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Abstract

Recently, pre-training contextualized encoders
with language model (LM) objectives has been
shown an effective semi-supervised method
for structured prediction. In this work, we
empirically explore an alternative pre-training
method for contextualized encoders. Instead
of predicting words in LMs, we “mask out”
and predict word order information, with a lo-
cal ordering strategy and word-selecting ob-
jectives. With evaluations on three typical
structured prediction tasks (dependency pars-
ing, POS tagging, and NER) over four lan-
guages (English, Finnish, Czech, and Italian),
we show that our method is consistently bene-
ficial. We further conduct detailed error analy-
sis, including one that examines a specific type
of parsing error where the head is misidenti-
fied. The results show that pre-trained con-
textual encoders can bring improvements in a
structured way, suggesting that they may be
able to capture higher-order patterns and fea-
ture combinations from unlabeled data.

1 Introduction

Recently, pre-trained contextualized encoders (Pe-
ters et al., 2018; Radford et al., 2019; Devlin et al.,
2019) have been shown to be beneficial for NLP
tasks, including structured prediction (Kulmizev
et al., 2019; Kondratyuk and Straka, 2019). Most of
the pre-training objectives are based on variants of
language models (LM), that is, the model is trained
to predict lexical items with partial inputs. Masked
Language Model (MaskLM) is a typical example,
popularized by BERT (Devlin et al., 2019), which
masks out lexical tokens in the input sequences and
predicts their identities. Since natural sentences
contain not only lexical tokens but also their lin-
earized word orders, it is a natural question if we
can perform pre-training by “masking out” and re-
covering word order information.

Word order is an important method of grammat-
ical encoding (Dryer, 2007), and can play an im-
portant role in predicting basic sentence structures
(Naseem et al., 2012; Täckström et al., 2013; Am-
mar et al., 2016; Ahmad et al., 2019). Recently,
Wang et al. (2018) pre-train an explicit word re-
ordering model and show that its contextualized
representations improve dependency parsing.

In this work, we explore a local ordering pre-
training strategy with word-selection objectives.
Instead of completely discarding original word or-
der information, we segment the input sentence
into local bags of words and keep the ordering of
these bags. Inside each bag, we discard all the
local word orders and train the model to recover
them. Furthermore, we simplify the training objec-
tives: instead of training explicit word linearizers
which require extra unidirectional decoders, we
only ask the model to select original neighboring
words. This scheme simplifies the pre-training pro-
cedure and enhances the encoder since it can take
information from the whole sentence.

A similar idea is explored in StructBERT (Wang
et al., 2020), which adopts a word structural ob-
jective by shuffling and re-predicting randomly se-
lected subsets of trigrams. Our method is different
in that we make local bags of words instead of
shuffling and we adopt simpler and cheaper word-
selection objectives. Moreover, we focus on empir-
ical experiments and error analysis on structured
prediction tasks.

We evaluate on three structured prediction tasks
(dependency parsing, part-of-speech (POS) tag-
ging, and Named Entity Recognition (NER)) over
four languages (English, Finnish, Czech, Italian).
The highlights of our findings are:

• For local ordering pre-training, the best perfor-
mance is obtained when partially masking out
information in a suitable degree. (§3.2.1)
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Figure 1: Illustration of the local ordering pre-training
strategy. We segment the input sentence into local bags
(bag size is fixed to three here) and discard word order
information inside each bag by assigning same position
indexes. Training objectives are to select original neigh-
boring words. Here, we only show the scenario for di-
rect left-neighbor selection, while selections for other
positions will be similar.

• Even when pre-trained with a small amount of
data (1M Wikipedia sentences), our method can
improve the performances of structured predic-
tors in a consistent way. Our method performs
comparably to MaskLM and there can be further
improvements when combining the two objec-
tives, especially for parsing, which is the most
structured task we explore. (§3.2.2, §3.3)
• The pre-trained models make fewer structured er-

rors, suggesting that they may be able to capture
higher-order patterns and feature combinations
from unlabeled data. (§3.4)

2 Local Ordering Pre-training

Word reordering or linearization itself is an inter-
esting task, aiming to arrange a bag of words into
a natural sentence (Liu et al., 2015; Zhang and
Clark, 2015; Schmaltz et al., 2016). Wang et al.
(2018) show that representations from an explicit
reordering model can benefit dependency parsing.
However, there may be two issues with an explicit
reordering model for pre-training. Firstly, the input
is a bag of words without any positional informa-
tion. This could discard too much information,
leading to relatively large discrepancies between
pre-training and fine-tuning. Moreover, training
explicit reordering models requires unidirectional
decoders, which are only aware of contexts from
one direction and cannot make full use of the bidi-
rectional information at one time.

To mitigate these issues, we explore a local or-
dering pre-training strategy with word-selection
objectives. Inspired by MaskLM, where only some
of the tokens are masked out, we “mask out” par-

tial ordering information by segmenting the input
sentence into multiple local bags of words, and
only discarding word orders inside each bag (§2.1).
Moreover, we adopt simpler training objectives of
selecting original neighboring words, which avoids
the need of unidirectional decoders and focuses the
pre-training on the encoder (§2.2).

2.1 Local Bags of Words
Instead of discarding all positional information, we
keep the overall ordering and only discard local
word orders. This is achieved by segmenting the
input sentence into a sequence of local bags of
words. In this way, the model is not aware of the
local word orders inside each bag, but the overall
ordering of the bags is kept. Figure 1 provides a
simplified example to illustrate this scheme. We
specify special positional encodings to “mask out”
local word orders: inside each local bag, all the to-
kens get the same positional indexes. For example,
the position indexes in the first bag {There, is, a}
are all set to 0, while in the second bag {cat, on,
the}, the position indexes are all casted to 3.

The above example illustrates a simplified
scheme, whereas in actual pre-training, we adopt
several variations to make it more flexible. 1) First,
for the position indexes inside each bag, we do not
fix them to the index of the first token, but randomly
pick a representative token and adopt its index. For
example, in the second bag, we randomly choose
a representative index from {3, 4, 5}, and then set
all position indexes to this value. 2) Moreover, for
each local bag, we randomly sample its bag size
from a pre-defined range, instead of using a fixed
size. 3) In addition, we randomly pick half of the
bags and keep the original position indexes in them,
which is another way of retaining partial ordering
information.

2.2 Word-selection Objectives
Since the aim of pre-training is not the pre-training
task itself but the encoder, we do not need an ex-
plicit word reordering model, which may require
unidirectional decoders. In some way, an explicit
reordering model can be regarded as a LM which
constrains candidate words to come from the in-
put sentence. Therefore, it may suffer from the
same problem as unidirectional LMs: at one time,
contexts from only one direction can be utilized
instead of from both directions. This is the bias of
unidirectional decoders and we replace them with
simpler word selectors.
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Specifically, we only ask the model to select
original neighbors for each word that loses its local
word order information. Figure 1 illustrates the
case for left-neighbor selection. This task is non-
trivial since the model is unaware of word orders
inside each bag. In many scenarios, it needs to
capture certain global sentence structures. For ex-
ample, in the second bag {cat, on, the}, if looking
only locally, we may pick “the” as the left neighbor
of “cat”. However, if we notice that there is another
determiner “a” in the first bag, then “the” will not
be the only choice.

In actual running, we adopt four classification
tasks corresponding to different original offsets:
two for the selection of the original left neighbor
(-1) and the left of the left neighbor (-2) and two for
the right ones. Each word selector gets its own pa-
rameters. Since the word selection task is similar to
dependency parsing (Zhang et al., 2017), we adopt
the biaffine scorer (Dozat and Manning, 2017). The
training objectives are negative log likelihoods on
selecting the correct words.

Formally, assume that we have an input se-
quence of w0, w1, . . . , wn−1, and we generate their
corrupted positions p0, p1, . . . , pn−1 with our lo-
cal bag strategy. For a specific word wi (where
pi 6= i) and a specific selection offset δ (δ ∈
{−2,−1, 1, 2}), its loss objective will be (for
brevity, we omit the conditions on the inputs):

`wi,δ = − log
expScoreδ(wi, wi+δ)∑
j expScoreδ(wi, wj)

Here, Scoreδ denotes the scores of two tokens hav-
ing positional differences δ.

Notice that the simplified tasks are not necessar-
ily easier than the explicit reordering task, since
we can recover the original word order if we know
all the local neighboring information. The word-
selection objectives get rid of the explicit decoder
as well as its unidirectional bias. At the same time,
the model is still as efficient as word reordering
models, since we only need to select among the
words that appear in the input sentence, and there
is no need to do the computationally expensive nor-
malizations over the whole vocabulary as in LMs.

2.3 Hybrid Training
We further perform multi-task hybrid training, in-
cluding both ordering and MaskLM objectives. Ac-
tually, our local ordering strategy can be integrated
with MaskLM in a natural way. Since half of the lo-
cal bags preserve the original position indexes, we

Decoder

Encoder

Labeled

Unlabeled

Model Data

FineTuning

PreTraining

Figure 2: Illustration of the overall training scheme.
The encoder is pre-trained in the pre-training stage with
the unlabeled data. Later, the task-specific decoder is
stacked and both modules are further fine-tuned with
task-specific labeled data.

randomly select words inside those bags to mask
and predict. This scheme is nearly as effective as
the original one because we can segment local bags
and mask words at the same time and thus there
is no need to run through the encoder twice. The
encoder produces one set of contextualized repre-
sentations, which we can feed to the corresponding
modules of the two tasks. We adopt equal weights
(both set to 0.5) for the two objectives.

3 Experiments

3.1 Settings
In this sub-section, we briefly describe our main
experiment settings1. Please refer to the Appendix
for more details.

Scheme Figure 2 shows our overall training
scheme. We take a two-step approach: pre-training
plus fine-tuning. First, the encoder is pre-trained
using a relatively large unlabeled corpus, then the
task-specific decoders are stacked upon the pre-
trained encoder and all the modules are fine-tuned
with task-specific labeled data, which is much
smaller than the pre-training data.

Data We explore four languages to evaluate our
pre-training strategy: English (en), Finnish (fi),
Czech (cs), and Italian (it). For the unlabeled
data in pre-training, we collect Wikipedia corpora
from the 2018-Fall Wiki-dump. Due to limita-
tion of computational resources, we sample 1M
sentences for each language. For POS tagging
and dependency parsing, we utilize Universal De-
pendencies (UD) v2.4 (Nivre et al., 2019). For
NER, we utilize CoNLL03 (Tjong Kim Sang and
De Meulder, 2003) for English, Digitoday (Ruoko-
lainen et al., 2019) for Finnish, Czech Named En-
tity Corpus (Ševčı́ková et al., 2007) for Czech and

1Our implementation is publicly available at https://
github.com/zzsfornlp/zmsp

https://github.com/zzsfornlp/zmsp
https://github.com/zzsfornlp/zmsp
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EVALITA 2009 (Speranza, 2009) for Italian. We
mainly follow the default dataset splittings, except
for the training sets. To investigate middle- and
low-resource scenarios, we explore three settings
of different training sizes, sampling 1k, 5k and 10k
sentences from the original training set. We adopt
standard evaluation criteria: accuracies for POS
tagging, first-level (language-independent) Labeled
Attachment Score (LAS) for dependency parsing,
and F1 score for NER.

Encoders We adopt encoders with the same ar-
chitecture: a 6-layer Transformer, whose head num-
ber, model dimension and feed-forward hidden di-
mension are set to 8, 512 and 1024, respectively.
In addition, we adopt relative positional encodings
(Shaw et al., 2018; Dai et al., 2019) within the
Transformer, since in preliminary experiments we
find this helpful for target tasks. In contrast to
BERT, we adopt words2 as basic input and mod-
eling units. We further include a character-level
Convolutional Neural Network (CNN) to capture
internal structures of words.

Decoders For the decoders of specific tasks, we
adopt typical solutions. For dependency parsing,
we adopt the biaffine graph-based decoder (Dozat
and Manning, 2017). For POS tagging, we simply
add a single-layer classifier over all tags (Yang
et al., 2018). For NER, we adopt a standard CRF
layer (Lafferty et al., 2001).

Training For model training, we adopt the Adam
optimizer (Kingma and Ba, 2014) with a warming-
up styled learning rate schedule. In pre-training,
each mini-batch includes 480 sentences and we
train the model for 200k steps, in which the first
5k steps are specified for linearly increasing the
learning rate towards 4e-4. The pre-training stage
takes around 3 days with one RTX 2080 Ti GPU. In
task-specific training, we adopt a mini-batch size
of 80 sentences and train the model for maximally
250 epochs over the training set, which generally
takes several hours using a single GPU.

3.2 Effects of Pre-training Strategies
In this sub-section, we explore the effects of pre-
training strategies. Here, we take the English de-
pendency parsing dataset for development.

2Except for those which directly utilize BERT, all models
adopt the same word-based input scheme. We adopt this
mainly to follow the conventions of the target tasks and to
compare with baselines without pre-trained encoders.

R 3 5 7 9 11 ∞

10k 86.83 87.72 87.75 87.91 87.64 86.98
5k 85.61 86.54 86.70 86.70 86.38 85.64
1k 80.87 82.07 82.25 81.91 82.17 79.06

Table 1: Comparisons of bag size ranges ([ R+1
2 , R]) for

the local ordering strategy. “R=∞” indicates that all
words from one input sentence fall into one bag. Evalu-
ations are performed with the English dependency pars-
ing task (LAS on development set). Each row repre-
sents different (target task) training sizes.

3.2.1 Bag Size Range
As described in §2.1, we adopt variable bag sizes
for the ordering pre-training. The aim is to make
the model more flexible and prevent it from always
seeing the same patterns associated with fixed bag
sizes. The neighbor selection process is not af-
fected by this since it does not care about the bag
boundaries, and selects among all the input tokens.
The bag size range is a major setting in this strat-
egy. To reduce the number of hyper-parameters,
we specify a maximum bag size R, and set the bag
size range to [ R+1

2 , R]. For example, if R is set to 7,
then for each bag, its size is randomly selected from
4 to 7. We also include a setting where R is ∞,
which corresponds to the case where all words fall
into one global bag, as in the full word reordering
model.

The results are shown in Table 1. Firstly, in
the case of R =∞, the model generally performs
worse than those with local bags. This shows the ef-
fectiveness of keeping partial ordering information
for pre-training, which may possibly reduce the
discrepancies between pre-training and fine-tuning,
matching our intuition of the local ordering strategy.
Furthermore, when the bag size is too small as in
the case ofR = 3, the performances are also worse,
possibly because the task becomes so simple that
the model learns little in pre-training. Among the
middle-ranged settings of R, which partially mask
out information in suitable degrees, the results do
not differ too much. In the following experiments,
we fix R to 7, which performs well overall.

3.2.2 Comparisons
We compare various pre-training strategies and
show the results in Table 2. As split in this table,
we arrange the models into three groups:
(1) The first group includes models without pre-
trained encoders. “Random” gets random initial-
ization, and “fastText” gets its word lookup table
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Random fastText BiLM MaskLM LBag Hybrid BERT

10k 83.70±0.36 86.00±0.10 87.28±0.16 87.96±0.09 87.75±0.13 88.27±0.11 89.60±0.10
5k 80.75±0.35 83.17±0.24 86.16±0.03 87.09±0.10 86.70±0.13 87.35±0.10 88.47±0.11
1k 69.93±0.32 72.84±0.25 80.75±0.03 82.65±0.04 82.25±0.07 83.28±0.26 84.62±0.28

Table 2: Comparisons of different pre-training strategies with the English dependency parsing task (LAS on devel-
opment set, averaged over three runs). Each row represents different (target task) training sizes.

initialized from static fastText embeddings3.
(2) The second group includes models whose en-
coders are pre-trained with the same settings on the
1M Wiki corpus. “BiLM” denotes Elmo-styled (Pe-
ters et al., 2018) Bidirectional LM (BiLM), where
we train left-to-right and right-to-left language
models with causality attention masks. “MaskLM”
means the BERT-styled MaskLM, where 15% of
the words are masked out and predicted. “LBag”
denotes our Local-Bag based ordering strategy and
“Hybrid” is the multi-task hybrid model trained
with both ordering and MaskLM objectives.
(3) The third group only contains “BERT”, which
directly utilizes pre-trained BERT4.

In the first group, where there are no pre-trained
encoders, the performances drop drastically in low-
resource cases. The pre-trained static word embed-
dings help in some way, but its degree of perfor-
mance drop is very similar to the baseline: there
are performance gaps of nearly 14 points between
10k and 1k training sizes. If we adopt pre-trained
encoders, as in the second and third group, the per-
formance clearly improves for all training sizes.
Particularly, in the low-resource (1k) settings, the
performance drops from the 10k settings are much
smaller than those in the first group.

The more interesting comparisons are among
those in the second group, where the settings are
kept the same except for pre-training strategies.
Firstly, BiLM performs worst in this group. The
reason may be that BiLM contains unidirectional
decoders, which cannot make full use of the inputs.
The performance of our local ordering strategy
(LBag) is very close to those of the MaskLM, with
performance gaps of only 0.2 to 0.4 in LAS. Fur-
thermore, if we combine the ordering and MaskLM
objectives as in the Hybrid model, there can be
further improvements. This suggests that local or-

3https://fasttext.cc/docs/en/pretrained-vectors.html
4We use bert-base-multilingual-cased in this

work. Since there are various aspects (model size, pre-training
data size, etc.) making our models not directly comparable to
BERT, we include BERT results mainly as a reference of how
much better we may possibly get with larger models and more
pre-training data.

dering pre-training may capture orthogonal infor-
mation from MaskLM. Overall, the model perfor-
mances in the second group do not differ too much,
suggesting that the effectiveness of contextualized
pre-training can be realized as long as the model is
capable enough.

Unsurprisingly, BERT performs the best, pos-
sibly due to its larger model and training corpus.
Nevertheless, if calculating the gaps between the
second group and BERT, we can find that they are
relatively consistent as training sizes get smaller.
In contrast, the gaps between the first group and
BERT obviously get larger in lower-resource set-
tings. This again suggests the effectiveness of con-
textualized pre-training.

For the pre-trained models in the following ex-
periments, we focus on three strategies: MaskLM,
LBag and Hybrid, since they are the ones that we
are most interested to compare.

3.3 Main Results
Figure 3 shows the main results on the test sets.
The patterns are very similar to the development
results. Pre-trained BERT obtains the best results,
while our smaller pre-trained models lag behind by
small gaps, which are relatively consistent across
different training sizes. Those without pre-trained
encoders mostly get worse results, especially in
low-resource cases. For the parsing task, our lo-
cal ordering strategy can get comparable results to
those of MaskLM and overall there can be further
improvements by combining the two objectives.
For the other two sequence labeling tasks, the re-
sults are mixed, possibly because in these cases the
lexical information may be more important, and
the LM-styled pre-training may be better at captur-
ing them. Nevertheless, our strategy still generally
obtains comparable results to MaskLM.

3.4 Analysis
It is not surprising that contextualized pre-training
can help structured prediction, since pre-trained
encoders may have already captured structured pat-
terns from unlabeled data. We perform detailed
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Figure 3: Test results for dependency parsing (LAS), POS tagging (Accuracy%) and NER (F1 score).

analysis to investigate in what aspects pre-training
are helpful. We select low-resource dependency
parsing (with 1k training size) as the analyzing
task, since parsing is the most structurally complex
task we explore and there may be more obvious pat-
terns in low-resource scenarios. For error analysis
of parsing, Kulmizev et al. (2019) provide detailed
error breakdowns on various factors, along the lines
of (McDonald and Nivre, 2007, 2011). In this work,
we explore different aspects, especially focusing
on the structured nature of the task.

3.4.1 On Word Frequencies
Since pre-training is performed on a much larger
corpus than the task-specific training set, we would

expect that pre-trained models perform better on
out-of-vocabulary (OOV) and rare words, since
they would be seen more often in pre-training.

To investigate this, we split the words of the
development set into four bins according to their
frequency ranking in the (target task) training vo-
cabulary. Except for the OOV bin where words do
not appear in training, the other three bins get the
same number of running word counts.

Figure 4 shows a breakdown of the results. First,
if comparing fastText against the Random baseline,
we can find that overall, the most improvements
come from low frequency and OOV words. For
words with high and middle frequency, static em-
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Figure 4: Performance breakdown of dependency parsing (LAS on development sets, trained with 1k sentences)
on word frequencies. Non-OOV words are evenly divided into the first three bins according to frequency ranking
in (target task) training vocabularies.

beddings provide less or sometimes even no ob-
vious improvements. With pre-trained encoders,
not only do the results on rare and OOV words get
much better, but even high frequent words improve
by a large margin. This suggests that the benefits
of pre-training include not just that each individual
word is known better, which may also be captured
by static embeddings, but also that contextualized
pre-training may be able to identify higher-order
structured patterns.

When comparing the models with pre-trained
encoders, the trends are very similar to the overall
LAS scores. A slightly surprising phenomenon
is that, although our models are trained on much
less data than BERT, the performance gaps are still
relatively consistent across different frequency bins.
This may suggest that even for rare or OOV words,
their contexts can be signals that are strong enough
for syntax prediction.

3.4.2 On Higher-order Matches
A dependency tree is a collection of dependency
edges, which are not individual but interact with
each other, forming higher-order structures. To
investigate how pre-trained encoders help predict-
ing higher-order structures, we specify some frame
patterns and calculate the higher-order matching ac-
curacies. Here, we use “frame” to denote a collec-
tion of dependency edges which form a pre-defined
pattern. Accuracy is calculated by counting how
many times all the dependency edges in the specific
frame are correctly predicted.

We investigate five frame patterns: 1) pred: all
edges connecting a predicate and its core argu-

ment children, 2) mwe: all multi-word expression
(MWE) edges connected to the head word of an
MWE phrase, 3) conj: all edges related to a con-
junction, 4) expl: an expletive edge and its core
argument siblings, 5) acl: an adjectival clause mod-
ifier and all its core argument children. Please refer
to the Appendix for examples and more detail about
the extraction of these higher-order patterns.

Figure 5 shows the results. We can again ob-
serve that static word embeddings improve higher-
order accuracies very limitedly, while pre-trained
encoders give totally different stories. For the
“pred” patterns, the trends are very similar to the
overall LAS results, where LBag is slightly worse
than MaskLM and Hybrid is better. The interesting
cases are “mwe” and “conj”, where LBag mostly
performs better than MaskLM. The reason might be
that these patterns are more fixed in aspects of word
order, which may be captured better by ordering
pre-training. For the last two types, the results are
mixed for different languages. Nevertheless, the
ordering pre-trained models can still achieve com-
parable or sometimes better results than MaskLM.

3.4.3 On Head Errors
Finally, we investigate a special error pattern in
dependency parsing, for which Figure 6 shows an
example. Here, all the predicted edges are wrong,
but there seems to be only one head selection error:
“Epic” is an apposition modifier of “movie”, but the
model picks “Epic” as the head, leading to all other
errors. In constituency trees, an attachment error
may lead to multiple wrong brackets (Kummerfeld
et al., 2012). In contrast, in dependency trees, a
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Figure 5: Comparisons of higher-order matching accuracies on dependency parsing (on development sets, with 1k
training). There are no results for “fi-expl” since in the Finnish (TDT) Treebank we adopt, “expl” is not used.

...   see   the   Flash   movie   Epic
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Figure 6: An example of head error. Here, the edges
above the tokens are gold ones and the edges below
are predictions. The red edge indicates the back edge,
which is directly reversed in this case.

pure attachment error may influence no other edges,
but head errors may lead to multiple related errors.

In the pattern of head errors, the predicted edge
that forms a back edge in the original gold tree can
usually be the signature. The prediction of a back
edge indicates that a word is wrongly attached to
one of its descendants in the gold tree. In addition
to the wrongly predicted back edge itself, there
must be at least another error, since loops are not
allowed in trees. The example in Figure 6 shows
a special case where the back edge is a directly
reversed one, where the head and the modifier are
reversely predicted. This type of 1-step back edges
usually indicates local head errors, while there can
be back edges involving multiple steps, which usu-
ally suggest more complex structured errors.

Figure 8 shows the results on back edges. Firstly,

h0    h1     ...      hn-1    hn

Figure 7: Illustration of multi-step back edge. Here,
the edges above the tokens are gold ones (Notice that
in actual sequence, the tokens do not necessarily appear
in left-to-right order). The red edge below indicates a
n-step back edge for the gold tree.

as the trends in previous analyses, the pre-trained
models obviously predict fewer back edges and
thus make fewer head errors, again suggesting
structural improvements. Moreover, comparing the
1-step back-edge percentages, the pre-trained mod-
els also have higher rates, indicating that their head
errors are more local. Further comparing different
pre-training strategies, we can see that, except for
Finnish, the MaskLM predicts fewer back edges
and makes more local head errors (indicated by
higher 1-step back edge percentages) than LBag.
This suggests that, LM pre-training, which directly
predicts lexical items, may be more sensitive to the
information of head words.

We further investigate errors5 that might be re-
lated with head errors. We adopt a relatively simple

5For simplicity, in this analysis, we ignore dependency
labels and focus on unlabeled errors.
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Figure 8: Results on back edges (on development sets, with 1k training). The light bars indicate the number of
all back edges, while the darker and shaded parts represent the number of 1-step back edges. The numbers on the
x-axis indicate the percentage of 1-step back edges (which indicate more local errors) among all back edges.
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Figure 9: Results on head-error related errors (on development sets, with 1k training). The light bars indicate
the number of total erroneous edges, while the darker and shaded parts represent the number of the ones that are
related with head errors. The numbers on the x-axis indicate the relatedness rates: the percentage of head-error
related erroneous edges among all erroneous edges.

strategy: first identify all back edges, and then in-
clude other erroneous edges that might be related
with any head error. We use the diagram in Figure 7
to illustrate our criterion for relatedness. We mark
three types of erroneous edges as head-error related:
1) the back edge itself (hn → h0), 2) any wrongly
predicted children of hn whose gold head should be
one of [h0, h1, ..., hn−1], 3) any errors for the head
prediction of the tokens [h0, h1, ..., hn−1]. This
criterion may miss or over-predict related errors,
nevertheless we find it a reasonable approximation.

Figure 9 shows the results. First, as in Figure 8,
the pre-trained models are less influenced by head
errors, again suggesting structural improvements.
Further comparing different pre-training strategies,
generally MaskLM is less influenced by head er-
rors, as shown by either lower head-error related
error counts or relatedness rates.

4 Conclusion

In this work, we empirically explore an alternative
pre-training strategy for contextualized encoders.
Instead of training variants of language models, we
adopt a local word ordering strategy, which seg-
ments the inputs into local bags of words, together
with order-based word-selection objectives. Eval-
uated on typical structured prediction tasks, we
show the effectiveness of this method. With further
analysis on one typical structured task, we show
that pre-trained encoders can bring improvements
in a structured way. We hope this empirical work
can shed some light and inspire future work on
exploring how pre-trained contextualized encoders
capture language structures.
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Appendices

A Detailed Experiment Settings
In this subsection, we describe the details of our
experiment settings, mainly including datasets and
hyper-parameter settings.

A.1 Datasets
Languages In this work, we explore four lan-
guages from different language family subdivi-
sions: English (Germanic), Finnish (Uralic), Czech
(Slavic) and Italian (Romance). It may be inter-
esting to see how the effects of pre-training are
influenced by specific language characteristics, for
example, the agglutination in Finnish and relatively
free word order in Czech. We would like to include
more languages in future work, especially those in
different language families.

Unlabeled data For pre-training, we use the
unlabeled data collected from the 2018-Fall
Wiki-dump6. We extract raw texts using
WikiExtractor7 and then do sentence-splitting
and tokenization using UDPipe8. Due to the lim-
itation of computational resources, for each lan-
guage, we sample 1M sentences whose length is
between 5 and 80 for the purpose of pre-training.
Our empirical results show that for the basic struc-
tured prediction tasks explored in this work, such
relative small amount of unlabeled data is already
enough to bring obvious improvements.

Vocabularies Except for models that directly use
pre-trained BERT, all models regard words as the
basic inputting and modeling units. Therefore, for
pre-trained encoders, we collect vocabularies from
the unlabeled corpus, filtering out rare words that
appear less than five times. Table 4 summaries

6https://dumps.wikimedia.org
7https://github.com/attardi/wikiextractor
8http://ufal.mff.cuni.cz/udpipe
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Lang. NER Parsing/POS
Train Dev Test Train Dev Test

en 15.0k/203.6k 3.5k/51.4k 3.7k/46.4k 12.5k/204.6k 2.0k/25.1k 2.1k/25.1k
fi 13.5k/180.2k 1.0k/13.6k 3.5k/46.4k 12.2k/162.8k 1.4k/18.3k 1.6k/21.1k
cs 7.2k/160.0k 0.9k/20.0k 0.9k/20.1k 68.5k/1.2m 9.3k/159.3k 10.1k/173.9k
it 10.0k/189.1k 1.2k/23.4k 4.1k/86.4k 13.1k/276.0k 0.6k/11.9k 0.5k/10.4k

Table 3: Statistics (#Sent./#Token) of the original Parsing/POS and NER datasets. In our experiments, we adopt
the original development and test sets, but sample training sets with different sizes from the original training sets.

Lang. #Sent. #Token #Vocab OOV%

en 1M 23.6M 103k 2.7%
fi 1M 14.1M 177k 10.9%
cs 1M 19.2M 175k 5.1%
it 1M 25.3M 128k 2.6%

Table 4: Statistics of the unlabeled Wiki corpus for pre-
training. For each language (Lang.), we sample 1M
sentences (“#Sent.”). “#Token” indicates the number of
tokens (words), “#Vocab” denotes the vocabulary size
after rare words filtering. The final column represents
the out-of-vocabulary (OOV) rate over the 1M corpus.

the related statistics. We adopt word-level inputs
mainly to follow the conventions of the target tasks
explored in this work and to compare with baseline
models without pre-trained encoders. It will be
interesting to explore other input schemes (such as
sub-words as in BERT) in future work, which is
orthogonal to the main focus of this work.

Target tasks We explore three typical structured
prediction tasks: dependency parsing, part-of-
speech (POS) tagging and Named Entity Recog-
nition (NER). For the tagging and parsing tasks,
we utilize annotations from UDv2.49. Specifically,
we use the following treebanks: “English-EWT”,
“Finnish-TDT”, “Czech-PDT” and “Italian-ISDT”.
For NER, we utilize various datasets, including
CoNLL0310 (Tjong Kim Sang and De Meulder,
2003) for English, Digitoday11 (Ruokolainen et al.,
2019) for Finnish, Czech Named Entity Corpus12

(Ševčı́ková et al., 2007) for Czech and EVALITA
200913 (Speranza, 2009) for Italian. We only adopt
simple settings for the NER tasks, specifically, ig-
noring nested annotations for Finnish NER and con-
sidering Supertypes for Czech NER. For it-NER,
we take the first 10k sentences as training set and
the rest 1.2k as development set. Table 3 lists the

9http://hdl.handle.net/11234/1-2988
10https://www.clips.uantwerpen.be/conll2003/ner/
11https://github.com/mpsilfve/finer-data
12http://ufal.mff.cuni.cz/cnec
13http://www.evalita.it/2009/tasks/entity

Embeddings
demb 300
dchar 50
dproj. 512

Encoder
Nlayer 6
dmodel 512
dff 1024

position-encoding Relative

PreTrain

optimizer Adam
learning-rate 4e-4
warmup-steps 5k

total-steps 200k
batch-size 480

Decoding
POS Enumeration

Parsing Graph-based(o1)
NER CRF

FineTune
optimizer Adam

learning-rate 2e-4
total-epochs 250
batch-size 80

Table 5: Hyper-parameter settings of the model and
training.

statistics of the original datasets.
We mainly follow the default dataset splittings,

but for the training set, we explore three different
training sizes by sampling 1k, 5k and 10k sen-
tences14. These settings aim at exploring how
pre-trained encoders can improve the structured
learners in middle- and low-resource settings. For
evaluations, POS tagging is evaluated by tagging
accuracies and NER is evaluated by the standard
F1 scores. For dependency parsing, we report first-
level Labeled Attachment Scores (LAS) over all
tokens including punctuations.

A.2 Hyper-parameter Settings
Table 5 lists our main hyper-parameter settings.

Encoder Throughout our experiments, we adopt
Transformer encoders with almost the same archi-
tecture. For the inputting parts of the encoder, we
include representations of words and characters.
Word representations are from a randomly initial-

14Only Czech-NER has less than 10k training sentences,
therefore we take the whole 7k training set for the 10k setting.



1782

She  also  had  bright  blue  eyes  ...
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Figure 10: Examples of the higher-order frame patterns. The red solid edges are included, while others (black
dotted ones) are not included.

ized word lookup table, while character represen-
tations are from a character-level CNN. Further, a
linear layer is added to project these input features
to the model dimension. Notice that there are no
other input factors, since these are the ones that are
directly available from the unlabeled corpus.

Pre-training We adopt almost identical pre-
training schemes for all pre-training strategies, in-
cluding optimizer, learning rate scheme and batch
sizes. We employ one RTX 2080 Ti GPU for the
pre-training. To fit the GPU memory, we split one
mini-batch into multiple pieces and do gradient ac-
cumulation. The pre-training stage takes around 3
days for the MaskLM, LBag and Hybrid strategies,
while the BiLM requires around 5 days.

Decoders For specific target tasks, we specify
corresponding decoders. Since our main focus is
not on decoders, we adopt the standard choices for
these tasks. For dependency parsing, we adopt non-
projective first-order (o1) graph-based decoder. For
POS tagging, we do simple enumeration and select
the maximally scored POS tag for each word. Since
dependency parsing and POS tagging share the
same datasets, we apply simple multi-task learning
and train one joint model for these two tasks. For
NER, we adopt a standard CRF layer and perform
decoding with the Viterbi algorithm.

Fine-tuning For the training or fine-tuning of the
target tasks, we also adopt similar schemes. In ad-
dition, the learning rate is decreased by a decay
rate of 0.75 every 8 epochs when there are no im-
provements on the development set, which is also
utilized for model selection. The training on tar-
get tasks usually takes several hours, depending on

training sizes.

B Details of Analysis
B.1 Details on Higher-order Matches
We provide extraction details and examples for the
five patterns we explore. We first define several
groupings of dependency relations according to the
UD documentation15:

• PRED={csubj, ccomp, xcomp, advcl, acl,
root}. This set denotes dependency relations
where the modifier is usually a clausal predi-
cate.

• CORE={nsubj, obj, iobj, csubj, ccomp,
xcomp}. This set includes the core arguments
of predicates.

• MWE={fixed, flat, compound}. This set in-
cludes the Multi-Word Expression (MWE) de-
pendency relations.

To extract the specified patterns, we go through
each word w and apply a filter to decide whether
there is a frame which we are looking for. If there is,
then we apply the extractor to obtain all the related
dependency edges, forming the frame that we want
to extract. Table 6 describes the extraction rules
(the filters and extractors) and Figure 10 further
provides some examples.

C Extra Results
C.1 Results on Development Sets
Figure 11 shows the results on development sets,
whose patterns are similar to those of the test sets
as shown in the main contents.

15https://universaldependencies.org/u/dep/index.html
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Pattern Filter Extractor

pred lambda w: w.label in PRED [c for c in w.children if c.label in CORE]
mwe lambda w: any(c.label in MWE for c in w.children) [c for c in w.children if c.label in MWE]
conj lambda w: any(c.label==‘conj’ for c in w.children) [c for c in w.children if c.label==‘conj’]+[g for g in

w.grandchildren if g.label==‘cc’]
expl lambda w: any(c.label==‘expl’ for c in w.children) [c for c in w.children if c.label==‘expl’]+[c for c in

w.children if c.label in CORE]
acl lambda w: w.label==‘acl’ [w]+[c for c in w.children if c.label in CORE]

Table 6: Filter and extractor functions for the frame pattern extraction (in Python-styled pseudocode). We go
through each word w and apply the filter. If the filter returns True, then the extractor is applied to extract all related
dependency edges, forming the desired frame.
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Figure 11: Development results for dependency parsing (LAS), POS tagging (Accuracy%) and NER (F1 score).


