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Abstract

Data balancing is a known technique for im-
proving the performance of classification tasks.
In this work we define a novel balancing-via-
generation framework termed BalaGen. Bala-
Gen consists of a flexible balancing policy cou-
pled with a text generation mechanism. Com-
bined, these two techniques can be used to aug-
ment a dataset for more balanced distribution.
We evaluate BalaGen on three publicly avail-
able semantic utterance classification (SUC)
datasets. One of these is a new COVID-19
Q&A dataset published here for the first time.
Our work demonstrates that optimal balanc-
ing policies can significantly improve classi-
fier performance, while augmenting just part
of the classes and under-sampling others. Fur-
thermore, capitalizing on the advantages of
balancing, we show its usefulness in all rele-
vant BalaGen framework components. We val-
idate the superiority of BalaGen on ten seman-
tic utterance datasets taken from real-life goal-
oriented dialogue systems. Based on our re-
sults we encourage using data balancing prior
to training for text classification tasks.

1 Introduction

Imbalanced datasets pose a known difficulty in
achieving ultimate classification performance as
classifiers tend to be biassed towards larger classes
(Guo et al., 2008; Japkowicz and Stephen, 2002;
Japkowicz, 2000). Moreover, identifying samples
that belong to under-represented classes is of high
importance in many real-life domains such as fraud
detection, disease diagnosis, and cyber security.

Although the imbalanced data classification
problem is well-defined, and has been researched
extensively over the last two decades (Estabrooks
et al., 2004; Batista et al., 2004; Ramyachitra and
Manikandan, 2014; Zhu et al., 2017; Buda et al.,
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2018), there has been considerably less work de-
voted to balancing textual datasets.

We propose a novel balancing-via-generation
framework, termed BalaGen, to improves textual
classification performance. BalaGen uses a balanc-
ing policy to identify over- and under-represented
classes. It then uses controlled text generation,
coupled with a weak labeling mechanism to aug-
ment the under-represented classes. Additionally,
it applies under-sampling to decrease the over-
represented classes.

Our analysis is focused on semantic utterance
classification (SUC) (Tur et al., 2012; Tur and
Deng, 2011; Schuurmans and Frasincar, 2019).
SUC is a fundamental, multi-class, highly imbal-
anced textual classification problem. For example,
it is widely used for intent (class) detection in goal-
oriented dialogue systems (Henderson et al., 2014;
Bohus and Rudnicky, 2009), and for frequently
asked question (FAQ) retrieval (Sakata et al., 2019;
Gupta and Carvalho, 2019; Wang et al., 2017).

Correctly identifying scarce utterances is of great
importance in many real life scenarios. For exam-
ple, consider a scenario in which a user converses
with the dialogue system in an online shop (Yan
et al., 2017). For the store owner, the task of cor-
rectly identifying the buying-intent utterances is
paramount. However, the number of utterances re-
lated to searching for products is expected to be
significantly higher, thus biasing the classifier to-
ward this intent.

We analyzed BalaGen’s capabilities on two pub-
licly available SUC datasets. In addition, we intro-
duce a new dataset called COVID-19 Q&A (CQA),
which contains answers to questions frequently
asked by the public during the pandemic period.
Analysis of this new dataset further demonstrates
improved performance using our approach.

Our contribution is thus four-fold: i) We present
BalaGen, a balancing-via-generation framework
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for optimizing classification performance on imbal-
anced multi-class textual datasets. (ii) We analyze
different factors that affect BalaGen’s performance,
including quality of generated textual data, weak
supervision mechanisms, and balancing of Bala-
Gen’s internal components. iii) We validate our
approach on 3 publicly available datasets and a col-
lection of 10 SUC datasets used to train real-life
goal-oriented dialogue systems. iv) We contribute
a new COVID-19 related SUC dataset.

2 Related Work

In imbalanced classification, also known as the
”Class Imbalance Problem”, classifiers tend to bias
towards larger classes (Provost, 2000). This chal-
lenge, has garnered extensive research over the past
decades (Estabrooks et al., 2004; Chawla et al.,
2004; Sahare and Gupta, 2012). The range of ap-
proaches to solve this issue depends on the type of
data and the target classifier (Zheng et al., 2004;
Sun et al., 2009; Wang and Yao, 2009; Liu et al.,
2009). Ramyachitra and Manikandan (2014) di-
vide classification improvements over imbalanced
datasets into five levels: data, algorithmic, cost sen-
sitive, feature selection and ensemble. We focus
our review on the data level and specifically on
textual dataset balancing.

Primary data-level methods vary the number of
samples in the dataset via re-sampling. We follow
the common terminology and refer to a method
that adds samples to a dataset, as over-sampling,
and to a method that removes samples as under-
sampling. sample-copy, i.e. duplicating existing
samples, is the most straightforward over-sampling
method and random-selection is the most straight-
forward under-sampling method. While these meth-
ods were shown to be effective to some extent for
data balancing, they are insufficient when it comes
to solving the problem (Branco et al., 2016).

Traditional and well researched feature-based
over-sampling techniques generate new samples
via feature manipulation (Wong et al., 2016). Most
of these techniques are based on the Synthetic
Minority Oversampling TEchnique (SMOTE)
(Chawla et al., 2002) or the ADAptive SYNthetic
(ADASYN) approach (He et al., 2008). These ap-
proaches create synthetic samples by manipulating
the feature values of existing samples. However,
the latest deep learning (DL) models do not have an
explainable features layer to manipulate. Although
the embedding layer may be perceived as the DL

analogy to the traditional feature layer, this layer
is of high dimension and is not easy to interpret
and manipulate while preserving the original class
label. Thus, local changes to the embedding val-
ues of textual datasets does not yield the expected
results.

In contrast to feature-based over-sampling tech-
niques, data augmentation generates additional
samples through transformations applied directly
to the data. For example, Easy Data Augmentation
(EDA) (Wei and Zou, 2019) is a naı̈ve yet effective
text augmentation technique based on synonym
replacement using Wordnet (Fellbaum, 2012), ran-
dom insertion, random swap, and random deletion
of words. Language model-based Markov Chain
(MC) (Barbieri et al., 2012) is another example of
a word level second-order model that was shown to
improve textual data-balancing (Akkaradamrongrat
et al., 2019). Additional research works includes
structure preserving word replacement using a Lan-
guage Model (Kobayashi, 2018), recurrent neural
language generation for augmentation (Rizos et al.,
2019), and various parapharasing methods as done
in (Gupta et al., 2017).

Recently, transformer-based pre-trained architec-
tures (Vaswani et al., 2017) have been developed
and successfully applied to a wide set of Natural
Language Generation (NLG), processing and un-
derstanding tasks. Examples of these include Gen-
erative Pre-trained (GPT) (Radford et al., 2019),
which is a right-to-left language model based on
the transformer’s decoder architecture (Vaswani
et al., 2017), BERT (Devlin et al., 2018), BART
(Lewis et al., 2019) and T5 (Raffel et al., 2019).
These attention-based architectures are capable of
generating human-level high-quality text, making
them a compelling choice for textual data augmen-
tations. Specifically, CBERT (Wu et al., 2019)
improves EDA by using BERT synonym predic-
tion. Additional advanced transformer-based meth-
ods control the generation process by providing
an existing sample, designated class label, or both.
These methods were shown to be beneficial for data
augmentation (Anaby-Tavor et al., 2019; Kumar
et al., 2020). However, these methods suffer from
several drawbacks: first, they were only shown to
be successful on small sized datasets (five samples
per class or 1% of the dataset). Second, the aug-
mentation process was shown to be error prone
as the generated samples do not always preserve
the class label of the original data. Third, as we
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show in this work, naı̈vely using these methods to
generate a constant number of samples for each
class in the dataset, as done in previous work, does
not realize their full potential for improving textual
classification tasks.

Other approaches for data balancing can include
weak-labeling of available unlabeled data (Ratner
et al., 2020), or even active learning (Settles, 2009).
However, both of these approaches require addi-
tional domain data which is not always available.

Notably, some approaches aim at assuring in-
terpretability of generated samples (Santos et al.,
2017). However, BalaGen takes a different aproach
- aiming to improve performance without considera-
tion of textual validity/interpretability of generated
sentences as done in (Rizos et al., 2019). Thus,
only class perseverance and ability to contribute to
accuracy are considered.

To the best of our knowledge, this is the first
work to explore the use of transformer-based aug-
mentation techniques directly towards data balanc-
ing to improve textual classification tasks.

3 Method

At the cornerstone of our methodology lie the re-
cent controlled text generation methods, capable
of synthesizing high quality samples (Kumar et al.,
2020; Anaby-Tavor et al., 2019). We tested the
hypothesis whereby enhancing these generation
methods with a new balancing technique, which
differentially add and remove samples from classes,
can result in a significant improvement to classifier
accuracy.

To overcome the well-known drawback of over-
sampling via text generation, i.e., class label preser-
vation is not guaranteed (Kumar et al., 2020), we
employed a weak labeling mechanism which is
used to select generated samples that have a high
probability of preserving their class label. We fur-
ther refer to weak labelers simply as labelers.

In the rest of this section, we describe the steps
of our BalaGen approach. We refer to the step num-
bers according to the enumeration in the pseudo-
code given in Algorithm 1 and the schematic flow
diagram shown in Figure 1.

Balancing policy: A balancing policy π(·), gen-
erally, aims to reach a specific distribution of the
samples among the classes, by adding and remov-
ing samples. In step (1) we use policies that de-
termine a band [Blow, Bhigh], which within the set
of classes are considered Well-Represented (WR).

Consequently, the set of classes smaller than Blow

are referred to as Under-Represented (UR) and
should be further over-sampled, e.g., via augmenta-
tion. Classes larger thanBhigh are considered Over-
Represented (OR) and will be under-sampled.

In the following, let ci be the index of ith class
after sorting the classes by their size (i.e., the num-
ber of samples) in an ascending order. Given that
n is the number of classes, |cn| is the size of the
largest class. In Figure 2 we describe several types
of balancing policies supported by BalaGen.

While there may be many approaches to deter-
mine the WR band, here we employ the following
percentile approach: Given the parameters βlow
and βhigh, we set Blow such that βlow% of the
classes belong to the UR set and set Bhigh such
that βhigh% of the classes belong to the OR set.
Note that βlow + βhigh ≤ 100.

Algorithm 1: BalaGen
Input :Training dataset D

Weak labeling models L1, ...,Lk
(Pre-trained) language model G
Balancing policy π(·)
Over-sampling method OS(·, ·)
Under-sampling method US(·, ·)

1 [Blow, Bhigh]← π(D)
2 DS ← OS(US(D,Bhigh), Blow)
3 Fine-tune G using DS to obtain Gtuned and

synthesize a set of labeled samples for the
under-represented classes D∗ using Gtuned

4 h1 ← L1(DS), ..., hk ← Lk(DS)
5 Select best samples in D∗ using weak

labelers h1, .., hk to obtain Dsyn

6 DBalanced ← U(Dsyn ∪D,Bhigh)
7 return DBalanced

Balancing the train set of the generator and
weak-labelers: In step (2) we compose a bal-
anced datasetDS used to train the generator and the
labeler(s). The under-sampling method is executed
on the OR classes targeting the Bhigh threshold,
while the oversampling method is executed on the
UR classes targeting the Blow threshold. This step
aims to reduce class biases of the generator and
labelers. Formally, OS and US denote over and
under sampling functions, respectively. Each ac-
cept two parameters: a dataset D to perform on
and the threshold B.
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Figure 1: Flow diagram of BalaGen: Given dataset distribution D; (1) balancing policy is applied to determine
[Blow, Bhigh] band; (2) balanced DS is created for training BalaGen’s components; (3) Language model is first
trained, and then used to generate D∗ with synthetic samples for the UR classes; (4) Weak labeling models are
trained and then used to label samples in D∗; (5) generated samples are selected according to their labels up to
Blow creating Dsyn; (6) D is augmented with Dsyn and OR classes in D are under-sampled. O - over-sampling,
U - under-sampling.
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Figure 2: Balancing policies on an example dataset dis-
tribution: A. Baseline (no augmentation and no balanc-
ing) B. Augment-only (without balancing), C. Naı̈ve-
OS (Blow = Bhigh = |cn|), D. Partial-OS (Blow <
Bhigh = |cn|), E. Partial-OS-US (Blow < Bhigh <
|cn|). Abbreviations: OS - over-sampling, US - under-
sampling, |cn| - number of samples in the largest class.

Sample generation: In step (3) we first fine-tune
(or train if its not a pre-trained model) the language
model G on DS to obtain Gtuned. Then, Gtuned is
used to generate D∗. If a right-to-left pre-trained
language model is used, such as GPT-2, the fine-
tuning procedure follows the method proposed in
(Anaby-Tavor et al., 2019); there, the class label is
prepended to each sample during training. Then,
conditioned on the class label, the fine-tuned model
is used to generate samples for the UR classes,
denoted as D∗.

Weak labeling: In step (4) we train the labeler(s)
L1, ...,Lk on Ds and then label the generated sam-
ples in D∗. The weak labeling step is required as
an additional quality assurance mechanism, since

neither the quality of a generated sample nor the
accuracy of its label can be guaranteed during the
generation process.

Sample selection: In step (5), a set of generated
samples is selected, according to labels assigned by
the labelers and added to each class up to the Blow

threshold. The resulting dataset is denoted Dsyn.

Augmenting UR classes and under-sampling
OR classes: In step (6), D is augmented with
the samples from Dsyn. Then, the OR classes in
D are under-sampled.

4 Real-life SUC Datasets

4.1 COVID-19 Q&A Dataset (CQA)

We present a new dataset called COVID-
19 Q&A, and referred to as CQA
(https://developer.ibm.com/exchanges/data/all/cqa/).

The CQA dataset contains questions which were
frequently asked by the public during the COVID-
19 pandemic period. The questions were cate-
gorised according to user intents. The dataset was
created to ramp-up a dialogue system that provides
answers to questions frequently asked by the pub-
lic. The data was collected by creating an initial
classifier for a question answering dialogue system,
which was further extended by selecting samples
from its logs of user interactions and then labeling
them.

Table 1 shows examples of intents and utterances
from the dataset. The dataset contains 884 user ut-
terances, divided into 57 intents (classes) as shown
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Intent Sample Utterances

Quarantine • Can my friends visit me?
visits • What is a safe distance when

someone brings me groceries?
COVID • What does covid stand for?
Description • How does the virus spread
Case • How many coronavirus cases
Count are there in my area?

• How many ppl are infected in
the us?

Symptoms • What are the early symptoms
of covid-19?
• How to distinguish it from a
common cold

Table 1: Examples of utterances and their correspond-
ing intents in CQA dataset.

in Table 2. The CQA dataset is moderately imbal-
anced and characterized by a balance-ratio of 1:76
(ratio between the size of biggest class to the size of
the smallest class). The dataset has an entropy-ratio
of 0.91 (with an entropy of 3.7 out of a maximal
entropy of 4.04). We publish the dataset here in the
hopes of further promoting research on semantic
utterance classification for goal-oriented dialogue
systems.

4.2 Analysis of SUC Corpora

In addition to evaluating BalaGen on the CQA
dataset, we also applied it on ten Semantic Utter-
ance Classifier (SUC) datasets used to train real-life
goal-oriented dialogue systems. Figure 3 present
class distribution of the 10 SUC datasets, demon-
string their imbalance state and hence, the need for
data balancing. Indeed, these datasets, are charac-
terized by a high average balance-ratio of 1:222.
The median number of classes in these datasets is
100 (std = 66), and median samples per class is 69
(std = 91).

5 Experiments

5.1 Experimental Settings

Datasets Table 2 describes the datasets used in
our experiments:
• COVID-19 QA (CQA) - new dataset introduced in

Section 4.
• Stack Exchange Frequently Asked Questions
(SEAQ)1 - FAQ retrieval test collection extracted

1http://takelab.fer.hr/data/StackFAQ

Figure 3: Imbalanced state of real-life Semantic Ut-
terance Classifier (SUC) datasets. For each dataset,
classes are aggregated into 20 bins, and median
samples-per-class values are presented as a blue line.
Median values for each bin over all datasets are pre-
sented as green bars.

from Stack Exchange. Stack Exchange is a network
of question-and-answer (QA) websites on topics in
diverse fields. It is the most balanced dataset in our
analysis with an entropy of 4.69.
• Airline Travel Information Systems (ATIS)2 -
queries on flight-related information, widely used
in language understanding research. ATIS is the
most imbalanced dataset; it has an entropy of 1.11.
This is due to most of its the data belonging to the
’flight’ class.

Generative models: To assess the influence of
the quality of the generated samples we used three
text generation methods: EDA (Wei and Zou,
2019), Markov Chain (MC) (Barbieri et al., 2012),
and Generative Pre-Train (GPT-2) (Radford et al.,
2019). GPT-2 was further used for most of the ex-
periments as it is considered to be superior in many
textual tasks. To these, we added sample-copy as a
baseline over-sampling method.

Weak labeling: We examined various weak la-
beling methods, and used them to select generated
samples in step (5):
• No weak labeling - assign the class used by the

generator to generate the sample as the final class.
• Double voting - train a labeler classifier on the
original train dataset. Use it to weakly label the
generated samples, and only keep those samples
where the label of the original sample matches the
weak label of the generated sample.
• Labeler ensemble - train an ensemble of label-
ers. For each apply the double voting mechanism
and then aggregate the generated samples from all

2www.kaggle.com/siddhadev/atis-dataset-from-ms-cntk
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Name # Classes Size H

CQA 57 884 3.68
SEAQ 125 719 4.69
ATIS 17 5384 1.11

Table 2: Datasets. Abbreviations: CQA - COVID-
19 Q&A, SEAQ - StackExchange FAQ, ATIS - Flight
Reservations. # Classes - number of classes. H - en-
tropy.

labelers.

BalaGen’s components training input: Be-
cause data-balancing is beneficial for classification
performance, we examine the effect of also balanc-
ing the input for the framework components - the
generator and the labelers.

Evaluation metrics: To report our experimental
results, we used the standard accuracy measure
which calculates the correct prediction ratio (Eq.
1). Since we deal with imbalanced datasets, we also
report the macro accuracy (Eq. 2), which measures
the average correct prediction ratio across classes
(Manning et al., 2008). Formally,

accmicro =

n∑
i=1

ti
|D|

(1)

accmacro =
1

n

n∑
i=1

ti
|ci|

(2)

where ti is the number of correct predictions in
class ci, |D| is the number of samples, and n is the
number of classes.

Additionally, we report the entropy measure,
similarly to Shannon’s diversity index (Shannon,
1951) to capture the degree of class imbalance in
the dataset.

H = −
n∑

i=1

|ci|
|D|
· log

|ci|
|D|

(3)

Where applicable, we statistically validated our
results with the McNemar test (McNemar, 1947).

5.1.1 Implementation
BalaGen is classifier independent. In our imple-
mentation we use BERT, a state-of-the-art classifier
for textual classification (Devlin et al., 2018), both
as a classifier and for weak supervision.

We divided each dataset into 80%:10%:10% for
train, validation and test, respectively. The valida-
tion set was used for early stopping and for tuning

parameters such as βlow and βhigh. Each experi-
ment was repeated at least 3 times to ensure consis-
tency.

We restrict the number of generated samples by
the generator to be 3× |cn|.

In our experiments, we balanced the training
data for the generator and labelers using simple
sample-copy over-sampling and random-selection
under-sampling. Additional technical implementa-
tion details are given in the Appendix.

5.2 Results

In all experiments we compare classifier perfor-
mance against the same held-out test set. Unless
stated otherwise, we use GPT-2 as the generator
and three BERT classifiers as labeler-ensemble. All
model training was done on a balanced dataset.

5.2.1 Augmentation vs. Balancing

In the first experiment we compared data augmen-
tation (via generation) to naı̈ve data balancing.
Specifically, we compared baseline results to: (1)
balancing w/o augmentation; (2) augmentation w/o
balancing; and (3) balancing-via-augmentation.

For balancing experiments (no. 1 and 3), We
used the simplest balancing scheme depicted by
Naı̈ve-OS balancing policy C (Blow = Bhigh =
|cn|, as defined in Section 3). Specifically, for
balancing w/o augmentation (1) we used basic
sample-copy over-sampling, and for balancing-via-
augmentation (3) we applied BalaGen (using GPT-
2 as generator) to generate additional samples ac-
cording to policy C. For augmentation w/o balanc-
ing (2) we applied BalaGen using Augment-only
data policy B - adding a fixed number of generated
samples to all classes.

Table 3 presents the micro and macro accuracy
measures for the three datasets. While balanc-
ing and augmentation increase the accuracy for
all three datasets, combining them yields signifi-
cantly higher results than the baseline for CQA and
SEAQ. For ATIS the combination of augmentation
and balancing using naı̈ve data balancing policy C
was not significantly better than the baseline and
was even lower than the simple sample-copy over-
sampling balancing. ATIS is a highly imbalanced
dataset, which requires an enormous amount of
generated data to fully balance it and adhere to
balancing policy C. Hence, as shown in the next
section, other data balancing policies achieve better
accuracy results on this dataset.
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Augmentation

Dataset Balancing
No

(copy)
Yes

(GPT-2)
No (77.3,71.9) (78.6,73.2)

CQA Yes (78.8,73.9) (80.9,74.7)
No (48.2,46.2) (46.5,44.3)

SEAQ Yes (52.2,50.5) (55.5,54.6)
No (97.4,91.9) (98.7,92.7)

ATIS Yes (98.7,95.6) (98.5,91.9)

Table 3: Augmentation vs. balancing effect. The ta-
ble compares baseline performance (left upper cell) to:
(1) balancing w/o augmentation (left bottom cell); (2)
augmentation w/o balancing (right upper cell); and (3)
balancing-via-augmentation (right bottom cell). Each
tuple contains micro and macro accuracy measures.
Balancing was performed using Naı̈ve-OS balancing
policy C. Augmentation alone was performed using
Augment-only policy B.

5.2.2 Exploring Partial Over-Sampling Using
Different Generative Models

Generated samples often differ in their quality from
the original set of samples. Moreover, different
generation algorithms differ in the quality of their
generated samples (Kumar et al., 2020). This dis-
parity presents a trade-off between the quantity of
added samples and their quality. Partial-OS balanc-
ing policy D (as shown in Figure 2.D) enables to
address this trade-off by adding generated samples
up to a certain Blow balancing level.

Figure 4 illustrates macro accuracy for different
text generation methods while setting the balancing
threshold Blow, such that βlow = [0, 10, 30, 50, 70,
80, 90, 95 and 100]% (namely, the percentage of
classes that are treated as under-represented).

Figure 4: Macro accuracy for different text generation
methods over varied βlow values employing Partial-OS
balancing policy D for SEAQ dataset.

Figure 5: Data augmentation with B, C, D and E balanc-
ing policies stating number of augmented and under-
sampled sentences for CQA dataset. The figure shows
that in practice some classes are not fully augmented
although their number of samples is below βlow. Addi-
tionally, advanced balancing techniques - i.e. applying
policy E - result in a more balanced distribution of the
augmented dataset.

First we observe that for all generation methods,
there is a drop in accuracy towards βlow = 100%.
This shows our first key finding, that augmenting
all classes up to |cn| is a sub-optimal policy, in
most cases, even for more advanced generation
methods. Notably, the analysis of CQA and ATIS
datasets also support this claim (not shown).

Observing the general trend we noticed that GPT-
2 dominates all other generation methods for most
configurations, followed by EDA, and then sample-
copy. Markov Chain (MC), which was the pre-
ferred algorithm in (Akkaradamrongrat et al., 2019)
showed worse performance than sample-copy (the
baseline over-sampling approach) for most Blow

thresholds.
Another observation was that there is a corre-

lation between climax’s Blow threshold and the
quality of the generation method. GPT-2, the most
advanced generation method, reaches its highest ac-
curacy when generating with βlow = 80%, followed
by EDA at 70% and sample-copy at 50%.

5.2.3 Evaluation of Balancing Policies
In the following experiment, we compared baseline
results to BalaGen’s performance employing Naı̈ve-
OS, Partial-OS, and Partial-OS-US balancing poli-
cies as depicted in Figure 2. Table 4 presents our
findings. βlow and βhigh values were chosen by
hyper-parameters search on a validation set.
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CQA SEAQ ATIS
Policy acc H ∆S acc H ∆S acc H ∆S

A. Baseline (77.3, 71.9) 3.7 0 (48.2, 46.2) 4.7 0 (97.4, 91.9) 1.1 0
C. Naı̈ve-OS (80.9, 74.7) 3.9 1150 (55.5, 54.6) 4.8 1440 (98.2, 92.2) 1.4 1662
D. Partial-OS (80.9, 75.5) 4 670 (61, 59.9) 4.8 642 (98.6, 96.6) 1.8 1170
E. Partial-OS-US (82.1, 77.5) 4 619 (61, 59.9) 4.8 642 (98.7, 96.6) 2.7 -1704

Table 4: Balancing policy effect. Showing micro accuracy, macro accuracy, entropy and change in number of
samples. Abbreviations: acc - both (accmicro, accmacro) values. H - entropy. ∆S = |DBalanced| − |DTrain|

Partial-OS balancing policy (βlow < 100) ap-
pears to be superior for all datasets. Specifically,
for CQA βlow = 90, and for SEAQ and ATIS
βlow = 80. For the CQA and ATIS datasets, under-
sampling the over-represented classes was shown
to be beneficial with βhigh = 5. Notably, both en-
tropy values increase and number of added samples
decrease in correlation with the accuracy.

CQA and ATIS datasets are highly unbalanced
(as shown in Table 2). Hence, removing samples
from their highly-represented classes was shown
to further improve the accuracy. Figure 5 shows
the number of samples added to (or removed from)
each of the CQA classes in this experiment. There
are classes that were not augmented with enough
samples even for Partial-OS policy D with Blow <
|cn|. This strengthens the need to under-sample the
over-represented classes down to Bhigh to achieve
an even more balanced dataset.

All in all we see a significant increase in perfor-
mance for all datasets when comparing the best
balancing policy to the baseline (p − value <
0.1): CAQ presents a relative increase of (21.3%,
19.8%) in micro and macro accuracy respectively
(comparing to optimal values) when applying
Partial-OS-US policy E. For the SEAQ dataset we
saw an overall increase of (24.8%, +25.3%) in mi-
cro and macro accuracy respectively when apply-
ing Partial-OS policy D. Lastly, the ATIS dataset
classification results also improved, showing an
increase of (50%, 57.9%) in micro accuracy and
macro accuracy while applying Partial-OS-US pol-
icy E. Interestingly, in ATIS dataset, number of
samples in policy E is smaller than the baseline
while improving performance.

The above significant increase in performance
indicates our second key finding, that balancing
datasets using BalaGen yields significantly im-
proved classification performance.

5.2.4 Balanced Input for Model Training
While establishing that balanced dataset is benefi-
cial for classification performance, we examined
the effect of balancing the input to the generation
and labelers models. After applying the best bal-
ancing policy, as described in the previous section,
our results showed that balancing all network com-
ponents improved results by an average increase of
12.4% in micro accuracy and an average increase
of 24% in macro accuracy. (Detailed results are
given in the Appendix). Thus, our third key finding
is that holistically balancing BalaGen, including
all its components, yields best performance.

5.2.5 Weak Supervision Mechanism Analysis
Finally, we evaluated different weak supervision
mechanisms and found that the ensemble of label-
ers performs best as shown in Table 5. This leads
to our fourth key finding that a weak supervision
mechanism aids class label preservation.

5.2.6 BalaGen Improving Real-Life SUC
Corpora

As a last experiment, and to further validate our
findings, we applied BalaGen on 10 real-life SUC
datasets. Table 6 shows number of classes and sam-
ples per dataset as well as relative improvement for
these datasets. BalaGen markedly improved macro
accuracy with relative increase of 11% (compar-
ing to the optimal). Micro accuracy increased by
3.8%. Entropy increased by 5.6%. As expected,
the preferred balancing policy for all datasets is
βlow < 100. Additionally, half of the datasets
reached best performance with βhigh = 5 (for the
rest we did not use under-sampling). It is worth
noting that for two data sets (2 and 9) results show
a trade-off between improving the macro accuracy
at the expense of the micro one. In the end the
decision about which metric to use in such cases
depends on the gain from not missing out on the mi-
nority classes that may cost a small drop in the ma-
jority classes (which may still end up with relative
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CQA SEAQ ATIS
None (78.8, 75.7) (58.3, 57.5) (98.5, 92.4)
Dbl. (81.5, 75.4) (59.1, 57.8) (98.2, 95.1)
Ens. (82.1, 77.5) (61, 59.9) (98.7, 96.6)

Table 5: Weak supervision mechanism effect showing
(accmicro, accmacro). Dbl. - double voting with single
labeler. Ens. - Ensemble.

high performance) that the system owner should
weigh.

Further, we evaluated the classifier performance
on the generated sentences alone (following (Wang
et al., 2019)), without the train set, and found that
micro accuracy falls by 17.5% and macro accu-
racy by 7.9%. This metric represents how well the
generated dataset represents the train set. This inter-
esting finding should be further researched together
with the diversity of the entire corpus.

6 Discussion and Future Work

In this work we present BalaGen, a balancing-via-
generation framework. We show that balancing
textual datasets via generation is a promising tech-
nique. Furthermore our analysis reveals that the
optimal balancing policy depends on the quality
of the generated samples, the weak supervision
mechanism applied, and the training of BalaGen’s
internal component. i.e., the generator and labelers.

In Balagen we assume that each sample con-
tributes the same gain to its class accuracy. A pos-
sible enhancement of BalaGen could take into ac-
count not only the number of samples in each class,
but also their quality. Alternatively, balancing poli-
cies could also consider class accuracy. Additional
enhancements for BalaGen could include employ-
ing more advanced under-sampling technique such
as data cleaning (Branco et al., 2016), cluster-based
under-sampling (Song et al., 2016), or other distri-
bution based techniques (Cui et al., 2019).

BalaGen can also be used to explore setting
βlow > 100. Additional enhancements may also
include investigating more sophisticated weak la-
beling ensemble mechanisms.

We focused our evaluation on the Semantic Ut-
terance Classification (SUC) domain which is char-
acterized by highly imbalanced data. However, it is
desirable to validate the applicability of our general
balancing approach on other textual domains.

# Dataset %acc %H ∆S

1 (29, 13768) (1.3, 20) 9.8 3133
2 (32, 3538) (-0.6, 16) 2.6 1822
3 (63, 2543) (7.3, 11) 9.1 1335
4 (82, 2575) (5.2, 9) 8.2 192
5 (87, 17024) (10.1, 13) 3.1 11689
6 (112, 1821) (4, 13) 4.6 573
7 (135, 2387) (5.1, 11) 3.6 236
8 (157, 5954) (2.7, 3) 2.6 443
9 (176, 4338) (-3.5, 6) 13.9 -997

10 (224, 3776) (6.3, 9) 3.7 453
Avg. (110, 5772) (3.8, 11) 5.6 2404

Table 6: BalaGen applied on 10 real-life SUC datasets.
Showing (intents, samples), relative increase in (mi-
cro accuracy, macro accuracy), relative increase in en-
tropy and change in number of samples. Abbreviations:
%acc - (accmicro, accmacro) relative increase. %H
- relative increase in entropy, ∆S = |DBalanced| −
|DTrain|
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Appendix

In the following, we provide parameters related to
training the models of GPT-2 in Table 9 and Bert
in Table 8. Auxiliary experimental results in Table
7. In addition, we provide a snippet of the CQA
dataset we introduced in this work in Table 1.

We used the transformers3 Python package
(Wolf et al., 2019) for GPT-2 (345M parameters)
implementation, and Allen-NLP4 (Gardner et al.,
2017) as a training framework that contains BERT
implementation. We used model perplexity and
accuracy on the validation set as a train stopping
criteria for GPT-2 and BERT, respectively. Specif-
ically, we used BERTbase as classifier in all our
experiments. A Markov chain was implemented
using the Markovify5 package.

We employed a single NVIDIA Tesla V100-
SXM3 32GB GPU in all our experiments. The
typical time for GPT-2 overall training was about
20 sec per 1K samples. The generation time was
200 seconds per 1K samples, and the BERT overall
training time was about 7 minutes per 1K samples
(50 epochs with 20 patient epochs).

3https://huggingface.co/transformers
4https://github.com/allenai/allennlp
5https://github.com/jsvine/markovify

Balance labelers

Dataset
Balance
generator

No Yes

No (80.3,77.2) (78.8,74.5)
CQA Yes (80.9,77.4) (82.1,77.5)

No (56.1,54.7) (56.6,54.7)
SEAQ Yes (54.2,53.4) (61.0,59.9)

No (98.4,91.5) (98.4,94.8)
ATIS Yes (98.5,92.6) (98.7,96.6)

Table 7: Balancing generator input vs. balancing label-
ers inputs. Each tuple contains micro and macro accu-
racy measures

Model Parameter Value
model name gpt2-medium
batch size 10
val every 5
example length 50
generate sample length 100
learning rate 1e-4
val batch count 80
patience 5
tf only train transformer layers true
max generation attempts 50
optimizer adam

Table 8: GPT-2 training and sampling parameters

Model Parameters Value
model name bert-base-uncased
do lowercase true
word splitter bert-basic
top layer only true
dropout p 0
batch size 8
num epochs 50
patience 20
grad clipping 5
optimizer bert adam
learning rate 5e-5
warmup 0.1

Table 9: Bert Training parameters (used in all experi-
ments)


