundary 69.23 −1.60

Table 3: Feature ablation study of Korean coreference
resolution on dev set.

Component Avg. F1 ∆

BERT-SRU ptr-net (single) 70.83 −
− attention masking 70.17 −0.66
− head target class 68.44 −2.39
− mention detection module 70.09 −0.74
− self-attention module 69.89 −0.94

Table 4: Component ablation study on the dev set.

apply β only to knowledge distillation loss term
as L = Lce + βLkd in equation 7. The optimized
β is 0.2, and it is meaningful to apply the loss to
Korean coreference resolution.

6 Analysis

Feature ablation study We perform feature ab-
lation to understand the effect of each feature on
Korean coreference resolution. Table 3 compares
the ablation performance of each feature. Remov-
ing the morp boundary deteriorates the average F1
score by 0.8%. Also, dependency parsing or NER
feature decreases 1.12, 1.20 F1 score, respectively.
If the head distance feature is removed, the F1 score
is reduced by 1.27%. Among all the features, the
word boundary has the most significant difference
from the other features.

Component ablation study To understand the
effect of different components on the model, we
perform components ablation study on the dev set,
as illustrated in Table 4. We apply attention mask-
ing to consider only true antecedents when calculat-
ing the attention score in the decoder of the pointer
networks and define the head candidate list (nouns)
as the target class to reduce candidates of the target
class. Removing this attention mask decreases the
average F1 score by 0.66 points. When we define
the target class as the entire input document, it de-
teriorates the F1 score significantly by 2.39 points.
These two methods combined make the most con-
tribution to our model.

In addition, we share a hidden layer to perform
coreference resolution and detection of mention
start boundary together. When mention detection
module is removed, the F1 score is reduced by
0.74. Finally, removing the self-attention module
of the decoder results in a difference of 0.94 F1.
Accordingly, it can be seen that all components of
the proposed model are contribute meaningfully to
the Korean coreference resolution task.

Qualitative Analysis Our qualitative analysis in
Figure 4 highlights the strengths of our model. Fig-
ure 4 shows examples first in Korean and then its
English translated version. In Example 1, we can
see that the removal of the mention detection (w/o
MD) module from our model does not properly
link the entity to 레오나르도 다빈치 (Leonardo
da Vinci). When training using BERT embedding
without fine-tuned Korean BERT, it does not find
엘리자베타 (Elisabeta) as an entity to resolve. On
the other hand, our model distinguishes various
entity information and performs coreference reso-
lution correctly on all entities. From example 2, our
model even finds물체 (object) entity links missing
from the ground truth, demonstrating the robust-
ness of our model.

Meanwhile, pronouns and determiner phrases
are the most substantial part of coreference resolu-
tion. In example 3, our model can successfully pre-
dict that the pronouns and the determiner phrases
such as이사자성어 (This idiom),이말 (this),무
엇 (What) are linked to an entity as 어려운 기회
(challenging opportunity). Furthermore, in Korean
documents, foreign languages such as Chinese char-
acters and English frequently appear. Our model
reflects the contextual information and can success-
fully perform coreference to foreign languages. In
Example 4, Persian token exists in the vocabulary
of BERT and the model can successfully resolve
the coreference between the two foreign words. In
addition, the model can also detect relatively long
and complex noun phrases, such as낙타나말등에
짐을 싣고 떼지어 다니면서 특산물을 파고 사는

상인의집단 (a group of merchants carrying loads
of troops on camels and horses and selling special-
ties).

Weaknesses and Future Works As shown from
the results, head-final coreference resolution, which
reflects the linguistic characteristics of Korean, has
a significant computational advantage over span-
based coreference resolution. However, our method
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1

Truth [[이탈리아의화가]0레오나르도다빈치]0가 [[[[피렌체의부호]1프란체스코데조콘다]1의부인]2엘리자베타]2를그린초상화.
A portrait of [[Italian painter]0 Leonardo da Vinci]0 depicting [Elisabeta, [wife of [[Florence's rich]1 Francesco de Joconda]1]2]2.

Ours [[이탈리아의화가]0레오나르도다빈치]0가 [[[[피렌체의부호]1프란체스코데조콘다]1의부인]2엘리자베타]2를그린초상화.
A portrait of [[Italian painter]0 Leonardo da Vinci]0 depicting [Elisabeta, [wife of [[Florence's rich]1 Francesco de Joconda]1]2]2.

w/o MD 이탈리아의화가레오나르도다빈치가피렌체의 [부호]1프란체스코데 [조콘다]1의 [부인]2 [엘리자베타]2를그린초상화.
A portrait of Italian painter Leonardo da Vinci depicting [Elisabeta, [wife of [[Florence's rich]1 Francesco de Joconda]1]2]2.

BERT emb. [[이탈리아의화가]0레오나르도다빈치]0가 [[피렌체의부호]1프란체스코데조콘다]1의부인엘리자베타를그린초상화.
A portrait of [[Italian painter]0 Leonardo da Vinci]0 depicting Elisabeta, wife of [[Florence's rich]1 Francesco de Joconda]1.

2
Truth [도플러효과를이용한기구]0인 [이것]0은움직이는물체에초음파등을쏘아물체의속도를측정한다.

[An instrument using the Doppler effect]0, [it]0 measures the speed of an object by shooting an ultrasonic wave on a moving object.

Ours [도플러효과를이용한기구]0인 [이것]0은 [움직이는물체]1에초음파등을쏘아 [물체]1의속도를측정한다.
[An instrument using the Doppler effect]0, [it]0 measures the speed of [an object]1 by shooting an ultrasonic wave on [a moving object]1.

3 Ours

['좀처럼만나기어려운기회']0를뜻하는 [이사자성어]0는중국동진시대의학자인원굉이 '현명한군주와지모가뛰어난신하가만
나는기회는천년에한번쯤이다'라고한데서유래했다. [이말]0은 [무엇]0일까?
[This idiom]0, which means [‘challenging opportunity,']0 comes from Won Auk, a scholar from the East China era, who said, "A chance to meet a wise
monarch and a brilliant servant is once every millennium." [What]0 does [this]0 mean?

4 Ours

[대상(隊商)]0은 [낙타나 말 등에 짐을 싣고 떼지어 다니면서 특산물을 팔고 사는 상인의 집단]0을 뜻하며 [[캐러밴(영어: caravan)]0

또는카라반(페르시아어: .0이라고도부른다[(کاروان
[A caravan (隊商)]0 is [a group of merchants carrying loads of troops on camels and horses and selling specialties]0, also called [caravans]0 or [caravans
.0[(کاروان)

Figure 4: Qualitative Analysis: Examples of predictions from the development data. Example 1 and 2 describe
the coreference entities predicted in our model. Each row of examples 3 to 4 depicts a single coreference entity
predicted by our model. Square brackets refer to mentions, and underline refers to the head. The superscript in the
mention is the entity number.

Document length # Docs Avg. F1
0-32 175 71.98
33-64 248 75.48
65-96 151 72.91
97-128 49 66.96
128+ 22 52.32

Table 5: Performance on the Korean ETRI dev set gen-
erally drops as the document length increases.

can only be applied to languages that are either
strongly head-initial (head is at the beginning of
mention) or strongly head-final, and English is a
mixture of those two. In future works, a search for
English linguistic traits could alleviate the compu-
tational complexity issue of this task in English or
other mixed head-directional languages.

Furthermore, as shown in Table 5, it is clear
that the coreference resolution performance sig-
nificantly decreases when the document length in-
creases. Although this is partly due to the Korean
dataset being relatively small and non-uniform re-
garding document length, we believe the choice
of BERT size is also relevant. Recent studies
have shown that larger BERT might better encode
longer contexts (Joshi et al., 2019a). By using
the BERT-large model (we use BERT-base)
in Joshi et al. (2019b), coreference resolution im-
proves overall performance, especially for long doc-
uments. In future works, we would like to explore
BERT variants that are good at larger contexts.

7 Conclusion

We propose head-based coreference resolution that
reflects the head-final characteristics of Korean and
present a suitable BERT-SRU-based Pointer Net-
works model that leverages this linguistic trait. The
proposed method, as the first end-to-end Korean
coreference resolution model, not only achieves
state-of-the-art performance in the Korean coref-
erence resolution model through ensembling but
also dramatically speeds up the document process-
ing time compared to the conventional span-based
coreference resolution. Our method achieves this
result by reducing the problem of coreference res-
olution from a search over span candidates to a
search over head candidates using the fact that we
can easily extract the mention heads for a head-final
language.

Moreover, our proposed method of using head-
directionality to speed up coreference resolution
while maintaining the best performance is valid
for not only other strongly head-final languages
like Japanese, but also for strongly head-initial
languages as the same method of head extraction
can be applied. We believe that our paper also
provides an interesting and important research di-
rection. Combining linguistic theories like head-
directionality and branching with deep learning
has a strong potential of more efficiently and ef-
fectively model fundamental tasks like coreference
resolution.
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A Appendices

A.1 Related Work
Traditional coreference resolution studies are
divided into rule- and machine learning-based
methods. In the rule-based method, Stanford’s
model (Lee et al., 2013), applied to multi-pass
sieve using pronouns, entity attributes, named en-
tity information, and so on. In the statistics-based,
various coreference models have been proposed
such as mention-pair (Ng and Cardie, 2002; Ng,
2010), mention-ranking (Wiseman et al., 2015;
Clark and Manning, 2016a) and entity-level mod-
els (Haghighi and Klein, 2010; Clark and Manning,
2016b).

Lee et al. (2017) defined mentions as span rep-
resentations and proposed a span ranking model
based on long short-term memory (LSTM, (Hochre-
iter and Schmidhuber, 1997)) for all spans in the
document. As span representations could reflect
the contextual information from LSTM, but the
other two spans are interpreted as a related entity.
This phenomenon results in local consistency er-
rors that yield erroneous coreference resolutions.
Hence, Lee et al. (2018) performed the attention
mechanism to resolve coreference using a high-
order function. The end-to-end model of (Lee et al.,
2017, 2018) showed the superior performance in
English coreference resolution however, the com-
plexity of O(n4) is considering all spans and span
pairs of the document. Zhang et al. (2018) is based
on the (Lee et al., 2017), which replaced the concat
attention score into the biaffine attention score to
calculate the conference score. Also, it performed
the multi-task learning process that also calculates
the loss for the mention score.

Simple recurrent units (SRU) (Lei et al., 2017)
architecture solves the vanishing gradient problem
that occurs when back-propagation of the recur-
rent neural network (RNN). SRU, which is one of
RNN types such as gated recurrent unit architec-
ture (GRU) (Cho et al., 2014) and LSTM, is less
computational complexity than other RNN types
because the SRU encodes hidden states using a
feed-forward neural gate and recurrent cell in a
layer.

Recently, a variety of downstream studies us-
ing BERT (Bidirectional Encoder Representations
from Transformer, Vaswani et al. (2017); Devlin
et al. (2019)) which have been pre-trained with
large amounts of data, have been conducted in nat-
ural language processing tasks (Joshi et al., 2019b;

Zhang et al., 2019; Park et al., 2019a; Wang et al.,
2019). A BERT-coref study was also conducted
in the English coreference resolution task, and a
more effective SpanBERT (Joshi et al., 2019a) for
coreference resolution has also been studied, with
dramatic gains in GAP (Webster et al., 2018) and
OntoNotes (Pradhan et al., 2012) datasets. A quali-
tative assessment of BERT-coref showed that BERT
is significantly better at distinguishing unique enti-
ties and concepts.

A.2 Data Format for Our Model
The following example shows input sequence, head
list and decoder output format.

• Input sequence for BERT: ”[CLS] 그리
스/NNP 로마/NNG 신화/NNG 에서/JKB
바 카스/NNP 이/VCP 라고/EC 도/JX
불리/VV 는/ETM 술/NNG 의/JKG
신/NNG [SEP]”

• Heads: ”그리스/NNP, 로마/NNG, 신

화/NNG,바카스/NNP,술/NNG,신/NNG”

• Heads applied by BPE: ”그리스/NNP ,
로마/NNG , 신화/NNG , 바, 술/NNG ,
신/NNG ”

• Head list: [0, 1, 2, 3, 5, 12, 14]

• Decoder output: [0, 0, 0, 0, 0, 5, 5]

We add [CLS] and [SEP] to match the input
sequence to the BERT format. The Heads is an
example of heads included in a sentence, and the
Heads applied by BPE is an example of heads with
BPE applied. BPE divides words into subwords.
The head divided into subwords uses the first token
as the representative of the head. In the example
of the Heads applied by BPE, the representative
of the BPE-applied head ’바’ (Ba) and ’카스/NNP’
(cchus/NNP) is ’바’ (Ba). The Head list is the po-
sition of the head in the sentence that matches the
BERT input format, which is input to the decoder.
The head list is a target class. The decoder output
is a position where the coreference resolves in the
head list. Since ’바’ (Ba) is first mention in the en-
tity of Bacchus, ’바’ (Ba) outputs its own location
of 5. ’신/NNG’ (a god) outputs position 5 because
it is linked to ’바’ (Ba). We then change the output
to word units via post-processing.

A.3 Overall Performance
Please refer to Table 6 for full performance on all
metrics, and dev set results for Table 7.
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MUC B3 CEAFφ4 CoNLL
Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Avg. F1
e2e-coref (Lee et al., 2017) 66.9 55.2 60.5 64.5 53.1 58.2 66.1 53.9 59.4 59.4
c2f-coref (Lee et al., 2018) 68.3 56.4 61.8 59.0 53.4 59.0 66.4 54.4 59.8 60.2
BERT-coref (Joshi et al., 2019b) 71.7 65.0 68.2 69.3 63.0 66.0 72.2 62.4 66.9 67.0
BERT-SRU enc-dec (Google) 67.7 61.9 64.6 65.7 59.8 62.6 68.5 58.8 63.3 63.5
BERT-SRU enc-dec (single) 67.3 67.3 67.3 64.8 65.3 65.1 69.5 63.5 66.3 66.2
BERT-SRU enc-dec (ensemble) 72.3 67.6 69.9 70.0 65.2 67.5 75.0 63.0 68.5 68.6
BERT-SRU enc-dec (KD) 68.0 68.2 68.1 65.6 66.0 65.8 71.1 62.9 66.7 66.9

Table 6: Experimental results on the test set of the Korean data from ETRI wiseQA. The final column (CoNLL Avg.
F1) is the main evaluation metric, averaged by the F1 of MUC, B3, and CEAFφ4 . Based on the Korean head-final,
the coreference resolution score is calculated based on the head of the mentions.

Model Avg. F1 ∆

BERT-SRU ptr-net (single) 70.83 -
− fine-tuning 64.74 −6.09
BERT-SRU ptr-net (Google) 67.38 −3.45
BERT-coref 68.62 −2.21

Table 7: Dev set results. We evaluate the performance
of models using different BERT.

A.4 Optimizing Hyperparameters

We perform hyperparameter optimization on the
baseline model of the BERT-SRU Pointer Net-
works, which is not applied to the head target class
component. We optimize hyperparameters for the
development set, and hyperparameter optimization
proceeds for the feature embedding size, the num-
ber of RNN hidden layer dimensions, and the num-
ber of biaffine hidden layer dimensions. We set the
number of dimensions to 50, 100, 200, 400, 800,
1600, respectively, to find the hyperparameters that
give the best performance.

Optimizing Dimension Size of Feature Embed-
ding In Table 8, we perform an optimization of
the feature embedding size and our model shows
the best performance when the embedding size is
1600. At this time, we could see that the overall
performance improves in proportion to the size of
the embedding dimension according to Table 8.

Optimizing Size of RNN Hidden States The
optimization of the number of RNN hidden layer di-
mensions is as shown in Table 9, and when the hid-
den state size is 800, the performance is as good as
Table 8. We consider that our model with the num-
ber of moderately large dimensions shows good
performance because the hidden state e of equa-
tion 1 is that the hidden state of the BERT and the
hidden state of the feature are concatenated.

Optimizing Size of Biaffine Hidden States Ta-
ble 10 shows the optimization of the number of
biaffine hidden layer dimensions, and when the
number of hidden layer dimensions is 50, the per-
formance 69.72% of CoNLL F1 is shown as in the
previous tables. We perform modeling by apply-
ing the head target class component based on the
optimized hyperparameters. As a result, the per-
formance of the single model shows 70.83% of
CoNLL F1.

A.5 Optimizing RNN types

Table 11 compares performance by RNN types
such as SRU, LSTM, and GRU. We choose the
RNN type suitable for Korean coreference reso-
lution and optimize the number of layers of each
RNN type. The optimal RNN type and the num-
ber of layers are 70.83% F1 with 2-layers SRU.
Because the SRU uses a highway network ((Sri-
vastava et al., 2015)), a skip connection is used to
allow the gradient to directly propagate to the pre-
vious layer; the information loss is small even if
the stack is deepened.

A.6 Ensemble Knowledge Distillation

Ensemble Table 12 shows the performances of
ten single models with different random seed and
ensemble models on the dev set. We are interested
in how the proposed model performs under differ-
ent random initial conditions. Our model observes
consistent performance regardless of 10 different
initializations. The lowest performance among the
10-models is 70.04% F1, and the mean F1 score is
70.37%, both of which still outperforms the 68.62
F1 of the Korean BERT-coref from Joshi et al.
(2019b). We perform a maximum score ensemble
and an average score of the ensemble for 10-models.
The maximum score ensemble is 72.26% F1, and
the average score of the ensemble is 72.23% F1.
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MUC B3 CEAFφ4 CoNLL
Number of dimensions F1 F1 F1 Pre. Rec. Avg. F1

50 69.71 66.85 64.60 63.05 71.65 67.05
100 69.22 66.86 65.76 62.66 72.65 67.28
200 70.14 67.75 65.85 65.80 70.21 67.91
400 70.42 67.93 66.40 65.38 71.42 68.25
800 70.56 67.82 66.32 65.11 71.69 68.23
1600 71.92 69.16 68.08 66.85 72.85 69.72

Table 8: Optimizing number of feature embedding size on the Korean ETRI dev set.

MUC B3 CEAFφ4 CoNLL
Number of dimensions F1 F1 F1 Pre. Rec. Avg. F1

50 69.76 67.68 69.24 66.48 71.54 68.89
100 69.72 66.71 65.16 64.41 70.25 67.20
200 69.97 67.14 65.44 64.27 71.14 67.52
400 69.26 67.52 68.63 66.88 70.17 68.47
800 71.92 69.16 68.08 66.85 72.85 69.72
1600 70.64 68.32 69.48 67.22 72.00 69.48

Table 9: Optimizing number of RNN hidden layer dimensions on the Korean ETRI dev set.

MUC B3 CEAFφ4 CoNLL
Number of dimensions F1 F1 F1 Pre. Rec. Avg. F1

50 71.92 69.16 68.08 66.85 72.85 69.72
100 70.94 68.36 66.77 67.07 70.48 68.69
200 70.77 68.22 66.24 64.44 72.93 68.41
400 70.97 68.13 66.56 63.92 73.92 68.55
800 70.30 67.39 65.02 63.43 72.36 67.57
1600 70.81 68.23 66.21 67.22 69.74 68.42

Table 10: Optimizing number of Biaffine hidden layer dimensions on the Korean ETRI dev set.
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RNN type #Layer Avg. F1
SRU 1 69.30
SRU 2 70.83
GRU 1 69.77
GRU 2 69.74
LSTM 1 69.31
LSTM 2 68.55

Table 11: Optimizing RNN type and the number of lay-
ers on the Korean ETRI dev set.

Seed# Avg. F1 Seed# Avg. F1
Seed 1 70.04 Seed 6 70.23
Seed 2 70.31 Seed 7 70.43
Seed 3 70.45 Seed 8 70.55
Seed 4 70.83 Seed 9 70.61
Seed 5 70.11 Seed 10 70.12

Table 12: Robustness of our model on different seeds
for random initialization. The average of 10-models is
70.37%, and Std. the deviation is 0.253. Note that our
official model is trained on seed 4.

But we choose the average score of the ensemble
because the average ensemble is 1.28% higher than
the maximum score ensemble in the test set.

Knowledge Distillation We optimize the weight
option β of knowledge distillation. The final loss
calculated when training knowledge distillation
can be divided into two methods. The first method
applies β only to the knowledge distillation loss
term as L = Lce + βLkd in equation 7. The
second method applies β to both terms, such as
L = (1− β)Lce + βLkd.

Figure 5 shows the optimization results for the
hyper-parameter β used in the knowledge distilla-

Figure 5: Hyperparameter β optimization of knowledge
distillation on dev set of Korean coreference resolution
.

tion when training with an ensemble knowledge
distillation model. The experiment uses the loss
function of equation 7 with methods and optimizes
β between 0.1 and 1.0. When using the KLD, tem-
perature (Hinton et al., 2015) is set to 5. As a re-
sult, the first method shows that the optimal perfor-
mance is 71.18% F1 when β is 0.2 on the dev set.
This method improves the F1 score by 0.34% com-
pared to the single model. When β 0.1, F1 score
is 71.06%, it is the second-best performance in the
same method. In the case of the second method,
when β is 0.3 and 0.5, F1 scores are 70.66% and
71.01%, respectively, which are improved than the
single model. Accordingly, we can see that knowl-
edge distillation of β below 0.5 is helpful for train-
ing, and it is meaningful to apply the loss of the
first method to Korean coreference resolution.


