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Abstract

Dialogue state tracking (DST) is an important
part of a spoken dialogue system. Existing
DST models either ignore temporal feature de-
pendencies across dialogue turns or fail to ex-
plicitly model temporal state dependencies in
a dialogue. In this work, we propose Tem-
porally Expressive Networks (TEN) to jointly
model the two types of temporal dependencies
in DST. The TEN model utilizes the power
of recurrent networks and probabilistic graph-
ical models. Evaluating on standard datasets,
TEN is demonstrated to improve the accuracy
of turn-level-state prediction and the state ag-
gregation.

1 Introduction

Spoken dialogue systems (SDS) connect users
and computer applications through human-machine
conversations. The users can achieve their goals,
such as finding a restaurant, by interacting with a
task-oriented SDS over multiple dialogue rounds or
turns. Dialogue state tracking (DST) is an impor-
tant task in SDS and the key function is to maintain
the state of the system so as to track the progress of
the dialogue. In the context of this work, a state (or
aggregated state) is the user’s intention or interest
accumulated from the conversation history, and the
user’s intention or interest at each turn is referred
to as turn-level state.

Many neural-network models have been success-
fully applied to DST. These models usually solve
the DST problem by two approaches, the Implicit
Tracking and the Explicit Tracking. As is shown in
Figure 1 (a), the Implicit Tracking models (Hen-
derson et al., 2014b,c; Mrksic et al., 2015; Ren
et al., 2018; Ramadan et al., 2018; Lee et al., 2019)
employs recurrent networks to accumulate features
extracted from historical system action and user
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utterance pairs. A classifier is then built upon these
accumulated features for state prediction. Although
the Implicit Tracking captures temporal feature de-
pendencies in recurrent-network cells, the state
dependencies are not explicitly modeled. Only
considering temporal feature dependencies is in-
sufficient for accurate state prediction. This fact
has been confirmed via an ablation study in our
experiment.

Unlike the Implicit Tracking, the Explicit Track-
ing approaches, such as NBT (Mrksic et al., 2017)
and GLAD (Zhong et al., 2018), model the state
dependencies explicitly. From the model structure
in Figure 1(b), the Explicit Tracking approaches
first build a classifier to predict the turn-level state
of each turn and then utilize a state aggregator for
state aggregation.

Despite achieving remarkable improvements
upon the previous models, current Explicit Track-
ing models can be further improved in two as-
pects. One is that the temporal feature dependen-
cies should be considered in model design. The
Explicit Tracking models only extract features from
the current system action and user utterance pair. In
practice, the slot-value pairs in different turns are
highly dependent. For example, if a user specifies
(FOOD, italian) at the current turn, he or she will
probably not express it again in the future turns.
For that reason, only extracting features from the
current system action and user utterance pair is
inadequate for turn-level state prediction.

The other is that the uncertainties in the state ag-
gregation can be more expressively modeled. The
state-aggregation approaches in current Explicit
Tracking models are sub-optimal. The determin-
istic rule in GLAD will propagate errors to future
turns and lead to incorrect state aggregation. The
heuristic aggregation in NBT needs further esti-
mate the best configuration of its coefficient . An
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(a) Implicit Tracking
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(b) Explicit Tracking
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(c) Joint model (TEN)

Figure 1: The model structures of Implicit Tracking, Explicit Tracking and Joint model. (a, u):the system action
and user utterance. z: features extracted from the (a, u) pair. h:the hidden state of RNNs. y: the turn-level state.
x: the aggregated state. FE:Feature Extractor, such as CNNs, RNNs. RC:Recurrent Cell, such as LSTM, GRU.
CL:Classifier. SA:State Aggregator. The dotted arrowed lines emphasize modeling temporal feature dependencies.
The dashed arrowed lines emphasize modeling temporal state dependencies.

approach that can both reduce the error propagation
and require less parameter estimation is necessary
for the state aggregation.

In this study, we propose a novel Temporally
Expressive Networks (TEN) to jointly model the
temporal feature dependencies and temporal state
dependencies (Figure 1 (c)). Specifically, to im-
prove the turn-level state prediction, we exploits
hierarchical recurrent networks to capture temporal
feature dependencies across dialogue turns. Fur-
thermore, to reduce state aggregation errors, we
introduce factor graphs to formulate the state depen-
dencies, and employ belief propagation to handle
the uncertainties in state aggregation. Evaluating
on the DSTC2, WOZ and MultiWoZ datasets, TEN
is shown to improve the accuracy of the turn-level
state prediction and the state aggregation. The TEN
model establishes itself as a new state-of-the-art
model on the DSTC2 dataset and a state-of-the-art
comparable model on the WOZ dataset.

2 Problem Statement

In a dialogue system, the state is represented as a
set of slot-value pairs. Let S denote the predefined
set of slots. For each slot s ∈ S, let V(s) denote
the set of all possible values associated with slot s.
We also include an additional token, unknown, as
a legal value for all slots to represent their value is
not determined. And we define

V∗(s) := V(s) ∪ {unknown}
V∗ :=

⋃
s∈S

V∗(s)

Let X denote the state space, and x ∈ X be a state
configuration. Each state configuration x can be
regarded as a function mapping x(s) from S to V∗.
For example,

x(s) =


italian, s = FOOD

moderate, s = PRICERANGE

unknown, s = AREA

(1)

Let xt denotes the state configuration of the tth

dialogue turn, ut denotes the user utterance of the
tth turn and at denotes the system action based on
previous state xt−1. Let yt ∈ X be the turn-level
state, which is meant to capture the user intention
of the current utterance. The system computes the
aggregated state xt through a deterministic proce-
dure, according to yt and xt−1. We next describe
this procedure.

For any given s, we define an operator / on V∗(s)
as follows. For any v, v′ ∈ V∗(s),

v / v′ :=

{
v, if v′ = unknown

v′, otherwise
(2)

We then extend the operator / to any two elements
x, y ∈ X, where x / y is also an element in X

(x / y)(s) := x(s) / y(s). (3)

Using this notation, the aggregation of states is
precisely according to

xt = xt−1 / yt. (4)
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For example, if xt−1 takes the configuration x in
(1) and if yt is

yt(s) =


chinese, s = FOOD

unknown, s = PRICERANGE

unknown, s = AREA

(5)

The aggregated state xt is

xt(s) =


chinese, s = FOOD

moderate, s = PRICERANGE

unknown, s = AREA

(6)

The dialogue process can be characterized by a
random process {(Xt, Yt, At, Ut) : t = 1, 2, . . .)}.
In the DST problem, the probability measure P
which defines the dialogue process is unknown.
We are however given a set R of realizations drawn
from P, where each r ∈ R is a dialogue, given in
the form of {(x(r)t , y

(r)
t , a

(r)
t , u

(r)
t ) : t = 1, 2, . . .)}.

Let x<t denotes (x1, x2, . . . , xt) and assume simi-
lar notations for y<t, a<t etc. The learning problem
for DST then becomes estimating P (xt|a<t, u<t)
for every t.

3 Model

This section introduces the proposed TEN model,
which consists of Action-Utterance Encoder, Hi-
erarchical Encoder, Turn-level State Predictor and
State Aggregator.
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Figure 2: The probabilistic graphical model of TEN.

3.1 Model Structure
The overall model structure of TEN is shown in
Figure 1 (c). we wish to express P(xt|a<t, u<t)
using a probabilistic graphical model. For that
purpose, we introduce two latent layers of random
variables {Ht} and {Zt}, together with {Yt} and
{Xt}, to form a Markov chain

{(At, Ut)}→{Zt}→{Ht}→{Yt}→{Xt}. (7)

Then we can express the TEN model as a proba-
bilistic graphical model shown in Figure 2. In the
probabilistic graphical model, the variable Zt is a
matrix of size KZ × |S|, each column of Zt(s) cor-
responds to a slot s ∈ S. Obtained from (At, Ut),
Zt is referred to as the “action-utterance encoding”
at turn t which has a dimension of KZ. The vari-
able Ht is a matrix of size KH × |S|, with each
column Ht(s) also corresponding to the slot s ∈ S.
Here the recurrent {Ht} layer is used to capture
temporal feature dependencies, and Ht is referred
to as the ”hierarchical encoding”, which has a di-
mension of KH. In state aggregation, we introduce
the factor graphs to model the state dependencies.
The belief propagation is then employed to allevi-
ate the error propagation. It allows the soft-label of
Yt and Xt keeping modeled. We next explain each
module in detail.

3.1.1 Action-Utterance Encoder
This module’s function is to summarize the input
system action and user utterance to a unified rep-
resentation. For later use, we first define a GRU-
attention encoder or abbreviated as GAE. The GAE
block first feeds an arbitrary-length sequence of
word-embedding vectors (w1, w2, ..., wn) := w<n

to a GRU encoder and obtains a hidden state vector
di at the ith time step, then weighted-combine all
the hidden-state vectors using attention mechanism
to construct the output vector o. The computation
process of the GAE block is

di = GRU(di−1, wi;W)

o =

n∑
i=1

exp
(
dTi · θ

)∑n
j=1 exp

(
dTj · θ

)di (8)

Here W is the parameter of the GRU networks and
θ is the learnable parameter of attention mechanism.
We simply introduce a notation GAE(w<n;W, θ)
to indicate the above computation process (8) of
the GAE block.
Utterance Encoder. Let wu,t

<n denotes the word-
embedding sequence of the tth user utterance ut.
A GAE block is then used to obtain the utterance
encoder with input wu,t

<n. For each slot s ∈ S, an
utterance encoding ut(s) is computed by

ut(s) = GAE(wu,t
<n;Wu, θs) (9)

Note that the GAEs for different slot s share the
same parameter Wu, but they each have their own
attention parameter θs.
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Action Encoder. The system action at each turn
may contain several phrases (Zhong et al., 2018).
Suppose that action at contains m phrases. Each
phrase bit ∈ at is then taken as a word sequence,
and let its word-embedding sequence be denoted
as b

i
t. For each i and each slot s, b

i
t is passed to a

GAE block and the action-phrase vector cit(s) is
computed by

cit(s) = GAE(b
i
t;Wa, ϕs) (10)

Like utterance encoder, these |S| parallel GAE’s
share the same GRU parameter Wa but each has its
own attention parameters ϕs. Finally, we adopt the
same approach proposed in (Zhong et al., 2018),
which combines the action-phrase vectors to a sin-
gle vector by attention mechanism. Specifically,
the action encoding at(s) is obtained by interact-
ing with utterance encoding ut(s), calculated as

at(s) =
m∑
i=1

exp
(
ut(s)

T · cit(s)
)∑m

j=1 exp
(
ut(s)T · cjt (s)

)cit(s)
(11)

Action-utterance Encoding. The action-utterance
encoding zt(s) is simply the concatenation of vec-
tors ut(s) and at(s).

3.1.2 Hierarchical Encoder
Instead of only utilizing the current action-
utterance encoding for turn-level state prediction,
in this module, we introduce the hierarchical re-
current networks to model the temporal feature
dependencies across turns. Specifically, upon the
GAE blocks, we use |S| parallel GRU networks to
obtain the hierarchical encoding {ht} from all the
historical action-utterance encoding vectors. The
hierarchical encoding for each slot s is computed
by

ht(s) = GRU(ht−1(s), zt(s);Wh) (12)

where the parameter Wh of these GRU networks,
is shared across all slots.

3.1.3 Turn-level State Predictor
The Turn-level State Predictor is simply imple-
mented by |S| softmax-classifiers, each for a slot s
according to

P (yt(s)|a<t(s), u<t(s)) := smax
(
φTs ht(s)

)
(13)

where smax denote the softmax function and φs
with size Kh × |V∗(s)| serves as the weight matrix

of the classifiers. We will denote this predictive
distribution for turn-level state yt(s) computed by
(13) as αs

t .

3.1.4 State Aggregator
One of the insights in this work is that when a
hard decision is made on the soft-label, the errors
it creates may propagate to future turns, resulting
in errors in future state aggregation. We insist that
the soft-label of Yt and Xt should be maintained
so that the uncertainties in state aggregation can be
kept in modeling. Thus we propose a state aggre-
gator based on the factor graphs and handle these
uncertainties using belief propagation.
Factor Graphs. For utilizing the factor graphs
in state aggregation, we first introduce an indica-
tor function, denoted by g, according to the deter-
ministic aggregation rule /. Specifically, for any
v, v′, v′′ ∈ V∗(s),

g(v, v′, v′′) :=

{
1, if v / v′ = v′′

0, otherwise
(14)

According to the probabilistic graphical model
expressed in Figure 2, it can be derived that

P (xt|a<t, u<t)

=
∑
x<t−1

∑
y<t

∏
s∈S

αst (yt(s))

t∏
τ=1

g(xτ−1(s), yτ (s), xτ (s))

=
∏
s∈S

∑
x<t−1(s)

∑
y<t(s)

αst (yt(s))

t∏
τ=1

g(xτ−1(s), yτ (s), xτ (s))︸ ︷︷ ︸
G(x<t(s),y<t(s))︸ ︷︷ ︸

Qs
t (xt(s))

where the term Qs
t (xt(s)) above is precisely

P(xt(s)|a<t, u<t), a distribution on V∗(s). It turns
out that the term G(x<t(s), y<t(s)) in the double
summation of Qs

t (xt(s)), despite its complexity,
can be expressed elegantly using a factor graph in
Figure 3.
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Figure 3: The factor graph for G(x<t(s), y<t(s)).

Belief Propagation. Factor graphs are powered
by a highly efficient algorithm, called the belief
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propagation or the sum-product algorithm, for com-
puting the marginal distribution. In particular, the
algorithm executes by passing “messages” along
the edges of the factor graph and the sent message
is computed from all incoming messages on its
“upstream”. For a detailed description of message
computation rules in belief propagation, the reader
is referred to (Kschischang et al., 2001).

Applying the principle of belief propagation, one
can also efficiently express Qs

t at each turn t for
each slot s in terms of message passing. We now
describe this precisely.

Let T denote the total number of turns of the dia-
logue. For each slot s, a factor graph representation
G(x<T (s), y<T (s)) can be constructed. For each
t = 1, . . . , T , let messages βst , γst and µst be intro-
duced on the edges of the factor graph as shown
in Figure 3 and the computation of these messages
are given below.

βst := αs
t

γst := µst−1
µst (v):=

∑
(v′,v′′)∈V∗(s)×V∗(s)

g(v′, v′′, v)γst (v
′)βst (v

′′)

(15)
where µs0 is defined by

µs0(v) =

{
1, if v = unknown

0, otherwise.

According to message computation rule given in
(15), for each t ≤ T and each slot s ∈ S, µst = Qs

t .
Recalling that Qs

t is the predictive distribution for
state xt(s) and αs

t is the predictive distribution for
turn-level state yt(s), we have completed specify-
ing how the factor graphs and the belief propaga-
tion are utilized for state aggregation.

3.2 Loss Function and Training
Under the TEN model, the cross-entropy loss on
the training set R follows the standard definition as
below

LTEN :=
∑
r∈R

∑
s∈S

T (r)∑
t=1

− logQs
t (x

(r)
t (s)) (16)

where the superscript “(r)” indexes a training dia-
logue in R. It is worth noting that this loss function,
involving the message computation rules, can be di-
rectly optimized by the stochastic gradient descent
(SGD) method.

For ablation studies, we next present three ab-
lated versions of the TEN model.

TEN–Y Model In this model, we discard the {Yt}
layer of TEN (hence the name TEN–Y) and con-
duct state aggregation using RNNs. The model
then turns to be an Implicit Tracking model. The
state distribution P(xt(s)|a<t, u<t) is computed di-
rectly by the softmax-classifiers in (13). We will
denote the state distribution computed this way by
Q̃s

t . The cross-entropy loss is then defined as

LTEN−Y :=
∑
r∈R

∑
s∈S

T (r)∑
t=1

− log Q̃s
t (x

(r)
t (s)) (17)

TEN–X Model In this model, instead of training
against the state sequence {xt}, the training target
is taken as the corresponding turn-level state se-
quence {yt}. The computation of {xt} can be done
through the operator / : xt = xt−1 / yt. When
using the turn-level state as training target, one
discards the {Xt} layer of TEN (hence the name
TEN–X). The difference between TEN–X and TEN
is that TEN–X aggregate states using the determin-
istic rule / while TEN using the factor graphs. The
cross-entropy loss for TEN–X is naturally defined
as

LTEN−X :=
∑
r∈R

∑
s∈S

T (r)∑
t=1

− logαs
t (y

(r)
t (s)) (18)

TEN–XH Model In this model, the Hierarchical
Encoder layer {Ht} is removed from TEN–X,
and the model is reduced to an Explicit Track-
ing mode. In this case, the computation of αs

t

(or P(yt(s)|a<t, ũ<t)) in (13) is done by replacing
the input ht(s) with the action-utterance encoding
zt(s). We will denote the αs

t computed this way by
α̃s
t . The TEN–XH and TEN–X models are differ-

ent in whether the temporal feature dependencies
are considered or not. The cross-entropy loss for
TEN–XH is

LTEN−XH :=
∑
r∈R

∑
s∈S

T (r)∑
t=1

− log α̃s
t (y

(r)
t (s))

(19)

4 Experiment

4.1 Datasets

The second Dialogue State Tracking Challenge
dataset (DSTC2) (Henderson et al., 2014a), the
second version of the Wizard-of-Oz dataset
(WOZ) (Rojas-Barahona et al., 2017) and
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MultiDomain Wizard-of-Oz dataset (Multi-
WOZ) (Budzianowski et al., 2018) are used
to evaluate the models. Both the DSTC2 and
WOZ datasets contain conversations between
users and task-oriented dialogue systems about
finding suitable restaurants around Cambridge.
The DSTC2 and WOZ datasets share the same
ontology, which contain three informable slots:
FOOD, AREA, PRICERANGE. The official DSTC2
dataset contains some spelling errors in the user
utterances, as is pointed out in (Mrksic et al.,
2017). Thus we use the manually corrected
version provided by (Mrksic et al., 2017). This
dataset consists of 3, 235 dialogues with 25, 501
turns. There are 1, 612 dialogues for training, 506
dialogues for validation and 1, 117 dialogues for
testing. The average turns per dialogue is 14.49. In
the WOZ dataset, there are 1, 200 dialogues with
5, 012 turns. The number of dialogues used for
training, validation and testing are 600, 200 and
400 respectively. The average turns per dialogue is
4. The MultiWOZ dataset is a large multi-domain
dialogue state tracking dataset with 30 slots,
collected from human-human conversations.
The training set contains 8, 438 dialogues with
115, 424 turns. There are respectively 1, 000
dialogues in validation and test set. The average
turns per dialogue is 13.68.

4.2 Evaluation Metrics and Compared
Models

In this work, we focus on the standard evaluation
metrics, joint goal accuracy, which is described
in (Henderson et al., 2014a). The joint goal ac-
curacy is the proportion of dialogue turns whose
states are correctly predicted. In addition, we also
report the turn-level state accuracy of TEN–XH
and TEN–X model for ablation studies.

The models used for comparison include NBT-
DNN (Mrksic et al., 2017), NBT-CNN (Mrk-
sic et al., 2017), Scalable (Rastogi et al., 2017),
MemN2N (Liu and Perez, 2017), PtrNet (Xu and
Hu, 2018), LargeScale (Ramadan et al., 2018),
GLAD (Ramadan et al., 2018), GCE (Nouri and
Hosseini-Asl, 2018), StateNetPSI (Ren et al.,
2018), SUMBT (Lee et al., 2019), HyST (Goel
et al., 2019), DSTRead+JST (Gao et al., 2019),
TRADE (Wu et al., 2019), COMER (Ren
et al., 2019), DSTQA (Zhou and Small, 2019),
MERET (Huang et al., 2020) and SST (Chen et al.,
2020).

Table 1: Joint goal accuracy on the DSTC2, WOZ and
MultiWOZ dataset.

Model DSTC2 WOZ MultiWOZ
NBT-DNN 72.6 84.4 -
NBT-CNN 73.4 84.2 -
Scalable 70.3 - -

MemN2N 74.0 - -
PtrNet 72.1 - -

LargeScale - 85.5 25.8
GLAD 74.5 88.1 35.6
GCE - 88.5 35.6

StateNetPSI 75.5 88.9 -
SUMBT - 91.0 42.4

HyST - - 44.2
DSTRead+JST - - 47.3

TRADE - - 48.6
COMER - 88.6 45.7
DSTQA - - 51.4
MERET - - 50.9

SST - - 51.2
TEN–XH 73.5 88.8 42.0
TEN–Y 74.7 89.6 45.9
TEN–X 76.2 89.3 46.3

TEN 77.3 90.8 46.6

4.3 Implementation

The proposed models are implemented using the
Pytorch framework. The code and data are re-
leased on the Github page1. The word embedding
is the concatenation of the pre-trained GloVe em-
beddings (Pennington et al., 2014) and the charac-
ter n-gram embeddings (Hashimoto et al., 2017).
We tune the hyper-parameters by grid search on the
validation set. The GAE block is implemented with
bi-directional GRUs, and the hidden state dimen-
sion of the GAE is 50. The hidden state dimension
of the GRU used in the Hierarchical Encoder mod-
ule is 50. The fixed learning rate is 0.001. The
Adam optimizer (Kingma and Ba, 2015) with the
default setting is used to optimize the models. It
is worth mentioning that the TEN model can be
difficult to train with SGD from a cold start. This
is arguably due to the “hard” g function. That is,
the {0, 1}-valued nature of g is expected to result
in sharp barriers in the loss landscape, preventing
gradient-based optimization to cross. Thus when
training TEN, we start with the parameters obtained
from a pre-trained TEN–X model.

1https://github.com/BDBC-KG-NLP/TEN EMNLP2020
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4.4 Evaluation Results

The joint goal accuracy results on the DSTC2,WOZ
and MultiWOZ datasets are shown in Table 1.
From the table, we observe that the proposed
TEN model outperforms previous models on both
DSTC2 and WOZ datasets, except SUMBT, a
model boosted with pre-trained BERT (Devlin
et al., 2019) model. It is worth noting that TEN,
built upon attention-based GRU encoders, achieves
comparable performance with SUMBT, without
incorporating pre-trained language models. This
fact demonstrates that TEN is a strong model for
DST. Comparing to TEN–XH, the TEN–X model
obtains impressive 2.7%, 0.5% and 4.3% perfor-
mance gains on the DSTC2, WOZ and Multi-
WOZ dataset respectively. These performance
gains demonstrate that the state estimation ben-
efits from more accurate turn-level state prediction.
The TEN model further improves upon the TEN–
X model by 1.1% on the DSTC2 dataset, 1.5%
on the WOZ dataset and 0.3% on the MultiWOZ
dataset. The TEN model achieves these improve-
ments by modeling uncertainties with the belief
propagation in the state aggregation. Although both
TEN–Y and TEN have modeled the temporal fea-
ture dependencies, TEN–Y performs much worse
than TEN. This fact indicates that only consider-
ing temporal feature dependencies is inadequate
for DST. Models relying on pre-defined ontolo-
gies (including GLAD,GCE,SUMBT and TEN)
suffer from computational complexity when apply-
ing to multi-domain DST datasets with a large set
of slots (Ren et al., 2019), which leads to worse
performance than recent generation-based mod-
els (DSTRead+JST,TRADE,DSTQA,MERET and
SST, specially designed for multi-domain DST) on
the MultiWOZ dataset.
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4.5 Temporal Analysis
To analyze how the temporal dependencies influ-
ence the state tracking performance, we report the
joint goal accuracy at each dialogue turn on the
DSTC2 dataset. As shown in Figure 4, the joint
goal accuracy of proposed models generally de-
crease at earlier turns and increase at later turns,
as the turns increase. This phenomenon can be
explained by the fact: in the earlier stage of the di-
alogue, more slots are involved in the conversation
as the dialogue progress; thus more slot-value pairs
need to be predicted in state estimation, making the
state harder to calculate correctly; in the later stage
of dialogue, the state becomes fixed because the
values for all slots are already determined, making
the state easier to predict. Another observation is
that the gaps between TEN–XH and TEN generally
increase as the turns increase, showing that model-
ing temporal dependencies reduces state estimation
errors, especially when the dialogue is long. By
modeling temporal feature dependencies and tem-
poral state dependencies respectively, TEN–Y and
TEN–X also perform better than TEN–XH as the
turns increase.

4.6 Effectiveness of the Hierarchical Encoder
To prove the effectiveness of the Hierarchical En-
coder module, we report the turn-level state ac-
curacy for TEN–XH and TEN–X on the DSTC2
dataset. From the results in Figure 5, we observe
that TEN–X, with the Hierarchical Encoder mod-
ule, achieves higher turn-level state accuracy than



1577

Table 2: An example of dialogue state tracking. We only report the results from turn 1 to turn 4 on slot s = FOOD

and focus on dontcare(dcr) and unknown(unk) value due to space limitation. S and U represent the system
utterance and the user utterance, respectively. The boldface emphasizes the highest-probability value.

t (at, ut) αst yt(s) Qst xst TEN–X TEN

1 S:welcome to cambridge restaurant system.
U:im looking for a moderately priced

(dcr, 0.00)
(unk,0.99)

unk
(dcr, 0.00)
(unk,0.99)

unk unk unk

2 S:moderate price range. what type of food do you want?
U:restaurant and it should be

(dcr, 0.00)
(unk,0.48)

unk
(dcr, 0.00)
(unk,0.48)

unk unk unk

3 S:you want a restaurant serving any type of food right?
U:yea

(dcr, 0.45)
(unk,0.54)

dcr
(dcr,0.45)
(unk, 0.26)

dcr unk dcr

4 S:what part of town do you have in mind?
U:north

(dcr, 0.00)
(unk,0.99)

unk
(dcr,0.45)
(unk, 0.26)

dcr unk dcr

TEN–XH for all slots.
Recall that TEN–X achieves higher joint goal

accuracy than TEN–XH, we could think that the
performance gain for TEN–X is due to its improve-
ment in turn-level state prediction. This fact demon-
strates the significance of considering temporal fea-
ture dependencies in turn-level state prediction and
illustrates the effectiveness of the Hierarchical En-
coder module in TEN–X.

4.7 Effectiveness of the Belief Propagation

Table 2 is an example of dialogue state tracking
selected from the test set of the DSTC2 dataset.
As we observe from the table, at turn 1 and turn
2, the user does not specify any food type; both
TEN–X and TEN correctly predict the true value
unknown. At turn 3, the user expresses that he
or she does not care about the food type. This
time the turn-level state predictor gets an incorrect
turn-level state value unknown, instead of the cor-
rect one dontcare. Thus TEN–X gets a wrongly
aggregated state value unknown with aggregating
rule /. On the contrary, TEN can still correctly
obtain the correct state with the belief propagation,
in spite of the wrong turn-level state. At turn 4, the
turn-level state predictor easily predicts the correct
value unknown and TEN keeps the state correct.
But TEN–X fails to obtain the correct state again
because of the wrong decision made at the last turn.
This example shows the effectiveness and robust-
ness of the state aggregation approach equipped
with the belief propagation.

5 Related Works

Traditional works deal with the DST task using
Spoken Language Understanding (SLU), includ-
ing (Thomson and Young, 2010; Wang and Lemon,
2013; Lee and Kim, 2016; Liu and Perez, 2017;

Jang et al., 2016; Shi et al., 2016; Vodolán et al.,
2017). Joint modeling of SLU and DST (Hender-
son et al., 2014c; Zilka and Jurcı́cek, 2015; Mrksic
et al., 2015) has also been presented and shown
to outperform the separate SLU models. Models
like (Sun et al., 2014; Yu et al., 2015) incorporate
statistical semantic parser for modeling the dia-
logue context. These models rely on hand-crafted
features or delexicalisation strategies and are diffi-
cult to scale to realistic applications.

Recently, neural network models have been
applied in the DST task, and there are mainly
two model design approaches. One approach
aggregates the features extracted from previ-
ous turns of the dialogue using recurrent neu-
ral networks, including StateNet (Ren et al.,
2018), LargeScale(Ramadan et al., 2018) and
SUMBT (Lee et al., 2019). The other approach,
like NBT (Mrksic et al., 2017) and GLAD (Zhong
et al., 2018), build a model for predicting turn-level
state, and estimate the state by accumulating all
previous turn-level states. The design of TEN inte-
grates the advantages of both approaches.

Another topic related to our work is the Markov
decision process (MDP) and the factor graphs. Sev-
eral works define a dialogue system as a partially
observable Markov decision process (POMDP), in-
cluding (Williams and Young, 2007; Thomson and
Young, 2010; Gasic and Young, 2011; Yu et al.,
2015). In this paper, the definition of the dialogue
process is related to the Markov decision process.
The factor graphs have been applied in many ap-
plications, such as social influence analysis (Tang
et al., 2009), knowledge base alignment (Wang
et al., 2012), entity linking (Ran et al., 2018) and
visual dialog generation (Schwartz et al., 2019).
The factor graphs in these applications are used
to integrate different sources of features or repre-
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sentations into a unified probabilistic model. In
this paper, the factor graphs are naturally adopted
to tackle the error propagation problem in state
aggregation.

6 Concluding Remarks

Our inspiration for TEN comes from a careful study
of the dialogue process. This allows us to lay out
the dependency structure of the network as in Fig-
ure 1 (c), where the temporal feature dependen-
cies and the temporal state dependencies are jointly
modelled. The application of the belief propaga-
tion in this model allows an elegant combination of
graphical models with deep neural networks. The
proposed model may generalize to other sequence
prediction tasks.
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