
Findings of the Association for Computational Linguistics: EMNLP 2020, pages 2329–2339
November 16 - 20, 2020. c©2020 Association for Computational Linguistics

2329

Edge-Enhanced Graph Convolution Networks for
Event Detection with Syntactic Relation

Shiyao Cui1,2 Bowen Yu1,2 Tingwen Liu1,2∗

Zhenyu Zhang1,2 Xuebin Wang1,2 and Jinqiao Shi3,1
1Institute of Information Engineering, Chinese Academy of Sciences. Beijing, China

2School of Cyber Security, University of Chinese Academy of Sciences. Beijing, China
3Beijing University of Posts and Telecommunications. Beijing, China
{cuishiyao, yubowen, zhangzhenyu1996}@iie.ac.cn

{liutingwen, wangxuebin}@iie.ac.cn
shijinqiao@bupt.edu.cn

Abstract
Event detection (ED), a key subtask of infor-
mation extraction, aims to recognize instances
of specific event types in text. Previous s-
tudies on the task have verified the effective-
ness of integrating syntactic dependency in-
to graph convolutional networks. However,
these methods usually ignore dependency la-
bel information, which conveys rich and use-
ful linguistic knowledge for ED. In this pa-
per, we propose a novel architecture named
Edge-Enhanced Graph Convolution Network-
s (EE-GCN), which simultaneously exploit-
s syntactic structure and typed dependency
label information to perform ED. Specifical-
ly, an edge-aware node update module is de-
signed to generate expressive word represen-
tations by aggregating syntactically-connected
words through specific dependency types. Fur-
thermore, to fully explore clues hidden in de-
pendency edges, a node-aware edge update
module is introduced, which refines the rela-
tion representations with contextual informa-
tion. These two modules are complementary
to each other and work in a mutual promo-
tion way. We conduct experiments on the
widely used ACE2005 dataset and the result-
s show significant improvement over competi-
tive baseline methods1.

1 Introduction

Event Detection (ED) is an important information
extraction task that seeks to recognize events of
specific types from given text. Specifically, each
event in a sentence is marked by a word or phrase
called “event trigger”. The task of ED is to detect
event triggers and classify them into specific types
of interest. Taking Figure 1 as an example, ED is
supposed to recognize the event trigger “visited’’
and classify it to the event type Meet.

∗Corresponding Author
1Source code of this paper could be obtained from http-

s://github.com/cuishiyao96/eegcned

nmod

Putin last visited Bush at his Texas ranch in November 2001

nsubj nmod:poss
case

nummodcase
dobjadvmod compound

nmod

ROOT

Figure 1: An example of syntactic dependency parsing,
which contains an event of Meet triggered by “visited”.

Dependency trees convey rich structural infor-
mation that is proven useful for ED (Nguyen and
Grishman, 2018; Liu et al., 2018b; Yan et al., 2019).
Recent works on ED focus on building Graph Con-
volutional Networks (GCNs) over the dependen-
cy tree of a sentence to exploit syntactic depen-
dencies (Nguyen and Grishman, 2018; Liu et al.,
2018b; Yan et al., 2019). Compared to sequence-
based models, GCN-based models are able to cap-
ture non-local syntactic relations that are obscure
from the surface form alone (Guo et al., 2019), and
usually achieve better performance.

Nevertheless, existing GCN-based ED method-
s do not consider dependency labels, which may
serve as significant indicators to reveal whether
a word is a trigger or not. As shown in Fig-
ure 1, the dependency “nsubj” (nominal subject)
and “dobj”(direct object) show that “Putin” and
“Bush” are the subject and object of “visited” re-
spectively, and the words connected to “visited”
with “nmod”(noun compound modifier) dependen-
cy express when and where the event happened.
Apparently, such dependency labels constitute an
effective evidence to predict the event type of “vis-
ited” as Meet. In addition, our statistical results on
the benchmark ACE2005 dataset show that “nsub-
j”, “dobj” and “nmod” take up 32.2% of trigger-
related dependency labels (2.5% for each relation
on average among all 40 dependency relations),
which means that simultaneously modeling syntac-
tic structure and dependency labels can be crucial
to make full use of the dependency trees to further



2330

improve the performance of ED.
Besides, we also observe that the same depen-

dency label under different context may convey
different signals for ED. Again, taking Figure 1 as
an example: the dependency “nmod” connected
with “ranch” indicates where the event happens
but another dependency “nmod” connected with
“November” points out when the event happens.
Such an observation demonstrates that assigning a
single context-independent representation for each
dependency label is not enough to express the com-
plex relations between words. This is to say, the
representations of dependency relations should be
context-dependent and dynamic, calculated and up-
dated according to a sentential context using a net-
work structure.

To model the above ideas, in this paper, we
propose a novel neural architecture named Edge-
Enhanced Graph Convolutional Networks (EE-
GCN), which explicitly takes advantage of the type-
d dependency labels with dynamic representations.
In particular, EE-GCN transforms a sentence to a
graph by treating words and dependency labels as
nodes and typed edges, respectively. According-
ly, an adjacency tensor is constructed to represent
the graph, where syntactic structure and typed de-
pendency labels are both captured. To encode the
heterogeneous information from the adjacency ten-
sor, EE-GCN simultaneously performs two kinds
of propagation learning. For each layer, an edge-
aware node update module is firstly performed for
aggregating information from neighbors of each
node through specific edges. Then a node-aware
edge update module is used to dynamically refine
the edge representation with its connected node rep-
resentations, making the edge representation more
informative. These two modules work in a mutual
promotion way by updating each other iteratively.

Our contributions are summarized as follows:

• We propose the novel EE-GCN that simultane-
ously integrate syntactic structure and typed
dependency labels to improve neural event
detection, and learns to update the relation
representations in a context-dependent man-
ner. To the best of our knowledge, there is no
similar work in ED.

• Experiments conducted on the ACE20052

benchmark show that EE-GCN achieves SO-
TA performance. Further analysis confirms

2https://catalog.ldc.upenn.edu/LDC2006T06

the effectiveness and efficiency of our model.

2 Related Works

In earlier ED studies, researchers focused on lever-
aging various kinds of linguistic features and man-
ually designed feature for the task. However, all
the feature-based methods depend on the quality of
designed features from a pre-processing step.

Most recent works have focused on leveraging
neural networks in this task (Chen et al., 2015; N-
guyen and Grishman, 2015; Nguyen et al., 2016;
Ghaeini et al., 2016; Feng et al., 2016). The exist-
ing approaches can be categorized into two class-
es: The first class is to improve ED through spe-
cial learning techniques including adversarial train-
ing (Hong et al., 2018), knowledge distillation (Li-
u et al., 2019; Lu et al., 2019) and model pre-
training (Yang et al., 2019). The second class is to
improve ED by introducing extra resource, such as
argument information (Liu et al., 2017), document
information (Duan et al., 2017; Zhao et al., 2018;
Chen et al., 2018), multi-lingual information (Liu
et al., 2018a, 2019), knowledge base (Liu et al.,
2016; Chen et al., 2017) and syntactic informa-
tion (Sha et al., 2018).

Syntactic information plays an important role
in ED. Sha et al. (2018) exploited a dependency-
bridge recurrent neural network to integrate the
dependency tree into model. Orr et al. (2018) pro-
posed a directed-acyclic-graph GRU model to in-
troduce syntactic structure into sequence structure.
With the rise of GCN (Kipf and Welling, 2017),
researchers proposed to transform the syntactic de-
pendency tree into a graph and employ GCN to
conduct ED through information propagation over
the graph (Nguyen and Grishman, 2018; Liu et al.,
2018b; Yan et al., 2019). Although these works
use syntax structures, few of them take dependen-
cy label information into consideration, which we,
here, demonstrate its importance. How to effective-
ly leverage the typed dependency information still
remains a challenge in this task.

3 Problem Statement

In this section, we formally describe the event de-
tection problem. Following previous works (Chen
et al., 2015; Nguyen et al., 2016; Liu et al., 2017;
Chen et al., 2018; Yan et al., 2019), we formulate
event detection as a sequence labeling task. Each
word is assigned a label that contributes to event
annotation. Tag “O” represents the “Other” tag,



2331

Edge-Aware Node Update Node-Aware Edge Update

𝑛"#$%

𝑛&#$%

𝑛%#$% 𝑛'#$%

𝑛"#

𝑛&#

𝑛%# 𝑛'#

𝑛"#$%

𝑛%#$% 𝑛'#$%

𝑒'&#$%𝑒%&#$%

𝑒"&#$%

𝑛&#$%

𝑛"#

𝑛%# 𝑛'#

𝑒&'#$%𝑒&%#$%

𝑒&"#$%

𝑛&#

𝑛"#

𝑛%# 𝑛'#

𝑒'&#𝑒%&#

𝑒"&#

𝑒"%#

𝑒%'#

𝑒'"#

𝑛&#

𝑛"#

𝑛%# 𝑛'#

𝑒&'#𝑒&%#

𝑒&"#
𝑒%"#

𝑒'%#

𝑒"'#

Putin

last

visited

Bush

…

Embedding BiLSTM ClassificationL layers of EE-GCN

𝑤*

𝑤% 𝑒%

𝑤" 𝑒"

𝑤& 𝑒&

𝑤' 𝑒'

𝑒*

ℎ%
, ℎ%-

ℎ"
, ℎ"-

ℎ&
, ℎ&-

ℎ*
, ℎ*-

𝑛&#

ℎ'
, ℎ'-

O

O

B-Meet

O

…

Figure 2: Illustration of EE-GCN event detection architecture. After embedding and BiLSTM layer, L layers of
EE-GCN are stacked to learn word representation for sequence labeling. EE-GCN contains two modules: Edge-
Aware Node Update Module first aggregates information from neighbors of each node through specific edge, and
Node-Aware Edge Update module refines the edge representation with its connected nodes.

which means that the corresponding word is irrel-
evant of the target events. In addition to “O”, the
other tags consist of two parts: the word position
in the trigger and the event type. We use the “BI”
(Begin, Inside) signs to represent the position in-
formation of a word in the event trigger. The event
type information is obtained from a pre-defined
set of events. Thus, the total number of tags is
2×NEventType+1, where NEventType is the num-
ber of predefined event types.

4 Methods

Figure 2 gives an illustration of EE-GCN based
event detection architecture, which is mainly com-
posed of three components: the Input Layer, the
Edge-Enhanced GCN layer and the Classification
Layer. Next, we detail all components sequentially
from bottom to top.

4.1 Input Layer

Let S = {w1, w2, ..., wn} denote an n-word sen-
tence, we first transform each word to a real-valued
vector xi by concatenating the following vectors:

• Word embedding wi: it captures the mean-
ingful semantic regularity of word. Following
previous works (Chen et al., 2018; Yan et al.,
2019), we use the word embedding pre-trained
by Skip-gram on the NYT Corpus.

• Entity type embedding ei: entities in the sen-
tence are annotated with BIO schema and we
map each entity type label to a real-valued em-
bedding by looking up an embedding table.

Thus, the input embedding of wi can be defined
as xi = [wi; ei] ∈ Rdw+de , where dw and de de-
note the dimension of word embedding and entity
type embedding respectively. Then, a BiLSTM lay-
er is adopted to capture the contextual information
for each word. For simplicity, we denote the contex-
tualized word representations as S = [h1, · · · ,hn],
where S ∈ Rn×d are used as initial node features
in EE-GCN.

4.2 Edge-Enhanced Graph Convolutional
Networks

In this subsection, we start by introducing the base-
line GCN model, and then present the proposed
EE-GCN, which can make full use of dependency
label features for better representation learning.

4.2.1 Vanilla Graph Convolutional Network
GCN (Kipf and Welling, 2017), which is capable
of encoding graphs, is an extension of convolu-
tional neural network. For an L-layer GCN where
l ∈ [1, · · · , L], if we denote Hl−1 the input state
and Hl the output state of the l-th layer, the graph
convolutional operation can be formulated as:

Hl = GCN(A, Hl−1, W)

= σ(AHl−1W),
(1)

where A ∈ Rn×n is an adjacency matrix express-
ing connectivity between nodes, W is a learnable
convolutional filter and σ denotes a nonlinear acti-
vation function, e.g., ReLU.

Previous GCN-based ED methods (Nguyen and
Grishman, 2018; Liu et al., 2018b; Yan et al., 2019)



2332

transform dependency tree to a graph according
to syntactic connectivity, with each word in the
sentence regarded as a node. The graph is repre-
sented by an n × n adjacency matrix A through
enumerating the graph, where Aij = 1 if there is
a syntactic dependency edge between node i and
node j, otherwise Aij = 0. Obviously, such ap-
proaches use a binary adjacent matrix as structural
information, and omit typed dependency label fea-
tures, which can be potentially useful for ED as
discussed in the introduction. It is supposed to be
mentioned that why these methods ignore typed
dependency labels. An intuitive way for vanilla
GCN to exploit these labels is to encode different
types of dependency relation with different con-
volutional filters, which is similar to RGCN (Kipf
and Welling, 2017). However, RGCN suffers from
over-parameterization, where the number of param-
eters grows rapidly with the number of relations.
Given that there exists approximately 40 types of
dependency relations and the size of ED dataset is
just moderate, models with large amount of param-
eters are likely to overfit, for which previous works
for ED ignore typed dependency labels.

4.2.2 Edge-Enhanced GCN
Edge-Enhanced GCN (EE-GCN) is an extension
of the vanilla GCN mentioned above, which in-
corporates typed dependency label information in-
to the feature aggregation process to obtain better
representations. Specifically, EE-GCN constructs
an adjacency tensor E ∈ Rn×n×p to describe the
graph structure instead of the binary adjacency ma-
trix used in the vanilla GCN, where Ei,j,: ∈ Rp is
the p-dimensional relation representation between
node i and node j, and p can also be understood
as the number of channels in the adjacency tensor.
Formally, E is initialized according to the depen-
dency tree, if a dependency edge exists between wi

and wj and the dependency label is r, then Ei,j,:

is initialized to the embedding of r obtained from
a trainable embedding lookup table, otherwise we
initialize Ei,j,: with a p-dimensional all-zero vec-
tor. Following previous works (Marcheggiani and
Titov, 2017; Zhang et al., 2018; Guo et al., 2019),
we initialize E based on an undirectional graph,
which means that Ei,j,: and Ej,i,: are initialized as
the same embedding. For the ROOT node in the
dependency tree, we add a self loop to itself with a
special relation “ROOT”.

In order to fully leverage the adjacency tensor
and effectively mine latent relation information be-

yond the dependency labels, two modules are im-
plemented at each layer l of EE-GCN to update the
node representations (H) and edge representations
(E) mutually through information aggregation:

Hl,El = EE-GCN(El−1,Hl−1). (2)

Edge-Aware Node Update Module
With words in sentence interpreted as nodes in

graph, edge-aware node update (EANU) module
updates the representation for each node by aggre-
gating the information from its neighbors through
the adjacency tensor. Mathematically, this opera-
tion can be defined as follows:

Hl = EANU(El−1,Hl−1)

= σ(Pool(Hl
1,H

l
2, ...,H

l
p)).

(3)

Specifically, the aggregation is conducted channel
by channel in the adjacency tensor as follows:

Hl
i = El−1

:,:,iH
l−1W, (4)

where El−1 ∈ Rn×n×p is the adjacency tensor
from initialization or last EE-GCN layer, El−1

:,:,i ∈
Rn×n denotes the ith channel slice of El−1, H0 is
the output of BiLSTM, W ∈ Rd×d is a learnable
filter, d is the dimension of node representation,
and σ is the ReLU activation function. A mean-
pooling operation is applied to compress features
since it covers information from all channels.
Node-Aware Edge Update Module

In the original adjacency tensor, the relation rep-
resentation between words is initialized to the de-
pendency label embedding. However, as mentioned
in the introduction, the same dependency label un-
der different context may convey different signals
for ED, thus assigning a single context-independent
representation for each dependency label is not e-
nough to express the complex relations between
words. To address this issue, we propose a novel
node-aware edge update (NAEU) module to dy-
namically calculate and update edge representa-
tions according to the node context. Formally, the
NAEU operation is defined as:

El
i,j,: = NAEU(El−1

i,j,:,h
l
i,h

l
j)

= Wu[E
l−1
i,j,: ⊕ hl

i ⊕ hl
j ], i, j ∈ [1, n],

(5)

where ⊕ means the concatenation operator, hl
i and

hl
j denote the representations of node i and node j

in the lth layer after EANU operation, respectively,



2333

El−1
i,j,: ∈ Rp is the relation representation between n-

ode i and node j, Wu ∈ R(2×d+p)×p is a learnable
transformation matrix. This operation refines the
adjacency tensor in a context-dependent manner, so
that the latent relation information expressed in the
node representations can be effectively mined and
injected to the adjacency tensor. And the adjacency
tensor is no longer constrained to just convey the
dependency label information, obtaining more rep-
resentation power. The updated adjacency tensor is
fed into the next EE-GCN layer to perform another
round of edge-aware node update, and such mutual
update process can be be stacked over L layers.

4.3 Classification Layer

After aggregating word (node) representations from
each layer of EE-GCN, we finally feed the repre-
sentation of each word into a fully-connected net-
work, which is followed by a softmax function to
compute distribution p(t|h) over all event types:

p(t|h) = softmax(Wth+ bt), (6)

where Wt maps the word representation h to the
feature score for each event type and bt is a bias
term. After softmax, event label with the largest
probability is chosen as the classification result.

4.4 Bias Loss Function

Following popular choices (Chen et al., 2018; Yan
et al., 2019), we adopt a bias loss function to
strengthen the influence of event type labels dur-
ing training, since the number of “O” tags is much
lager than that of event type tags. The bias loss
function is formulated as follows:

J(θ) =−
Ns∑
i=1

ni∑
j=1

log p(ytj |si, θ) · I(O)

+ α log p(ytj |si, θ) · (1− I(O)),

(7)

where Ns is the number of sentences, ni is the
number of words in the ith sentence; I(O) is a
switching function to distinguish the loss of tag
“O” and event type tags. It is defined as follows:

I(O) =

{
1, if tag is “O”
0, otherwise

, (8)

where α is the bias weight. The larger the α is,
the greater the influence of event type tags on the
model.

5 Experiments

5.1 Dataset and Evaluation Metrics
We conduct experiments on the ACE2005 dataset,
which is the standard supervised dataset for event
detection. The Stanford CoreNLP toolkit3 is used
for dependency parsing. ACE2005 contains 599
documents annotated with 33 event types. We use
the same data split as previous works (Chen et al.,
2015; Nguyen et al., 2016; Liu et al., 2017; Chen
et al., 2018; Yan et al., 2019) for train, dev and test
set, and describe the details in the supplementary
material (Data.zip). We evaluate the models using
the official scorer in terms of the Precision (P),
Recall (R) and F1-score4.

5.2 Hyper-parameter Setting
The hyper-parameters are manually tuned on the
dev set. We adopt word embeddings pre-trained
on the NYT corpus with the Skip-gram algorith-
m and the dimension is 100. The entity type and
dependency label embeddings are randomly initial-
ized. We randomly initialize the entity type and
dependency label embeddings with 25- and 50- di-
mension vectors. The hidden state size of BiLSTM
and EE-GCN are set to 100 and 150, respectively.
Parameter optimization is performed using SGD
with learning rate 0.1 and batch size 30. We use
L2 regularization with a parameter of 1e-5 to avoid
overfitting. Dropout is applied to word embeddings
and hidden states with a rate of 0.6. The bias pa-
rameter α is set to 5. The max length of sentence
is set to be 50 by padding shorter sentences and
cutting longer ones. The number of EE-GCN lay-
ers is 2, which is the best-performing depth in pilot
studies. We ran all the experiments using Pytorch
1.1.0 on Nvidia Tesla P100 GPU, with Intel Xeon
E5-2620 CPU.

5.3 Baselines
In order to comprehensively evaluate our proposed
EE-GCN model, we compare it with a range of
baselines and state-of-the-art models, which can
be categorized into three classes: feature-based,
sequence-based and GCN-based.

Feature-based models use human designed fea-
tures to perform event detection. 1) MaxEnt is pro-
posed by Li et al. (2013) using lexical and syntac-
tic features; 2) CrossEntity is proposed by Hong

3http://nlp.stanford.edu/software/stanford-english-
corenlp-2018-10-05-models.jar

4https://github.com/yubochen/NBTNGMA4ED/



2334

et al. (2011) using cross-entity information to de-
tect events.

Sequence-based models operate on the word
sequences. 1) DMCNN(Chen et al., 2015) builds
a dynamic multi-pooling convolutional model to
learn sentence features; 2) JRNN (Nguyen et al.,
2016) employs bidirectional RNN for the task; 3)
ANN-AugAtt (Liu et al., 2017) uses annotated
event argument information with supervised atten-
tion, where words describing Time, Place and Per-
son of events get larger attention score; 4) dbRN-
N (Sha et al., 2018) adds dependency arcs with
weight to BiLSTM to make use of tree structure
and sequence structure simultaneously; 5) HBT-
NGMA (Chen et al., 2018) applies hierarchical
and bias tagging networks to detect multiple events
in one sentence collectively.

GCN-based models build a Graph Convolution-
al Network over the dependency tree of a sentence
to exploit syntactical information. 1) GCN-ED (N-
guyen and Grishman, 2018) is the first attempt
to explore how to effectively use GCN in event
detection;2) JMEE (Liu et al., 2018b) enhances
GCN with self-attention and highway network to
improve the performance of GCN for event detec-
tion; 3) RGCN (Schlichtkrull et al., 2018), which
models relational data with relation-specific adja-
cency matrix and convolutional filter, is originally
proposed for knowledge graph completion. We
adapt it to the task of event detection by using
the same classification layer and bias loss with
our model; 4) MOGANED (Yan et al., 2019) im-
proves GCN with aggregated attention to combine
multi-order word representation from different GC-
N layers, which is the state-of-the-art method on
the ACE2005 dataset.

5.4 Overall Performance

We report our experimental results on the ACE2005
dataset in Table 1. It is shown that our model, EE-
GCN, outperforms all the baselines and achieves
state-of-the-art F1-score. We attribute the perfor-
mance gain to two aspects: 1) The introduction
of typed dependency label. EE-GCN outperforms
all existing GCN-based models which only utilize
syntactic structure and ignore the specific typed
dependency labels, this demonstrates that the type
of dependency label is capable of providing key
information for event detection. 2) The design of
context-dependent relation representation. Com-
pared with the baseline RGCN which also exploit-

Model P R F1

MaxEnt (Li et al., 2013) 74.5 59.1 65.9
CrossEntity (Hong et al., 2011) 72.9 64.3 68.3
DMCNN (Chen et al., 2015) 75.6 63.6 69.1
JRNN (Nguyen et al., 2016) 66.0 73.0 69.3
ANN-AugAtt (Liu et al., 2017) 78.0 66.3 71.7
dbRNN† (Sha et al., 2018) 74.1 69.8 71.9
HBTNGMA (Chen et al., 2018) 77.9 69.1 73.3
GCN-ED† 77.9 68.8 73.1
JMEE† (Liu et al., 2018b) 76.3 71.3 73.7
RGCN†‡ (Schlichtkrull et al., 2018) 68.4 79.3 73.4
MOGANED† (Yan et al., 2019) 79.5 72.3 75.7
EE-GCN†‡ 76.7 78.6 77.6

Table 1: Results on ACE2005. † means model only us-
ing dependency structure and †‡ denotes model using
syntactic dependency structure and typed dependency
label simultaneously; Bold marks the highest score a-
mong all models. Moreover, the Wilcoxons test shows
that significant difference (p < 0.05) exists between
our model and the previous SOTA MOGANED.

s both syntactic structure and dependency labels,
EE-GCN still improves by an absolute margin of
4.2%. We consider that it is because RGCN distin-
guishes different dependency labels with different
convolution filters, thus the same dependency label
maintains the same representation regardless of the
different context. As a result, the potential relation
information expressed beyond dependency labels
is not fully exploited. By contrast, our EE-GCN
model learns a context-dependent relation repre-
sentation during information aggregation process
with the help of the node-aware edge update mod-
ule, and thus better captures the information under
relations between words.

We also observe that EE-GCN gains its improve-
ments mainly on Recall, and we hypothesize that
this is because EE-GCN introduces dependency
label, which help to capture more fine-grained
trigger-related features, thus more triggers would
be detected. Meanwhile, MOGANED surpasses
EE-GCN on Precision, which could be explained as
the original paper analyzed that since MOGANED
exploited GAT(GCN with attention) as basic en-
coder, the attention mechanism helps to predict
event triggers more precisely.

Additionally, we notice that EE-GCN performs
remarkably better than all sequence-based neural
models that do not use dependency structure, which
clearly demonstrates that the reasonable use of syn-
tactic dependency information can indeed improve
the performance of event detection. When compar-
ing EE-GCN with dbRNN which adds weighted
syntactic dependency arcs to BiLSTM, our model



2335

gains improvement on both P and R. This phe-
nomenon illustrates that GCN is capable of mod-
eling dependency structure more effectively and
the multi-dimensional embedding of dependency
label in EE-GCN learn more information than just
a weight in dbRNN.

6 Analysis

6.1 Ablation Study

To demonstrate the effectiveness of each compo-
nent, we conduct an ablation study on the ACE2005
dev set as Table 2 shows 5 1) – Typed Dependency
Label (TDL): to study whether the typed dependen-
cy labels contribute to the performance improve-
ment, we initialize each Ei,j,: in the adjacency ten-
sor E as the same vector if there is a syntactic
dependency edge between node i and node j, thus
the typed dependency label information is removed.
As a result, the F1-score drops by 0.5% absolutely,
which demonstrates that typed dependency label
information plays an important role in EE-GCN. 2)
– Node-Aware Edge Update Module (NAEU): re-
moving node-aware edge update module hurts the
result by 0.99% F1-score, which verifies that the
context-dependent relation representations provide
more evident information for event detection than
the context-independent ones. 3) – TDL & NAEU:
we remove edge-aware node update module and
node-aware edge update module simultaneously,
then the model is degenerated to the vanilla GC-
N. We observe that the performance reduces by
1.69%, which again confirms the effectiveness of
our model. 4) – Multi-dimensional Edge repre-
sentation (MDER): when we set the dimension of
relation representation to 1, this is to compress the
adjacency tensor E ∈ Rn×n×p to be E ∈ Rn×n×1,
the F1-score drops by 0.77 % absolutely, which
indicates that the multi-dimensional representation
is more powerful to capture information than just a
scalar parameter or weight. 5) –BiLSTM: BiLSTM
is removed before EE-GCN and the performance
drops terribly. This illustrates that BiLSTM cap-
ture important sequential information which GCN
misses. Therefore, GCN and BiLSTM are comple-
mentary to each other for event detection.

5Note that the F1 score of model on the ACE2005 dev
set is significantly lower than that on the test set. We guess
the performance difference comes from the domain gap that
the ACE2005 dev set and test set are collected from different
domains (Nguyen and Grishman, 2015).

Model Dev F1

Best EE-GCN 67.17
– TDL 66.67
– NAEU 66.18
– TDL & NAEU 65.48
– MDER 66.40
– BiLSTM 63.87

Table 2: An ablation study of EE-GCN. TDL is short
for typed dependency label, NAEU is short for node-
aware edge update module, MDER is short for multi-
dimensional edge representation. Scores are median of
5 models.

1 10 20 30 40 50 60 70 80
Edge Dimension

65.5

66

66.5

67

67.5

68

F1
-s

co
re

(%
)

Figure 3: F1-score variation with edge dim on dev.

1 10 20 30 40 50 60 70 80
Edge Dimension

72

73

74

75

76

77

78

F1
-s

co
re

(%
)

Figure 4: F1-score variation with edge dim on test.

6.2 Effect of Edge Representation Dimension

As shown in the ablation study, reducing the dimen-
sion of edge representation to 1 hurts the perfor-
mance of EE-GCN deeply. One may wonder what
is the appropriate dimension for EE-GCN. There-
fore, we study the performance of the models with
different dimensions of edge representation in this
part. We vary the value of dimension from 1 to
80 with interval of 20 and check the correspond-
ing F1-score of EE-GCN on the dev and test set of
ACE2005. The results on the ACE2005 dev and
test set are illustrated in Figure 3 and Figure 4 re-
spectively. We could see that the F1-score peaks
when the dimension is 50 and then falls. This a-
gain justifies the effectiveness of introducing multi-
dimensional edge representation. Besides, the prob-
lem of overfitting takes effect when the dimension
rises beyond a threshold, explaining the curve falls
after the 50-dimensional representation in Figure 3.



2336

6.3 Effectiveness of Dependency Label

To further confirm the effectiveness of dependency
label, we add another experiment by adding depen-
dency label to EEGCN-TDL individually. Based
on F1=75.51% on test set with removed TDL, the
maximum improvements are F1=77.09%, 77.22%
and 76.69% when we respectively add dependency
label of nmod, nsubj and dobj. This shows that
these three labels are the mainly contributional la-
bels, which is in consistent with our statistical in
Introduction.

6.4 Performance of Different Event Types

We reviewed F1-score of each type of events using
EE-GCN and GCN respectively, and observe that
End-ORG(F1=0.0) and Start-ORG(F1=41.67%)
are the hardest event types to detect for GCN. These
two types of events gets significant improvement
when using EE-GCN(F1=75.00% for END-ORG
and F1=71.43% for Start-ORG), this demonstrates
that the introducing dependency labels does help to
improve ED. Besides, we notice that EE-GCN poor-
ly performs on event types of ACQUIT, EXTRA-
DITE and NOMINATE, which may be attributed
to the very small amount of annotated instances of
these types(only 6,7,12 respectively).

6.5 Impact of EE-GCN layers

As EE-GCN can be stacked over L layers, we inves-
tigate the effect of the layer number L on the final
performance. Different number of layers ranging
from 1 to 10 are considered. As shown in Figure 5,
it can be noted that the performance increases with
increasing EE-GCN layers. However, we find out
EE-GCN encounters a performance degradation
after a number of layers and the model obtains the
best performance when L = 2, so is the perfor-
mance on test set in Figure 6. For this observation,
two aspects are considered: First, EE-GCN can
only utilize first-order syntactic relations over de-
pendency tree when L = 1, which is not enough to
bring important context words that are multi-hops
away on the dependency tree from the event trigger
into the trigger representation. Second, EE-GCN
operating on shallow dependency trees tends to
over-smooth node representations, making node
representations indistinguishable, thus hurting the
model performance (Zhou et al., 2018).

2 4 6 8 10
Number of EE-GCN layers

64.5

65.0

65.5

66.0

66.5

67.0

67.5

F1
-s

co
re

 (%
)

Figure 5: F1-score variation with GCN layers on dev.

2 4 6 8 10
Number of EE-GCN layers

71

72

73

74

75

76

77

78

F1
-s

co
re

 (%
)

Figure 6: F1-score variation with GCN layers on test.

6.6 Efficiency Advantage

Since EE-GCN and RGCN both exploit syntactic
structure and typed dependency labels simultane-
ously, we compare the efficiency of these two ar-
chitectures from two aspects: parameter numbers
and running speed. For the sake of fairness, we
run them on the same GPU server with the same
batch size. According to our statistics, the amount
of parameters of EE-GCN and RGCN event detec-
tion architecture are 2.39M and 4.12M respectively.
Besides, EE-GCN performs 9.46 times faster than
RGCN at inference time. With the performance
shown in Table 1, we can conclude that EE-GCN
not only achieves better performance, but also out-
performs RGCN in efficiency. This is mainly be-
cause EE-GCN exploits typed dependency labels
by mapping them to relation embedding, while
RGCN encodes different types of dependency la-
bels with different convolutional filters. Mathemat-
ically, given a graph with r types of relations, the
number of relation-related parameters in EE-GCN
is only p × r while that in RGCN is r × h × h,
where p is the dimension of relation embedding
and h is the hidden state size of GCN. Consider-
ing that p and h are usually set in the same order,
the number of parameters in RGCN increases more
rapidly than EE-GCN because h×h is significantly
greater than p. We could also read from Table 3
that EE-GCN works almost as fast as GCN in both
training and inference phrase, while RGCN works



2337

Pu
tin

la
st

vi
sit

ed
Bu

sh
at hi

s
Te

xa
s

ra
nc

h
in N

ov
em

be
r

20
01

Putin
last

visited
Bush

at
his

Texas
ranch

in
November

2001
0.085

0.090

0.095

0.100

0.105

0.110

(a)

Po
lic

e
ha

ve
ar

re
ste

d
fo

ur
pe

op
le

in co
nn

ec
tio

n
w

ith
th

e
ki

lli
ng

s

Police
have

arrested
four

people
in

connection
with

the
killings

0.095

0.100

0.105

0.110

0.115

0.120

(b)

Figure 7: Visualization of the adjacency tensor E in EE-GCN.

GCN RGCN EE-GCN
Training 15.7Bat/s 0.9Bat/s 13.7Bat/s
Inference 178.2Bat/s 17.7Bat/s 167.6Bat/s

Table 3: Comparison of training/inference speed be-
tween GCN, RGCN and EE-GCN. Bat/s refers to the
number of batches that can be processed per second.

in a much slower way, which demonstrates that
EE-GCN incorporated typed dependency relation
without hurting efficiency badly.

6.7 Case Study

In this section, we present a visualization of the be-
havior of EE-GCN on two instances chosen from
the ACE2005 test set, with the aim to validate our
motivation provided in the introduction section. We
wish to examine whether EE-GCN indeed focuses
on modeling the relationship between event-related
words through a per instance inspection, which
is shown in Figure 7. Following (Sabour et al.,
2017), we use the l2 norm of relation representa-
tion in the adjacency tensor of the last EE-GCN
layer (L = 2) to represent the relevance score of
the corresponding word pair. In the first case, each
word has a high relevance score with “visited” (the
third column), because it is the event trigger. This
trigger has the strongest connections with “Putin”,
“ranch”, “November” and “Bush” (the third row),
which means that these four words are the top con-
tributors for the detection of “visited” in EE-GCN.
Similarly, in the second case, EE-GCN is able to
precisely connect the event trigger “arrested” with
its subject “Police” and object “people”. In gener-
al, the visualization result accords with the human
behavior and shows the power of EE-GCN in cap-

turing event-related relations between words.

7 Conclusion and Future Works

In this paper, we propose a novel model named
Edge-Enhanced Graph Convolutional Networks
(EE-GCN) for event detection. EE-GCN intro-
duces the typed dependency label information into
the graph modeling process, and learns to update
the relation representations in a context-dependent
manner. Experiments show that our model achieves
the start-of-the-art results on the ACE2005 dataset.
In the future, we would like to apply EE-GCN to
other information extraction tasks, such as relation
extraction and aspect extraction.

Acknowledgements

We would like to thank the anonymous reviewer-
s for their insightful comments and suggestions.
This research is supported by the National Key Re-
search and Development Program of China (grant
No.2016YFB0801003) and the Strategic Priority
Research Program of Chinese Academy of Sci-
ences (grant No.XDC02040400).

References
Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and

Jun Zhao. 2017. Automatically labeled data genera-
tion for large scale event extraction. In Proceedings
of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Paper-
s), pages 409–419, Vancouver, Canada. Association
for Computational Linguistics.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and
Jun Zhao. 2015. Event extraction via dynamic multi-
pooling convolutional neural networks. In Proceed-

https://doi.org/10.18653/v1/P17-1038
https://doi.org/10.18653/v1/P17-1038
https://doi.org/10.3115/v1/P15-1017
https://doi.org/10.3115/v1/P15-1017


2338

ings of the 53rd Annual Meeting of the Association
for Computational Linguistics and the 7th Interna-
tional Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 167–176,
Beijing, China. Association for Computational Lin-
guistics.

Yubo Chen, Hang Yang, Kang Liu, Jun Zhao, and Yan-
tao Jia. 2018. Collective event detection via a hier-
archical and bias tagging networks with gated multi-
level attention mechanisms. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 1267–1276, Brussels,
Belgium. Association for Computational Linguistic-
s.

Shaoyang Duan, Ruifang He, and Wenli Zhao. 2017.
Exploiting document level information to improve
event detection via recurrent neural networks. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), pages 352–361, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Xiaocheng Feng, Lifu Huang, Duyu Tang, Heng Ji,
Bing Qin, and Ting Liu. 2016. A language-
independent neural network for event detection. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 66–71, Berlin, Germany. Asso-
ciation for Computational Linguistics.

Reza Ghaeini, Xiaoli Fern, Liang Huang, and Prasad
Tadepalli. 2016. Event nugget detection with
forward-backward recurrent neural networks. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 369–373, Berlin, Germany. As-
sociation for Computational Linguistics.

Zhijiang Guo, Yan Zhang, and Wei Lu. 2019. Attention
guided graph convolutional networks for relation ex-
traction. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistic-
s, pages 241–251, Florence, Italy. Association for
Computational Linguistics.

Yu Hong, Jianfeng Zhang, Bin Ma, Jianmin Yao,
Guodong Zhou, and Qiaoming Zhu. 2011. Using
cross-entity inference to improve event extraction.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 1127–1136, Portland,
Oregon, USA. Association for Computational Lin-
guistics.

Yu Hong, Wenxuan Zhou, Jingli Zhang, Guodong
Zhou, and Qiaoming Zhu. 2018. Self-regulation:
Employing a generative adversarial network to im-
prove event detection. In Proceedings of the 56th
Annual Meeting of the Association for Computation-
al Linguistics (Volume 1: Long Papers), pages 515–
526, Melbourne, Australia. Association for Compu-
tational Linguistics.

Thomas N. Kipf and Max Welling. 2017. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations (ICLR).

Qi Li, Heng Ji, and Liang Huang. 2013. Joint event
extraction via structured prediction with global fea-
tures. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 73–82, Sofia, Bulgaria.
Association for Computational Linguistics.

Jian Liu, Yubo Chen, and Kang Liu. 2019. Exploit-
ing the ground-truth: An adversarial imitation based
knowledge distillation approach for event detection.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 6754–6761.

Jian Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2018a.
Event detection via gated multilingual attention
mechanism. In Thirty-Second AAAI Conference on
Artificial Intelligence.

Shulin Liu, Yubo Chen, Shizhu He, Kang Liu, and Jun
Zhao. 2016. Leveraging FrameNet to improve auto-
matic event detection. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2134–
2143, Berlin, Germany. Association for Computa-
tional Linguistics.

Shulin Liu, Yubo Chen, Kang Liu, and Jun Zhao. 2017.
Exploiting argument information to improve event
detection via supervised attention mechanisms. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1789–1798, Vancouver, Cana-
da. Association for Computational Linguistics.

Xiao Liu, Zhunchen Luo, and Heyan Huang. 2018b.
Jointly multiple events extraction via attention-
based graph information aggregation. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1247–1256,
Brussels, Belgium. Association for Computational
Linguistics.

Yaojie Lu, Hongyu Lin, Xianpei Han, and Le Sun.
2019. Distilling discrimination and generaliza-
tion knowledge for event detection via delta-
representation learning. In Proceedings of the 57th
Annual Meeting of the Association for Computation-
al Linguistics, pages 4366–4376, Florence, Italy. As-
sociation for Computational Linguistics.

Diego Marcheggiani and Ivan Titov. 2017. Encoding
sentences with graph convolutional networks for se-
mantic role labeling. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1506–1515, Copenhagen,
Denmark. Association for Computational Linguistic-
s.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016. Joint event extraction via recurrent

https://doi.org/10.18653/v1/D18-1158
https://doi.org/10.18653/v1/D18-1158
https://doi.org/10.18653/v1/D18-1158
https://www.aclweb.org/anthology/I17-1036
https://www.aclweb.org/anthology/I17-1036
https://doi.org/10.18653/v1/P16-2011
https://doi.org/10.18653/v1/P16-2011
https://doi.org/10.18653/v1/P16-2060
https://doi.org/10.18653/v1/P16-2060
https://doi.org/10.18653/v1/P19-1024
https://doi.org/10.18653/v1/P19-1024
https://doi.org/10.18653/v1/P19-1024
https://www.aclweb.org/anthology/P11-1113
https://www.aclweb.org/anthology/P11-1113
https://doi.org/10.18653/v1/P18-1048
https://doi.org/10.18653/v1/P18-1048
https://doi.org/10.18653/v1/P18-1048
https://www.aclweb.org/anthology/P13-1008
https://www.aclweb.org/anthology/P13-1008
https://www.aclweb.org/anthology/P13-1008
https://doi.org/10.18653/v1/P16-1201
https://doi.org/10.18653/v1/P16-1201
https://doi.org/10.18653/v1/P17-1164
https://doi.org/10.18653/v1/P17-1164
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/D18-1156
https://doi.org/10.18653/v1/P19-1429
https://doi.org/10.18653/v1/P19-1429
https://doi.org/10.18653/v1/P19-1429
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/D17-1159
https://doi.org/10.18653/v1/N16-1034


2339

neural networks. In Proceedings of the 2016 Con-
ference of the North American Chapter of the As-
sociation for Computational Linguistics: Human
Language Technologies, pages 300–309, San Diego,
California. Association for Computational Linguis-
tics.

Thien Huu Nguyen and Ralph Grishman. 2015. Event
detection and domain adaptation with convolution-
al neural networks. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 365–371, Beijing, China. As-
sociation for Computational Linguistics.

Thien Huu Nguyen and Ralph Grishman. 2018. Graph
convolutional networks with argument-aware pool-
ing for event detection. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Walker Orr, Prasad Tadepalli, and Xiaoli Fern. 2018.
Event detection with neural networks: A rigorous
empirical evaluation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 999–1004, Brussels, Bel-
gium. Association for Computational Linguistics.

Sara Sabour, Nicholas Frosst, and Geoffrey E Hin-
ton. 2017. Dynamic routing between capsules. In
Advances in neural information processing systems,
pages 3856–3866.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem,
Rianne Van Den Berg, Ivan Titov, and Max Welling.
2018. Modeling relational data with graph convolu-
tional networks. In European Semantic Web Confer-
ence, pages 593–607. Springer.

Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui.
2018. Jointly extracting event triggers and argu-
ments by dependency-bridge rnn and tensor-based
argument interaction. In Thirty-Second AAAI Con-
ference on Artificial Intelligence.

Haoran Yan, Xiaolong Jin, Xiangbin Meng, Jiafeng
Guo, and Xueqi Cheng. 2019. Event detection with
multi-order graph convolution and aggregated atten-
tion. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5765–5769, Hong Kong, China. Association for
Computational Linguistics.

Fan Yang, Xiaochang Peng, Gargi Ghosh, Reshef
Shilon, Hao Ma, Eider Moore, and Goran Predovic.
2019. Exploring deep multimodal fusion of text and
photo for hate speech classification. In Proceedings
of the Third Workshop on Abusive Language Online,
pages 11–18, Florence, Italy. Association for Com-
putational Linguistics.

Yuhao Zhang, Peng Qi, and Christopher D. Manning.
2018. Graph convolution over pruned dependency

trees improves relation extraction. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 2205–2215, Brus-
sels, Belgium. Association for Computational Lin-
guistics.

Yue Zhao, Xiaolong Jin, Yuanzhuo Wang, and Xueqi
Cheng. 2018. Document embedding enhanced event
detection with hierarchical and supervised attention.
In Proceedings of the 56th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 414–419, Melbourne, Aus-
tralia. Association for Computational Linguistics.

Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and
Maosong Sun. 2018. Graph neural networks: A re-
view of methods and applications. arXiv preprint
arXiv:1812.08434.

https://doi.org/10.18653/v1/N16-1034
https://doi.org/10.3115/v1/P15-2060
https://doi.org/10.3115/v1/P15-2060
https://doi.org/10.3115/v1/P15-2060
https://doi.org/10.18653/v1/D18-1122
https://doi.org/10.18653/v1/D18-1122
https://doi.org/10.18653/v1/D19-1582
https://doi.org/10.18653/v1/D19-1582
https://doi.org/10.18653/v1/D19-1582
https://doi.org/10.18653/v1/W19-3502
https://doi.org/10.18653/v1/W19-3502
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/D18-1244
https://doi.org/10.18653/v1/P18-2066
https://doi.org/10.18653/v1/P18-2066

