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Abstract

Previous studies on Natural Language Gen-
eration (NLG) from structured data have pri-
marily focused on surface-level descriptions
of record sequences. However, for complex
structured data, e.g., multi-row tables, it is
often desirable for an NLG system to de-
scribe interesting facts from logical inferences
across records. If only provided with the
table, it is hard for existing models to pro-
duce controllable and high-fidelity logical gen-
erations. In this work, we formulate high-
fidelity NLG as generation from logical forms
in order to obtain controllable and faithful
generations. We present a new large-scale
dataset, LOGIC2TEXT, with 10,753 descrip-
tions involving common logic types paired
with the underlying logical forms. The
logical forms show diversified graph struc-
ture of free schema, which pose great chal-
lenges on the model’s ability to understand
the semantics. We experiment on (1) Fully-
supervised training with the full datasets,
and (2) Few-shot setting, provided with hun-
dreds of paired examples; We compare sev-
eral popular generation models and analyze
their performances. We hope our dataset can
encourage research towards building an ad-
vanced NLG system capable of natural, faith-
ful, and human-like generation. The dataset
and code is available at https://github.

com/czyssrs/Logic2Text.

1 Introduction

Natural language generation (NLG) from struc-
tured data has been an important research problem
in many applications. Recent data-driven methods
have achieved good performances on various NLG
tasks (Liu et al., 2018; Freitag and Roy, 2018; Chen
et al., 2019b). However most studies focus on sur-
face descriptions of simple record sequences, for
example, attribute-value pairs of fixed or very lim-
ited schema, like E2E (Novikova et al., 2017) and

WikiBio (Lebret et al., 2016). In real-world cases
for multi-row tables, it is often more desirable and
plausible to provide descriptions involving higher-
level logical inference across data records. For
example, in Figure 1, instead of plain restatements,
human readers would be more favorable to abstract
descriptions that can summarize or conclude infor-
mation over the table records. To produce such
logical-level generations of high fidelity, it is not
yet appropriate to provide only the table as the
input in a real-world NLG system, based on the
following reasons:

1) Low Fidelity. Given only the table, it is
challenging for existing neural models to produce
such logically correct generations involving rea-
soning and symbolic calculations, e.g., max, min,
counting, averaging, etc.

2) Uncontrollable content selection. Given
a table, the space of logically entailed descrip-
tions is exponentially large, due to vast number
of combinations of different operations and argu-
ments from the table, e.g., count, comparison,
superlative, etc. It is hard and uncontrol-
lable for neural models to decide a valid, favorable
choice of logical selections solely based on the ta-
ble, due to the difficulty of imposing high-level
semantic constraints in the compositional genera-
tion process.

To combat with the above problems, we argue
that it is necessary to leverage intermediate mean-
ing representations to achieve faithful and control-
lable logical generations. To this end, we formulate
the task of logical-level NLG as a logical form to
text problem. Specifically, besides the table infor-
mation, the generation module is provided with
a logical form representing the semantics of the
target text (see Figure 1 for an example). By sepa-
rating logical reasoning and language realization,
the correctness of the intermediate logical form is
guaranteed, and the challenge for the realization

https://github.com/czyssrs/Logic2Text
https://github.com/czyssrs/Logic2Text
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module is fully shifted to semantic understanding.
To facilitate research in this direction, we pro-

pose a new dataset named LOGIC2TEXT, consist-
ing of 5.6k open-domain tables, 10.8k manually
annotated (logical form, description) pairs. Our
dataset is of high quality in terms of (1) natural and
interesting descriptions; (2) accurate logical forms
with 100% execution correctness. In our dataset,
the coarse logic types are 7 common ones to de-
scribe multi-row tables: count, superlative,
comparative, aggregation, majority,
unique, and ordinal. We employ a Python-
like program to serve as our logical forms, which
can be easily converted to other types of logi-
cal forms. Figure 1 shows two examples of our
dataset. Compared with previous surface-level
NLG datasets, one major distinction of our dataset
is the free schema of the logical forms, which can
be represented as diversified graph structures. The
new dataset poses great challenges on the model’s
ability to understand the structural semantics in
graph representation.

We employ an array of popular generation
models as the baseline approaches. The experi-
ments are conducted in (1) Fully-supervised set-
ting. We train the models using the full dataset
to analyze their performances. (2) Few-shot set-
ting. We simulate the low-resource scenario in
real-world use cases. Experimental results show
that the logical forms are critical to acquiring
high-fidelity generations. The pre-trained lan-
guage model outperforms other baselines (pointer-
generator, graph2seq, transformer, etc.), but still
makes factual and logical errors.

In summary, our contributions are the following:

• We propose a new large-scale dataset,
LOGIC2TEXT, with descriptions of common
logic types accompanied by the underlying
logical forms. The logical forms present di-
versified graph structures, which raises more
challenges on semantic understandings.

• We surveyed several popular generation mod-
els as the baselines under fully-supervised and
few-shot settings, as well as analyze their pros
and cons.

Our dataset can also be used in the reverse way
(text to logical form) to facilitate tasks related to
semantic parsing. Chen et al. (2019a) propose the
task of fact verification against tables, however the
performance is greatly limited due to the lack of

Logical-level NLG with logical forms ( our dataset )
logical form: eq { count { filter_eq { all_rows ; region ; africa } } 
; 4 } = True

Description: In 2012 in opec, there were 4 member countries 
from africa.
logical form: and { eq { hop { argmax { all_rows ; joined opec } 
; region } ;  africa } ; eq { hop { argmax { all_rows ; joined opec 
} ; country } ;  angola } } = True

Description: In 2012 in opec, angola, from africa, was the 
latest country to join. 

country region
joined 
opec

population 
(july 2012)

area (km 
square)

algeria africa 1969 37367226 2381740
angola africa 2007 18056072 1246700
iraq middle east 1960 31129225 437072
libya africa 1962 5613380 1759540
nigeria africa 1971 170123740 923768
... ... ... ... ...

table caption: opec

Surface-level NLG
Description: angola, from the region africa, joined opec in 
2007, with an population of 18056072 in 2012.
Description: algeria, from the region africa, joined opec in 
1969, with an population of 37367226 in 2012.

all_rows region africa

filter_eq

count

eq

4

all_rows joined opec

argmax

hophop

countryregion

eq eq

africa angola

and

Figure 1: Examples of surface-level NLG compared with
NLG with logical forms of our dataset. Here are two examples
with logic type count and superlative. The function
nodes are in blue, and the text nodes in grey.

the ground truth logical forms. This can be one
direct application of our dataset. In this work, we
focus on NLG.

2 Related Work

NLG from structured data or knowledge has been
studied for many years. There are various applica-
tions, such as the automatic generations of weather
reports (Liang et al., 2009), sport reports (Wiseman
et al., 2017), clinical and health reports (DiMarco
et al., 2007; Lee, 2018), response generation in
task-oriented dialogue systems (Wen et al., 2015;
Budzianowski et al., 2018; Dušek et al., 2019), etc.

Traditional methods typically employ a pipeline-
based approach including content selection, plan-
ning and surface realization (Reiter and Dale, 1997;
Gatt and Krahmer, 2018). Recent data-driven
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methods tend to conflate the pipeline modules
into one end-to-end neural networks, such as (Liu
et al., 2018; Wiseman et al., 2017, 2018; Gong
et al., 2019). Most recently, large-scale pre-trained
models (Radford et al., 2019; Song et al., 2019;
Raffel et al., 2019) have achieved new state-of-
the-arts on various generation tasks. Chen et
al. (2019b) demonstrate that a simple pre-training
based method can achieve very reasonable perfor-
mance on the WikiBio dataset (Lebret et al., 2016)
under few-shot setting. More recent works begin to
focus on fidelity preserving of the generation, such
as (Dhingra et al., 2019; Tian et al., 2019). Their
work obtains good performances on surface-level
NLG. In contrast, our work focus on the fidelity of
logical-level generations.

There are a few popular NLG datasets mostly
on surface-level generation. Such as Weath-
erGov (Liang et al., 2009), E2E (Novikova
et al., 2017), WikiBio (Lebret et al., 2016), and
ToTTo (Parikh et al., 2020). RotoWire (Wiseman
et al., 2017) is a more challenging dataset on gen-
erating basketball game reports from multi-row ta-
bles. But the reports are still limited to superficial
restatements of table records, with very few involv-
ing logical inference. Korn et al. (2019) investigate
generation of interesting trivia from superlative
wikipedia tables. Chen et al. (2020) propose the
task of generating arbitrary sentences with logical
inference from the table. Their task mainly works
for probing purpose, i.e., to test the ability of neural
models to produce any logically correct descrip-
tions solely based on the table. However, such a
task formulation is not yet appropriate for building
a real-world NLG system due to low-fidelity, as we
discussed in the introduction. The best-performing
model in (Chen et al., 2020) only obtains a factual
correctness rate over 20% based on human evalua-
tion, which is clearly far from an acceptable level
in real-world systems.

Another line of works related to ours is the
text generation from syntactic or semantic sen-
tence structure, such as generation from CCG
grammar (White, 2006), UCG grammar (Gar-
dent and Plainfossé, 1990), AMR (Song et al.,
2018). There are many early works attempting
algorithmic approaches on such kinds of logical
formulations (Phillips, 1993; Calder et al., 1989;
Shieber et al., 1990; Phillips, 1993), etc. Later
proposed datasets include the Groningen Meaning
Bank (Bos, 2013), the AMR bank (May, 2016), the

DeepBank (Flickinger et al., 2012), etc. In con-
trast, our work focus on the logical formulations
executed on database style tables, and common
symbolic operations on tables, such as count, su-
perlative, comparison. As nowadays much of the
production data is stored in table based DB, we
believe such a dataset should help building systems
with table based data.

3 Dataset Construction

The table source of LOGIC2TEXT is from Wik-
iTables1 (Bhagavatula et al., 2013), a collection
of open-domain tables crawled from Wikipedia.
We follow (Chen et al., 2019a) to filter out over-
complicated tables and take a subset of tables with
less than 20 rows and 10 columns.

In this dataset, we start from 7 types of most
commonly used logics (Chen et al., 2019a) to de-
scribe multi-row tables: count, superlative,
comparative, aggregation, majority,
unique, and ordinal. For example, for logic
type count, the definition is: counting some rows
in the table based on the values in one column, with
the scope of all table rows or a subset. Refer to Ap-
pendix A for the definitions of all logic types. Each
description involves exactly one type of logic. This
matches the observation that humans generally do
not describe their interested information in tables
with over-complicated logics. For logical forms,
we use a python-like program, and the function set
is an extension of (Chen et al., 2019a). Refer to
Appendix B for definitions of all functions.

Our dataset is constructed in 3 stages: §3.1 De-
scription composition and verification, §3.2 Log-
ical form annotation and derivation, §3.3 Log-
ical form execution and verification. We adopt
the workflow of composing descriptions first and
then deriving the logical forms, because under
such an order, the annotators can compose natu-
ral descriptions based on the interesting facts in
the table, which is hard to be achieved by auto-
matic enumeration of logical forms followed by
template re-writing. For all crowd-sourcing tasks
we hire Amazon Mechanical Turkers2 (AMT) un-
der three requirements: (1) from English native
countries (“US”,“CA”,“GB”, “AU”); (2) Approval
rate higher than 95% for all HITs; (3) More than
500 approved HITs. We follow the human subject

1http://websail-fe.cs.northwestern.
edu/wikiTables/about/

2https://www.mturk.com/

http://websail-fe.cs.northwestern.edu/wikiTables/about/
http://websail-fe.cs.northwestern.edu/wikiTables/about/
https://www.mturk.com/
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1980 denver broncos season

date opponent game site attendance

sep 7 philadelphia eagles veteran 's stadium 70307

sep 14 dallas cowboys mile high stadium 74919

sep 21 san diego chargers mile high stadium 74970

sep 29 new england patriots schaefer stadium 60153

oct 5 cleveland browns municipal stadium 81065
... ... ... ...

superlative

ordinal

count

majority

aggregation

unique

comparative

select logic type
Logic type: superlative
Description: in the 1980 denver broncos season the highest 
attendance at the mile high satdium was 74970 on september 21st.
Logic type: count
Description: among the september games in the 1980 denver broncos 
season, there were 3 times they drew over 70000 fans.
Logic type: unique
Description: the september 29 game was the only one held in 
schaefer stadium in the 1980 denver broncos season.

Figure 2: description composition: the workers are asked to select three logic types and compose a statement based on the
selected logic type, that describe interesting facts in the table.

research protocols3 to pay the workers. We main-
tain strict high criterions for approval and review at
least 10 random samples for each worker to decide
whether to approve or reject all his/her HITs.

3.1 Description Composition & Verification

In this first stage, the human workers are asked to
compose statements of a certain logic type, that
describe interesting facts in the table. It’s possible
that some logic types cannot be applied to certain
tables. Therefore we design the following working
procedure: For each table, the 7 logic types are
randomly put into three groups (with sizes 2, 2,
and 3). The worker is asked to choose one logic
type from each group and compose a description
based on the chosen logic type. They must follow
the requirements (1) try to choose diversified logic
types, (2) avoid template-like language and try to
compose natural and interesting descriptions, (3)
include the information in table captions, so as to
compose comprehensive descriptions without un-
specified pronouns. An example of the workflow
is shown in Figure 2. We provide the workers de-
tailed explanations for each logic type by their cor-
responding definitions, accompanied by examples.
After collecting the descriptions, we add a verifica-
tion stage to filter out descriptions of low quality.
We redistribute the collected descriptions grouped
by each logic type, then ask three questions: Is this
description (1) of the correct logic type presented?
(2) factually correct? (3) grammatically correct and
fluent? We filter out the description if any question
receives a negative response.

3.2 Logical Form Annotation & Derivation

As the core step of our dataset construction pipeline,
we design a workflow to obtain the semantic infor-
mation via conversations with human workers, then
use the information to derive the logical forms. The

3https://en.wikipedia.org/wiki/
Minimum_wage_in_the_United_States

questions in the conversation are specifically de-
signed for each logic type. Here we go through
the example of logic type superlative given
in Figure 3 to illustrate our annotation process.

The logical form structure prototype is shown in
the right grey part, consisting the description of the
superlative value, and other mentioned columns
on the row with the superlative value. Then we
ask the follow-up questions to derive the complete
logical form based on the prototype, shown on the
left part of Figure 3: Q1. What is the scope of
the superlative operation? If the scope is a subset
of all table rows, we perform another round of
conversation to annotate the scope. Q2. What
is the table column of the superlative operation?
Q3. What is the specific type of the superlative
operation: maximum or minimum. Q4. What is
the table row with the superlative value. Q5. Is the
superlative value itself mentioned in the description
or not? Q6. What are the other columns mentioned
in the description? After collecting the answers of
the above questions, we can derive the logical form,
as shown in the middle part of Figure 3.

We provide the workers with detailed explana-
tions of the prototype for each logical types, as well
as several examples. Note that the prototype covers
most, but not all of the logical descriptions due to
their diverse nature. Thus we also provide the op-
tion to skip the example if it cannot be formulated
by the given question set. Check Appendix A for
the annotation process of other logic types.

3.3 Logical Form Execution & Verification

After the collection of logical forms, we use the
Stanford CoreNLP toolkits4 to tokenize all text
content (all table information, the descriptions, and
the texts in the logical forms). To remove incorrect
logical forms, we execute the logical forms and
perform another round of semantic verification.

4https://stanfordnlp.github.io/
CoreNLP/index.html

https://en.wikipedia.org/wiki/Minimum_wage_in_the_United_States
https://en.wikipedia.org/wiki/Minimum_wage_in_the_United_States
https://stanfordnlp.github.io/CoreNLP/index.html
https://stanfordnlp.github.io/CoreNLP/index.html
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Q1: Is this statement describing superlative 
record on the scope of all table rows, or on a 
subset of all rows?
A1: Subset

Q2: The table column id for the superlative 
information?
A2: 4 (attendance)

Q3: Is the superlative action taking the numerical 
maximum, or minimum value in this column?
A3: maximum

Q4: The table row id of this superlative value?
A4: 3

Q5: Is this superlative value itself mentioned in 
the statement?
A5: Yes

Q6: On this row with the superlative value, what 
are the other column(s) mentioned (or n/a)? 
A6: 1 (date)

Scope annotation
Q1: The table column id to choose the subset?
A1: 3 (game site)

Q2: Select the criterion, based on which we filter 
the table values to select this subset. 
A2: equal

Q3: The value to be filtered for selection of this 
subset; 
A3: mile high satdium

logical form prototype for logic type superlative

and {
   # the superlative value
   max / min { scope ; column_superlative } = value ; 

   # other columns mentioned
   hop { row_superlative ; other_column_1 } = value_1 ;
   hop { row_superlative ; other_column_2 } = value_2 ;

…
}

Logic type: superlative

Statement: in the 1980 denver broncos season the highest attendance at the mile high 
satdium was 74970 on september 21st.

logical form annotation in a conversational setting

game 
siteall_rows mile high 

stadium

filter_eq

max argmax74970

equal

attendance

hop

date

equal

sep 21

and

logical form derivation

The derived logical form in a graph view

scope:
    filter_eq { all_rows ; game site ; mile high stadium }

row_superlative:
    argmax { scope ; attendance }

the superlative value ( maximum attendance ):
    max { scope ; attendance } = 74970

other columns mentioned ( date information ):
    hop { row_superlative ; date } = seq 21

the derived logical form:
and { 
     eq { max { filter_eq { all_rows ; game site ; mile 
high stadium } ; attendance } ; 74970 } ;
     eq { hop { argmax { filter_eq { all_rows ; game site 
; mile high stadium } ; attendance } ; date } ; sep 21 } 
} = True

1980 denver broncos season
date opponent game site attendance

sep 7 philadelphia eagles veteran 's stadium 70307

sep 14 dallas cowboys mile high stadium 74919

sep 21 san diego chargers mile high stadium 74970

sep 29 new england patriots schaefer stadium 60153

oct 5 cleveland browns municipal stadium 81065
... ... ... ...

Figure 3: logical form annotation & derivation: Note that in this example the questions are all in concise forms. In the AMT
interface shown to the workers, we write instructions in a more casual and detailed manner, accompanied by several examples.

Logical Form Execution The functionality in
our logical form is based on the ones used in (Chen
et al., 2019a). We extend the function set to deal
with semi-structured table cells (dates, mixed num-
bers and strings, etc.). We execute all logical forms
against the corresponding table, and only keeps
the ones that evaluate to True. This guarantees
that the logical forms in our dataset achieve 100%
execution correctness.

Semantic Verification Note that execution cor-
rectness does not guarantee semantic correctness.
Therefore we perform another round of semantic
verification. Since AMT workers do not have ex-
perts knowledge to understand the logical forms,
we convert the logical form into natural language
interpretation based on the operations of each func-
tion. We then ask the workers to verify whether
the interpretation correctly matches the meaning of
the description, with neither insufficient nor redun-
dant information. Then we remove the examples
receiving negative responses.

Expert Evaluation To demonstrate the quality
of our dataset, we employ two computer science
graduate students to conduct evaluations. We ran-
domly sample 200 examples for each logic type
to verify the semantic correctness. Each example

is examined by both students, and the decision is
made after discussion. The result shows that each
logic type reaches a correct rate no less than 90%.

Tables 5,554
Examples 10,753
Vocabulary 14.0k
Avg. description length 16.77
Avg. # nodes in logical form 9.00
Avg. # function nodes in logical form 3.27
Avg. length of the linearized logical form 24.35

Table 1: General statistics of LOGIC2TEXT.
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Figure 4: Distribution of logic types.
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Figure 5: The distribution of our dataset regarding the number of all nodes (Left) and function nodes (Mid) in the logical form.
Right: average number of all nodes and function nodes in the logical forms for each logic type.
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value_1

and
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all_rows scope
value

filter_op

equal

subject
columnall_rows

subject
value

filter_eq

subject
column

subject
value

filter_eq

hop hop

column to
compare

compare_op

and

count
column

count
value

filter_op

count count
result

(a)  Logic type count (b)  Logic type superlative (c)  Logic type comparative

scope selection scope selection

other 
columns of 
the row

other 
columns 
of the 
row

other 
columns 
of the 
row

superlative
value

Figure 6: Overview of logical form structures for logic type count, superlative, and comparative. (a) count: the
structure in the green shadow is optional, representing the scope of counting. It can be all table rows (a single text node) or a
subset of rows from a filter operation. (b) superlative: the structure in the orange shadow is optional, depending on the
presence of the max/minimum value in the description. The structure in the yellow shadow appears 0 or more times.

4 Dataset Statistics and Analysis

We follow a rough ratio of 8:1:1 to split our dataset
into 8,566 for training, 1,095 for development, and
1,092 for testing. The train, dev, and test sets have
no overlap tables. We show the statistics of the
dataset in Table 1 and the distributions of 7 logic
types in Figure 4. Each table has 1-3 descriptions
with different logic types. Since the logical forms
present graph structure nature, we analyze the com-
plexity of the logical forms based on the number of
nodes in the graph, regarding the number of func-
tion nodes (count, max, etc.) and the number of
all nodes (both function nodes and text nodes), re-
spectively. As shown in Figure 5, the logical forms
in LOGIC2TEXT have a minimum of 5 nodes and
maximum over 14 nodes. For different logic types,
comparative has the most number of nodes, be-
cause it involves the selection and operation for
two table rows. superlative, ordinal, and
unqiue primarily focus on one table row, some-

times with the scope being a subset of all table
rows, which makes the logical forms more com-
plex. count, majority, and aggregation
are summarization based logic types on multiple
table rows. They are the three relatively simpler
ones in terms of logical form structures. Figure 6
gives the logical form structures for 3 example
logic types.

5 Experiments

In this section we first describe the baseline models
of our dataset in §5.1; Then we conduct experi-
ments in fully-supervised setting §5.2; We demon-
strate the importance of the logical form in §5.3
and perform ablation studies in §5.4; At last we
carry out experiments under few-shot setting §5.5.

5.1 Baseline Models

Apart from the logical forms serving as the primary
input to the generation model, the table informa-
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tion is also crucial to provide context information.
Following human’s order to comprehend the table
and produce descriptions, the input C is formulated
as the sequence of table captions, table headers, ta-
ble content, and the logical form. The goal is to
generate a sequence w that maximize P (w | C):

w = argmax
∏

P (wt | w0:t−1, C) (1)

We employ the following models as our base-
lines for LOGIC2TEXT:

Template We manually craft generation tem-
plates for each logic type based on the logical form.

Seq2seq+att We employ the seq2seq with an
attention model from (Bahdanau et al., 2015). The
input sequence is formulated as the concatenation
of the table caption, table headers, the linearized
table content, and the linearized logical form.

Pointer generator (See et al., 2017) adds the
copy mechanism upon the seq2seq with an atten-
tion model, allowing the decoder to copy tokens
from the input directly. Such a mechanism is
known to be critical for fidelity-preserving gen-
eration with abundant entities, numbers, etc.

Graph2seq+copy There is a line of research
for graph neural network based encoders, such
as (Marcheggiani and Perez-Beltrachini, 2018; Xu
et al., 2018), etc. We employ one representative
model, Graph2seq (Xu et al., 2018), to encode the
logical forms. The table caption and headers are
first fed into a seq2seq, followed by the graph en-
coder for the logical form. We also add the copy
mechanism to allow copying from the input.

Transformer+copy The popular Transformer
model (Vaswani et al., 2017) has shown remarkable
progress in many tasks including NLG. In addition
to the original Transformer structure, we add the
copy mechanism where the last hidden layer is used
to calculate the attention score and the copy switch.
We also add segment embeddings for different in-
put components, similar as (Devlin et al., 2019).

GPT-2 Generally, with Transformer based struc-
tures, recent large-scale pre-trained models have
achieved new SOTA results in a wide range of NLP
tasks. A typical workflow is to use the pre-trained
model as initialization, then fine-tune the model on
task-specific data. In this work, we employ the gen-
erative pre-training model, GPT-2 (Radford et al.,
2019), as one of our baselines.

For all neural models we use Byte-Pair Encoding
(BPE) (Sennrich et al., 2016) and the subword
vocabulary used in (Radford et al., 2019). Refer to
Appendix C for more implementation details.

5.2 Fully-Supervised Setting

For automatic evaluations, we employ BLEU-45

(B-4), ROUGE-1, 2, 4, and L (F measure)6, noted
as R-1, R-2, R-4, and R-L. The results for all base-
lines are presented in Table 2.

For models without pre-training, the copy mech-
anism brings a significant improvement, comparing
pointer-generator and seq2seq. This is because the
descriptions in our dataset involve much factual
information from the table and the logical form,
e.g., entity names, and numbers. However, the
pre-trained language model GPT-2 can mostly ac-
curately produce these factual terms even without a
copy mechanism, demonstrating the powerful prior
knowledge obtained from large-scale pre-training.

Models B-4 R-1 R-2 R-4 R-L

Template 17.57 50.56 24.20 6.61 37.81

Seq2seq+att 12.46 36.22 15.91 4.49 31.03
Pointer generator 24.03 56.23 30.51 10.78 46.85
Graph2seq+copy 25.38 58.15 32.79 12.25 49.47
Transformer+copy 26.42 58.77 33.05 12.83 49.01
GPT-2 31.44 64.16 39.48 17.46 53.99

Table 2: Automatic evaluation results for all baseline models
under fully-supervised setting.

Compared to the pointer generator, which takes
linearized logical form as input, Graph2seq+copy
directly models the graph structure and gets a slight
improvement. The Transformer+copy model ob-
tains better performance than the Graph2seq+copy
model, as the Transformer architecture is indeed a
graph neural network with self-attention as aggrega-
tion function over the neighbors and regards the in-
put as a fully-connected graph. Recent works (Lin
et al., 2019; Rogers et al., 2020; Mager et al., 2020)
have shown that Transformer-based structure can
capture hierarchical syntactic structures and graph
representations. The GPT-2 model obtains the best
performance among all with a significantly larger
improvement. As a pre-trained language model
with the Transformer structure, it combines the
strength of both structural modeling and language
modeling prior. Some example generations are
provided in Appendix E.

Human Evaluation

Automatic scores are not sufficient for precise eval-
uation of factual and logical correctness. Therefore
we conduct human evaluations through (1) crowd-

5Standard script NIST mteval-v13a.pl
6rouge-1.5.5.
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sourcing on Amazon Mechanical Turkers (AMT),
and (2) human expert evaluations.

For human evaluations on AMT, we ran-
domly sample 500 examples from each of the
top best-performing methods (GPT-2 and Trans-
former+copy), and the gold references. The evalu-
ations are conducted on two axes: factual correct-
ness and language fluency. For factual correctness,
we ask the workers to verify whether the descrip-
tion is factually supported by the table; For lan-
guage fluency, we conduct pairwise comparisons
between different methods. For both evaluations,
we distribute each task to 3 workers to eliminate hu-
man variance. The evaluation results of language
fluency and factual correctness are shown in Ta-
ble 4 and the first row of Table 3, respectively. For
more details of the evaluation, check Appendix
D. To conduct a precise evaluation of semantic

Gold GPT-2 Transformer+copy

% factually correct 98.1 82.4 65.1
% semantically correct 92.0 73.0 43.0

Table 3: Human evaluation results of factual correctness (first
row) and semantic correctness (second row).

% win % loss % tie

GPT-2 vs Gold 35.6 43.3 21.1
GPT-2 vs Transformer+copy 54.0 25.3 20.7
Gold vs Transformer+copy 61.2 23.6 15.2

Table 4: Human evaluation results of language fluency.

correctness, i.e., whether the generation correctly
matches the meaning of the logical form, we in-
vite human experts (two computer science graduate
students) to perform the evaluation. We sample
200 examples from each method and ask them to
verify whether the description correctly presents
the meaning of the logic form. Each example is ex-
amined by both students, and the decision is made
after discussion. The second row of Table 3 shows
the evaluation results.

As we can observe from all evaluation results,
the GPT-2 model gives big improvements on both
fidelity preserving and language fluency, but there’s
still a gap, especially on semantic correctness. We
believe our dataset can serve as a valuable resource
posing such a challenge on high-fidelity generation
with complex semantics.

5.3 Importance of the Logical Form

We conduct experiments without using the logical
form, i.e., to generate arbitrary logically correct
descriptions solely based on the table, which is the
task setting of (Chen et al., 2020). The generation
is evaluated with all descriptions of the same table
as multi-references, as in their setting. The best
performing model of (Chen et al., 2020) obtains a
BLEU-4 score of 20.17 and a factual correctness
rate of 20.2% based on human evaluation of 500
samples. In contrast, the generations of our best
-performing baseline can obtain a factual correct-
ness rate of 82.4% shown in Table 3, which demon-
strates the great importance of the logical form on
high-fidelity generation. Note that the automatic
scores are not directly comparable, since, in our
task setting, each generation maps to a unique logi-
cal form and is evaluated with a single reference.

5.4 Component-Wise Ablation

Models B-4 R-1 R-2 R-4 R-L

GPT-2 31.44 64.16 39.48 17.46 53.99

-w/o caption 21.67 54.26 29.16 9.99 45.70
-w/o header 29.86 62.98 38.46 16.64 52.57
-w/o content 30.42 64.17 38.89 16.79 53.63

Table 5: Ablation study on other input components.

We perform ablation studies on other input com-
ponents: the table caption, header, and content,
using the best-performing GPT-2 model. As shown
in Table 5, both the table caption and header pro-
vide strong context information for generation, and
the table content also brings a slight improvement.

5.5 Few-Shot Setting

Considering that acquiring a large amount of (logi-
cal form, description) pairs in real-world cases is
expensive, we also include a few-shot learning task
for our dataset, where the model is only provided
with hundreds of paired examples. Previous works
have shown that the pre-trained language models
obtain strong NLG performance even with a hand-
ful of fine-tuning instances (Chen et al., 2019b).
Therefore we still use the best-performing GPT-2
model for this study. In our dataset, the amount of
unseen logical form structures increases with the re-
duction of training instances. As shown in Table 6,
while there’s still a gap with the fully-supervised
result, the result with 1,000 training instances us-
ing GPT-2 is comparable to some other baselines
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with the full training data. This demonstrates the
potential of incorporating generative pre-training
for the few-shot learning task.

# of examples B-4 R-1 R-2 R-4 R-L

Full 31.44 64.16 39.48 17.46 53.99

100 17.09 48.26 23.52 7.47 38.74
200 19.98 51.99 27.02 9.42 41.86
500 23.04 56.64 30.99 11.35 46.86
1000 24.57 57.81 32.64 12.21 47.67

Table 6: Results for few-shot learning setting with 100, 200,
500, and 1000 training examples, using GPT-2.

6 Conclusion

In this work, we formulate the problem of logical-
level NLG as generation from logical forms in or-
der to obtain controllable and high-fidelity genera-
tions. To this end, we propose a new dataset named
LOGIC2TEXT. There are some other potential fu-
ture directions. 1) Human evaluations are precise
but expensive. Our dataset can be used in the re-
verse direction to train a semantic parser, to assist
parsing-based evaluations. 2) In this work, we pri-
marily focus on the step to generate descriptions
based on the logical form. Another potential future
direction could be the content selections, i.e., how
to select and organize the logical forms to construct
a discourse plan based on user interests.
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Appendix

A. Logic Type Definitions & Logical Form
Annotation

Logic Type Definitions

We define all 7 logic types in our dataset and pro-
vide examples based on the following table in Fig-
ure 7.

country region
joined 
opec

population 
(july 2012)

area (km 
square)

algeria africa 1969 37367226 2381740

angola africa 2007 18056072 1246700

iraq middle east 1960 31129225 437072

kuwait middle east 1960 2646314 17820

libya africa 1962 5613380 1759540

nigeria africa 1971 170123740 923768

qatar middle east 1961 1951591 11437

saudi arabia middle east 1960 26534504 2149690

united arab 
emirates middle east 1967 5314317 83600

venezuela south america 1960 28047938 912050

table caption: opec

Figure 7: Example table
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Count: counting some rows in the table based on
the values in one column, with the scope of all table
rows or a subset of rows.
Example descriptions: “in opec 2012, there were
4 countries from africa.”, “in opec 2012, among
the countries from africa, 2 of them joined after
1970.”, etc.

Superlative: Describing the maximum or min-
imum value in a column, with the scope of all ta-
ble rows or a subset of rows. You may also talk
about other columns on this row with the superla-
tive value.
Example descriptions: “in opec in 2012, angola,
from africa, was the latest country to join.”,
“among the member countries in opec in 2012 from
the middle east, qatar was the smallest in area.”, etc.

Ordinal: Describing the n-th maximum or mini-
mum value in a column, with the scope of all table
rows or a subset of rows. You may also talk about
other columns on this row with the n-th maximum
or minimum value.
Example descriptions: “in opec in 2012, qatar
was the 5th country to join.”, “Among the africa
member countries, algeria was the 2nd earliest to
join.”, etc.

Comparative: Comparing two rows in the table,
regarding their values in one column. You may also
talk about other columns on these two rows.
Example descriptions: “in opec in 2012, libiya
joined 2 years later than kuwait.”, “in opec in 2012,
algeria, from africa, had a larger population than
iraq from the middle east.”

Aggregation: Describing the sum or average
value over a column, with the scope of all table
rows or a subset of rows.
Example descriptions: “in opec 2012, the
countries from africa had an average population of
around 57,800,000.”, etc.

Unique: Describing one unique row, regarding
one column, with the scope of all table rows or
a subset of rows. You may also talk about other
columns on this unique row.
Example descriptions: “in opec 2012, angola
was the only country to join after 2000.”, “in 2012,
among the member countries from africa, the only
one to join opec after 2000 is angola.”, etc.

Majority: Describing the majority values (most
or all) over one column, with the scope of all table
rows or a subset of rows.
Example descriptions: “in opec 2012, most coun-
tries joined before 2000.”, “in opec 2012, all of the
africa member countries had an area larger than
900,000.”, etc.

Logical Form Annotation

Here we provide the question sets for annotating
each logical type.
Count: (1). Choose whether the counting is per-
formed on the scope of all table rows, or on a subset
of all rows. (2). Select the table column that the
counting is performed on. (3). Select the crite-
rion, based on which we filter the table records to
be counted. Here we consider the following crite-
rion: ”equal”, ”not equal”, ”less than”, ”less than
or equal to”, ”greater than”, ”greater than or equal
to”, ”fuzzily match”, ”all” (or ”other” if none of
the above is correct). (4). Based on the selected
criterion, write the value to be filtered for counting.
(5). Write down the result of the counting.
Superlative: (1). Is the superlative action per-
formed on the scope of all table rows, or on a subset
of all rows? (2). What is the table column that the
superlative action is performed on? (3). Is the su-
perlative action taking the numerical maximum, or
minimum value among the records? (4). What is
the table row containing this superlative value? (5).
On this row with the superlative value, what are
the other column(s) mentioned? If not any other
column is mentioned, write ’n/a’. (6). Is this su-
perlative value itself mentioned in the statement?
Aggregation: (1). Choose whether the aggrega-
tion is performed on the scope of all table rows, or
on a subset of all rows. (2). Select the table column
that the aggregation is performed on. (3). What is
the type of this aggregation, sum or average? (4).
What is the result of this aggregation?
Comparative: (1). Which column is the state-
ment comparing? (2). What is the first row to be
compared? (3). What is the second row to be com-
pared? (4). What is the relationship comparing the
records numerically in the first row with the sec-
ond? (choose from ”greater”, ”less”, ”equal”, ”not
equal”, ”difference value”, or ”other” if not any of
the above. Here we consider the relationship be-
tween actual numerical values between two records,
NOT the relationship expressed in the statement )
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(5). Is the compared records itself mentioned in the
statement? (6). What are the other column(s) of
these two rows mentioned in the statement?
Majority: (1). What is the scope of this major-
ity? (2). Which column the statement is describ-
ing? (3). Is the statement describing all the records
or most frequent records within the scope? (4). Se-
lect the criterion, based on which we filter records
to describe the majority. Here we consider the fol-
lowing criterion: ”equal”, ”not equal”, ”less than”,
”less than or equal to”, ”greater than”, ”greater than
or equal to”, ”fuzzily match” (or ”other” if none of
the above is correct). (5). Based on the selected cri-
terion, write the value to be filtered for describing
the majority.
Ordinal: (1). What is the scope that the ordinal
description is performed on? (all rows or a subset
of rows) (2). What is the table column that the
ordinal description is based on? (3). Is the ordinal
description based on a numerically max to min or
min to max ranking of the column records? (4).
What is the order described in the statement, based
on this ranking? (5). What is the table row contain-
ing this n-th record ? (6). On this row, what are
the other column(s) mentioned? If not any other
column is mentioned, write ’n/a’. (7). Is this n-th
record itself mentioned in the statement?
Unique: (1). What is the scope of this statement
describing unique row? (2). What is this unique
row? (3). Write the table column that shows the
uniqueness of this row (4). Select the criterion,
based on which we filter records in this column
to find the unique row. Here we consider the fol-
lowing criterion: ”equal”, ”not equal”, ”less than”,
”greater than”, ”fuzzily match” (or ”other” if none
of the above is correct). (5). Based on the selected
criterion, write the value to be filtered for the un-
qiue row. (6). On this unique row, what are the
other column(s) mentioned (except the column de-
scribing the scope)? If not any other column is
mentioned, write ’n/a’.

B. Function Definitions

Here we list the function definitions and descrip-
tions for our logical form in table 7. Note that since
the tables in WikiTables are not standard database
table, but semi-structured tables, the cell values
are often not well-formatted with a lot of mixed
strings and numbers, dates in different formats, etc.
Therefore for some functions involving arithmetic
operations on table cell values, we only specify a

coarse “object” type for the arguments, and then
parse the numerical or date type values in the func-
tion implementations. Refer to our released code
for detailed implementations.

C. Model Implementation Details

Here we provide some implementation details of
the baseline models.

Template Some example templates are listed be-
low. Texts in braces is optional depending on the
logical form.
count:

in [table caption], (among the ones whose
[scope column] are [equal to/greater than/...]
[scope value]), there are [result] ones whose [col-
umn name] are [equal to/greater than/...] [value]
.
superlative:

in [table caption], (among the ones whose
[scope column] are [equal to/greater than/...]
[scope value]), the [max/minimum] [col-
umn name] is [value].

in [table caption], (among the ones whose
[scope column] are [equal to/greater than/...]
[scope value]), [subject], with ([other col1]
[other val];...), has the [max/minimum] [col-
umn name], ([value]).
ordinal:

similar as superlative, replace max/mini-
mum as n-th max/minimum.
comparative:

in [table caption], [subject1] has [greater/less/...]
[column name] than [subject2].

in [table caption], [subject1] has [diff value]
[column name] [greater/less/...] than [subject2].

in [table caption], [subject1], with ([other col1]
[other val];...), has [greater/less/...] [column name]
than [subject2], with ([other col1] [other val];...).
unique:

in [table caption], (among the ones whose
[scope column] are [equal to/greater than/...]
[scope value]), there is only one of them whose
[column name] is [greater/less /...] than [value].

in [table caption], (among the ones whose
[scope column] are [equal to/greater than/...]
[scope value]), the only one whose [column name]
is [greater/less/...] than [value] is for [subject], with
([other col1] [other val];...).
aggregation:
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Name Arguments Output Description

count view number returns the number of rows in the view

only view bool returns whether there is exactly one row in the view

hop row, header string object returns the value under the header column of the row

and bool, bool bool returns the boolean operation result of two arguments

max/min/avg/sum view, header string number returns the max/min/average/sum of the values under the header column
nth max/nth min view, header string number returns the n-th max/n-th min of the values under the header column

argmax/argmin view, header string row returns the row with the max/min value in header column
nth argmax/nth argmin view, header string row returns the row with the n-th max/min value in header column

eq/not eq object, object bool returns if the two arguments are equal
round eq object, object bool returns if the two arguments are roughly equal under certain tolerance
greater/less object, object bool returns if argument 1 is greater/less than argument 2

diff object, object object returns the difference between two arguments

filter eq/not eq view, header string, object view returns the subview whose values under the header column is equal/not equal to argument 3
filter greater/less view, header string, object view returns the subview whose values under the header column is greater/less than argument 3
filter greater eq /less eq view, header string, object view returns the subview whose values under the header column is greater/less or equal than argument 3
filter all view, header string view returns the view itself for the case of describing the whole table

all eq/not eq view, header string, object bool returns whether all the values under the header column are equal/not equal to argument 3
all greater/less view, header string, object bool returns whether all the values under the header column are greater/less than argument 3
all greater eq/less eq view, header string, object bool returns whether all the values under the header column are greater/less or equal to argument 3

most eq/not eq view, header string, object bool returns whether most of the values under the header column are equal/not equal to argument 3
most greater/less view, header string, object bool returns whether most of the values under the header column are greater/less than argument 3
most greater eq/less eq view, header string, object bool returns whether most of the values under the header column are greater/less or equal to argument 3

Table 7: Function definitions

in [table caption], (among the ones whose
[scope column] are [equal to/greater than/...]
[scope value]), the [average/sum] of [col-
umn name] is [result].
majority:

in [table caption], (among the ones whose
[scope column] are [equal to/greater than/...]
[scope value]), [most/all] of them has [col-
umn name] [equal to/greater than/ ...] [major-
ity value].

For all neural models we use Byte-Pair En-
coding (BPE) (Sennrich et al., 2016) and the
subword vocabulary used in (Radford et al.,
2019). We use the pre-trained word embeddings
from (Radford et al., 2019) and project to certain
smaller dimensions (300) as the word embeddings.
The batch size of all models are set to 32. The
beam size is set to 3. As the table content only
serves as context information for generation, to
save GPU memory we set the maximum length
of the table content as 200. The hyperparameters
are chosen based on manual tuning regarding the
BLEU score on the validation set.

Seq2seq+att & pointer-generator The learning
rate is set to 0.001. For seq2seq, the training takes
around 16000 gradient steps. For pointer generator,
training takes around 5000 steps.
Graph2seq+copy we reuse the code skeleton from
the released code from (Xu et al., 2018). The table

caption and header are first fed into a seq2seq, then
the final hidden state is used to initialize the nodes
of the graph encoder. When applying attention and
copy, for graph nodes, we concatenate the token
embedding and the embedding of its node as the
embedding for the token. The learning rate is set
to 0.0005. Training takes around 11000 steps.
Transformer+copy we mostly follow the structure
setting in the original Transformer model (Vaswani
et al., 2017). We use 4 attention heads and 6 layers.
The final hidden layer is used for calculating the
attention score and the copy switch. We also add
the segment embeddings for different input compo-
nents similar as (Devlin et al., 2019). The learning
rate is set to 0.0005. training takes around 32000
steps.
GPT-2 We use the GPT-2 small 117M model from
the released code and pre-trained model from (Rad-
ford et al., 2019). Word embeddings are fixed dur-
ing training. The learning rate is set to 0.0003. The
training takes around 500 steps to converge.

All the experiments are run on GeForce GTX
1080Ti GPU. Table 8 shows the validation perfor-
mance of different baselines.

D. Human Evaluation Details

Human Evaluations on AMT We randomly sam-
ple 500 examples from the top two best performing
methods (GPT-2 and Transformer+copy), and the
gold references. The evaluations are conducted on
two axes: factual correctness and language fluency.
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Models B-4 R-1 R-2 R-4 R-L

Template 17.81 51.16 24.89 6.68 38.12

Seq2seq+att 12.26 35.44 15.68 4.81 30.36
Pointer generator 25.43 57.35 31.97 12.33 48.11
Graph2seq+copy 25.65 57.65 31.98 12.29 48.28
Transformer+copy 27.20 59.70 34.06 14.03 48.71
GPT-2 32.98 64.86 40.02 18.38 54.59

Table 8: Automatic evaluation results for validation set.

For factual correctness, we provide the workers
with both the table and the description, and ask
them to verify whether the description is factually
correct based on the table. If the description con-
tains too many grammar errors to be readable, the
worker is instructed to select ”incorrect”. Minor
grammar errors can be accepted, as long as the
worker can understand the meanings. For language
fluency, we conduct pairwise comparison between
the three methods. For this evaluation we only
present the pair of descriptions to the worker, and
ask them to select a better one only based on lan-
guage fluency (a better description should be fluent,
coherent, and free of grammar errors), or select
”Tied” if the two descriptions are of similar quality.
For both evaluations we distribute each task to 3
workers to eliminate human variance.
Human Expert Evaluation To conduct precise
evaluation of semantic correctness, i.e., whether
the generation correctly matches the meaning of
the logical form, we invite human experts (two
computer science graduate students) to perform the
evaluation. We sample 200 examples from each
method and ask them to verify whether the descrip-
tion correctly presents the meaning of the logic
form, with neither insufficient nor redundant infor-
mation. The description should also be fluent and
free of grammar errors. Therefore this evaluation
can be seen as a comprehensive evaluation of the
generation quality. Each example is examined by
both students and the decision is made after discus-
sion.

E. Generation Examples

We provide 2 examples of generations in Figure 8
and Figure 9.
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east coast conference

institution nickname location founded type enrollment joined

university of 
bridgeport

purple 
knights bridgeport , connecticut 1927 private 4018 2000

daemen college wildcats amherst , new york 1947 private ( nonsectarian ) 2100 2013

university of the 
district of 
columbia firebirds washington , dc 1851 public 5471 2011

dowling college
golden 
lions oakdale , new york 1963 private 7000 1989

mercy college mavericks dobbs ferry , new york 1950 private 10000 1989

molloy college lions rockville centre , new york 1955 private 3533 1989

new york institute 
of technology bears old westbury , new york 1955 private 12755 1989

queens college knights flushing , new york 1937 public 17639 1989

roberts wesleyan 
college redhawks chili , new york 1866 private ( free methodist ) 2000 2012

Logical form: greater { hop { filter_eq { all_rows ; institution ; mercy college } ; enrollment } ; hop { filter_eq { all_rows 
; institution ; dowling college } ; enrollment } } = true

Gold: in the east coast conference , more people attended school at mercy college than at dowling college .
GPT-2: in the east coast conference , mercy college has a greater enrollment than dowling college .
Transformer+copy: more people attend the enrollment in the north coast conference than dowling college .

Figure 8: Example generations.

rank s wicket player matches average

1 513 clarrie grimmett (vic / sa) 79 25.29

2 441 michael kasprowicz (qld) 101 24.56

3 430 andy bichel (qld) 89 23.24

4 419 jo angel (wa) 105 24.86

5 384 terry alderman (wa) 97 24.21

Logical form: and { eq { max { all_rows ; average } ; 25.29 } ; eq { hop { argmax { all_rows ; average } 
; player } ; clarrie grimmett ( vic / sa ) } } = true

Gold: clarrie grimmett had the highest average in the sheffield shield , 25.29 .
GPT-2: clarkrie grimmett was the player with the highest average in the sheffield shield .
Transformer+copy: in the player that had 25.29 , the highest number of average average average 
attendance for the player who had 25.29 .

sheffield shield

Figure 9: Example generations.


