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Abstract

This paper presents a simple and effective
discrete optimization method for training bi-
narized knowledge graph embedding model
B-CP. Unlike the prior work using a SGD-
based method and quantization of real-valued
vectors, the proposed method directly opti-
mizes binary embedding vectors by a series
of bit flipping operations. On the standard
knowledge graph completion tasks, the B-
CP model trained with the proposed method
achieved comparable performance with that
trained with SGD as well as state-of-the-art
real-valued models with similar embedding di-
mensions.

1 Introduction

Knowledge graph embedding (KGE) has a wide
range of applications in AI and NLP, such as knowl-
edge acquisition, question answering, and recom-
mender systems. Most of the existing KGE models
represent entities and relations as real or complex-
valued vectors thus consuming a large amount of
memory (Nickel et al., 2011; Bordes et al., 2013;
Socher et al., 2013; Yang et al., 2014; Wang et al.,
2014; Lin et al., 2015; Nickel et al., 2016; Trouil-
lon et al., 2016; Hayashi and Shimbo, 2017; Liu
et al., 2017; Manabe et al., 2018; Kazemi and Poole,
2018; Dettmers et al., 2018; Balažević et al., 2019a;
Xu and Li, 2019; Balažević et al., 2019b). To deal
with knowledge graphs with more than a million
entities, more lightweight models are desirable for
faster processing and to reduce memory consump-
tion, as AI applications on mobile devices are be-
coming more common.

Kishimoto et al. (2019b) proposed a binarized
KGE model B-CP, wherein all vector components
are binarized, allowing them to be stored compactly
with bitwise representation. Despite the reduced

∗The first and second authors equally contributed to this
work.

memory consumption by more than a magnitude,
B-CP performed as well as the existing real-valued
KGE models on benchmark tasks.

B-CP is based on the CP decomposition of a
knowledge graph (Lacroix et al., 2018; Kazemi
and Poole, 2018). It is fully expressive (Kishimoto
et al., 2019a), meaning that any knowledge graph
can be represented as a B-CP model.

During the training of B-CP, however, real-
valued embeddings are maintained and are quan-
tized at each training step (Kishimoto et al., 2019b).
The loss function is computed with respect to the
quantized vectors, but stochastic gradient descent is
performed on the real vectors with the help of Hin-
ton’s “straight-through” estimator (HSTE) (Bengio
et al., 2013). Thus, training does not benefit signif-
icantly from the compact bitwise representations,
although score computation is faster by a bitwise
technique. DKGE (Li et al., 2020) is another binary
KGE model proposed recently, but it also maintains
real-valued vectors during training, as it solves a
relaxed optimization problem with continuous vari-
ables.

In this paper, we propose greedy bit flipping, a
new training approach for B-CP in which binary
vectors are directly optimized, i.e., without the in-
tervention of real-valued vectors. A bit in binary
vectors is sequentially flipped in a greedy manner
so that the objective loss is improved. The advan-
tages of greedy bit flipping are: (1) It does not need
to maintain real-valued vectors even during train-
ing; (2) it is simple and is easy to implement; and
(3) it has only a few hyperparameters.

2 Binarized CP Decomposition for
Knowledge Graphs

A knowledge graph is a set of triples (ei,e j,rk),
where ei,e j are subject and object entities (repre-
sented as nodes in the graph), respectively, and rk is
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the label of the relation between them (correspond-
ing to labeled arcs in the graph). When a triple is
in a knowledge graph it is called a fact.

A knowledge graph can be equivalently repre-
sented by a third-order boolean tensor X = [xi jk]∈
{0,1}Ne×Ne×Nr , where Ne is the number of entities
in the graph, and Nr is the number of relation la-
bels; if a triple (ei,e j,rk) is a fact, xi jk = 1, and 0
otherwise.

CP decomposition (Hitchcock, 1927) is a gen-
eral technique for decomposing a tensor into a sum
of rank-1 tensors. For a third-order tensor X rep-
resenting a knowledge graph, its approximate CP
decomposition is given by X ≈∑

D
d=1 ad⊗bd⊗cd

where ⊗ denotes outer product, and ad ,bd ∈ RNe

and cd ∈ RNr are real (column) vectors. In this
case, matrices A = [a1 a2 · · · aD] ∈ RNe×D, B =
[b1 b2 · · · bD] ∈ RNe×D, and C = [c1 c2 · · · cD] ∈
RNr×D are called factor matrices. For any ma-
trix M, let mi: denote its ith row vectors. Then,
the component xi jk of X can be written as
xi jk ≈ 〈ai:,b j:,ck:〉= ∑

D
d=1 aidb jdckd . Thus, vectors

ai:,b j:,ck: can be regarded as the D-dimensional
vectors representing the subject entity ei, object
entity e j, and relation label rk, respectively.

The B-CP decomposition of a knowledge graph
(Kishimoto et al., 2019b) differs from the standard
CP, in that X is decomposed in terms of binary
vectors ad ,bd ∈ {−1,+1}Ne ,cd ∈ {−1,+1}Nr . As
with CP, B-CP decomposition can be cast as a prob-
lem of binary classification, and solved by logis-
tic regression. First, each xi jk is assumed to be
a random variable sampled independently from a
probability distribution parameterized by A,B,C:

p(X |A,B,C) =
Ne

∏
i=1

Ne

∏
j=1

Nr

∏
k=1

p(xi jk|θi jk).

where θi jk = 〈ai:,b j:,ck:〉 is called the score of
triple (ei,e j,rk), and

p(xi jk|θi jk) =

{
σ(θi jk) if xi jk = 1,
1−σ(θi jk) if xi jk = 0,

is a Bernoulli distribution. Function σ(x) = 1/(1+
exp(−x)) is a sigmoid function.

To train factor matrices to match observed/
unobserved facts encoded as X , we minimize the

Algorithm 1: Greedy Bit-flip Training
input: Pos: set of training triples (facts), including

those for reciprocal relations (see Sec. 3.2)
input: Ne,Nr: numbers of entities and relations
input: I: maximum number of iterations
output: A,B ∈ {−1,+1}Ne×D: factor matrices of

subject and object entity embeddings
output: C ∈ {−1,+1}Nr×D: factor matrix of relation

embeddings
1 Initialize binary factor matrices A,B,C randomly
2 foreach iter ∈ {1, . . . , I} do
3 Neg←negative samples (see Sec. 3.2)
4 Update(C,Nr,D,Pos,Neg) // relation embeddings
5 Update(A,Ne,D,Pos,Neg) // subject embeddings
6 Update(B,Ne,D,Pos,Neg) // object embeddings
7 Check convergence

Algorithm 2: Update(M,N,D,Pos,Neg)
input: M ∈ {−1,+1}N×D: factor matrix to update
input: Pos: set of positive triples (facts)
input: Neg: set of negative triples (non-facts)
output: M: updated factor matrix

1 C←random permutation of indices 1, . . . ,D
2 foreach i ∈ {1, . . . ,N} do // run in parallel
3 foreach j ∈C do // run sequentially, but in random order
4 if ∆(mi j)< 0 then mi j←−mi j

negative log likelihood of the posterior probability:

min
A,B,C

Ne

∑
i=1

Ne

∑
j=1

Nr

∑
k=1

Ei jk (1)

s.t. Ei jk =−xi jk log(σ(θi jk))

− (xi jk−1) log(1−σ(θi jk)). (2)

3 Greedy Bit-flip Training for B-CP

The proposed training method randomly samples
an element (or a bit) of the factor matrices A,B,C
of B-CP, and negates its sign if this “bit flipping”
reduces the objective loss. This process is repeated
until the loss does not improve further or a specified
number of iterations is reached. The pseudocode
of the algorithm is depicted in Algorithms 1 and 2.

In Algorithm 1, when a factor matrix is updated,
the other two factor matrices are fixed. As the
number Nr of relations is considerably smaller than
the number Ne of entities in general, the change in
the relation matrix C influences the total loss much
more significantly than entity matrices A and B.
For this reason, we update C prior to A and B in
each iteration to promote faster convergence.

Actual update is carried out in Algorithm 2. As
remarked on Line 2, a row of a factor matrix, which
represents a single entity or a relation, can be pro-
cessed in parallel, because the score of an individ-
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ual triple depends only on a single subject, object,
and relation it contains; for instance, even when
all subject embeddings are updated simultaneously,
only one of them can change the score of any given
triple. This means that, when multiple rows of a
factor matrix are updated, the change in the total
loss in Eq. (1) is invariant to the order of the up-
dates, as long as the other two factor matrices are
fixed. Since Algorithm 2 updates only one matrix,
we see that its rows can be processed in parallel.

By contrast, the loss is dependent on the or-
der of updated columns (i.e., bits) within a row,
i.e., components in an embedding vector. We thus
change the order of updated columns every time
Algorithm 2 is called, by shuffling the set [D] of
dimensions in Line 1.

In Algorithm 2, each bit in a factor matrix is
examined to see if it is worth being flipped. For
instance, consider a component (bit) ai j of A. Let
E(A,B,C) = ∑

Ne
i=1 ∑

Ne
j=1 ∑

Nr
k=1 Ei jk denote the loss

in Eq. (1), and let A′ denote the factor matrix A
after ai j is flipped to −ai j. The change in the loss
is then

∆(ai j) = E(A′,B,C)−E(A,B,C)

=−
Ne

∑
y=1

Nr

∑
z=1

(
xiyz log

σ(θiyz)

σ(θiyz−2ai jby jcz j)

− (1− xiyz) log
1−σ(θiyz)

1−σ(θiyz−2ai jby jcz j)

)
,

where θi jk is computed before the update (i.e., us-
ing A, not A′) by Eq. (2). Only if ∆(ai j) is found
to be negative, i.e., the loss is decreased, ai j is actu-
ally flipped. The same rule applies to the bits in the
factor matrices B and C. Repeated application of
this update guarantees the loss to be non-increasing.
However, the loss may be stuck in a local minimum,
depending on the order of updates.1 Training is
terminated when the objective loss does not im-
prove, or if a pre-determined number of epochs has
elapsed.

3.1 Fast Score Computation by Bitwise
Operations

In this section, we describe the implementation
detail necessary to speed up training.

As Algorithm 2 involves repeated computation
of scores θi jk, fast computation of scores is a key

1In preliminary experiments, annealing strategies were
tested with bit-flip training to mitigate overfitting. However,
they had no impact on the KGC performance.
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Figure 1: Real-valued vs. Bit vectors: Score computa-
tion time comparison.

to speed up training. Although one easy approach
is to cache all scores in memory, the number of
facts may be huge in knowledge graphs. We thus
consider bitwise computation to speed up score
computation.

We can compute the B-CP scores by bitwise
operation, as follows.

θi jk = D−2h(ai:,XNOR(b j:,ck:)), (3)

where h(·, ·) is Hamming distance and XNOR(·, ·)
is the negation of exclusive-or. As shown in Fig-
ure 1, bitwise score computation is much faster
than naive computation of scores by Eq. (3), mak-
ing the cost of score computation negligible.

3.2 Negative Sampling and Reciprocal
Relations

Before calling Algorithm 1, for each (ei,e j,rk) in
the training set Pos, we introduce its reciprocal
triple (e j,ei,r−1

k ) in the set, with a new relation
label r−1

k . This technique was used by Lacroix
et al. (2018) and Kazemi and Poole (2018), and is
effective for models such as CP and B-CP, in which
an entity has separate embeddings for subject and
object.

Following prior work, we also approximate the
objective loss by sampling negative examples (Al-
gorithm 1, Line 3) to cope with the enormous
size and sparsity of knowledge graphs. Specifi-
cally, for each (ei,e j,rk) in the training set, a pre-
determined number of entities are first sampled
randomly. Then, for each sampled entity e, we
create a negative triple (ei,e,rk) and its reciprocal
negative triple (e,ei,r−1

k ).

4 Experiments

4.1 Experimental Setup
For evaluation, we performed entity prediction on
two standard knowledge graph completion (KGC)
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Figure 2: Training epochs vs. filtered MRR on the
WN18RR and FB15k-237 validation datasets.

datasets, WN18RR (Dettmers et al., 2018) and
FB15k-237 (Toutanova and Chen, 2015) with their
default training/validation/test splits.

In the entity prediction task, a KGE model is
given a set of incomplete triples, each of which is
generated by hiding one of the entities in a pos-
itive triple in the test set; i.e., from a positive
triple (ei,e j,rk), incomplete triples (?,e j,rk) and
(ei,?,rk) are generated. For each such incomplete
triple, the KGE model must produce a list of all en-
tities (including the correct entity, ei or e j) ranked
by the score when each of these entities is plugged
instead of the placeholder “?” in the triple. The
quality of the output ranking list is then measured
by two standard evaluation measures for the KGC
task: Mean Reciprocal Rank (MRR) and Hits@10,
in the “filtered” setting (Bordes et al., 2013).

We selected the hyperparameter D of the pro-
posed method (henceforth denoted as “Bit-flip
B-CP”) via grid search over the range D ∈
{200,400,600}, such that the filtered MRR is max-
imized on the validation set. The maximum num-
ber of training epochs was set to 20. We generated
20 negative triples per positive training triple for
FB15k-237 and 5 for WN18RR. Bit-flip B-CP was
implemented in Java, and ran on a laptop PC with
2.7GHz Intel Core i7 CPU. Our implementation
with D = 400 took about 5 minutes to finish 20
training epochs on the WN18RR training dataset.

4.2 Results

Training Convergence Figure 2 shows the MRR
scores on the validation set at each training epoch.
For comparison, we also trained B-CP using HSTE-
based stochastic gradient descent for optimization
and the best hyperparameters reported by Kishi-
moto et al. (2019a).

The figure shows greedy bit flipping (Bit-flip
B-CP) requires a much smaller number of train-
ing epochs to converge than HSTE-based training
(HSTE B-CP). For both datasets, the best MRR

WN18RR FB15k-237

Models Memory MRR Hits@10 MRR Hits@10

DistMult* 79.24 45.2 53.1 34.3 53.1
ComplEx* 39.62 47.5 54.7 34.8 53.6
ConvE* 79.24 44.2 50.4 33.9 52.1
HSTE B-CP** 3.87 45.0 52.0 29.2 46.1
DKGE*** 2.62 35.0 50.6 36.8 50.7

HSTE B-CP 3.87 44.2 47.2 27.1 43.7
†HSTE B-CP 19.34 46.4 51.2 28.9 46.0

Bit-flip B-CP 3.87 47.7 53.3 27.6 45.7
(±0.2) (±0.1) (±0.0) (±0.1)

†Bit-flip B-CP 19.34 49.1 55.0 29.5 47.8

Table 1: KGC results on WN18RR and FB15k-
237: Memory consumption (MB), Filtered MRR and
Hits@10 (%). *, ** and *** indicate the results taken
from (Ruffinelli et al., 2020), (Kishimoto et al., 2019b)
and (Li et al., 2020), respectively. The memory con-
sumption figures for these models are estimated from
the reported number of parameters.

for Bit-flip B-CP was obtained when D = 400, and
thus, we used this setting for the following test
evaluations.

KGC Performance Table 1 summarizes the per-
formance on the entity prediction task. The table
lists the proposed Bit-flip B-CP, and several state-
of-the-art models, including B-CP trained with
HSTE (HSTE B-CP). We can see that Bit-flip B-CP
achieved comparable results to other KGE models.

To examine the dependence on initial parameter
values, we trained five bit-flip-trained B-CP models
using different initial values generated with varied
random seeds. The performance figures in the ta-
ble for Bit-flip B-CP are the average over these
five models, with the standard deviation shown in
parentheses. The small standard deviations indi-
cate that bit flipping training is stable over different
random seeds.

Notice that B-CP consists of binary vectors,
which makes the memory consumption approxi-
mately 1/20 of that of real-valued models DistMult
and ConvE. Taking advantage of the small memory
consumption of B-CP, we created an ensemble of
five B-CP models; i.e., the score θi jk is computed
by the sum of the scores of all models in the en-
semble. Its performance is shown in the rows titled
“†Bit-flip B-CP” of Table 1. For comparison, we
also show the result for the ensemble of five HSTE-
trained B-CP models (“†HSTE B-CP”). As we can
see from the table, ensemble improved the task
performance. Note that even the ensemble models
consume much less memory than existing models
using 32-bit real embeddings.
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5 Conclusion

In this paper, we have introduced greedy bit flip-
ping, a simple yet effective discrete optimization
method for training the binarized KGE model B-
CP.

On the standard benchmark datasets of KGC,
B-CP models trained by bit flipping were on per
with HSTE-trained B-CP in terms of accuracy. Ex-
perimental results show that the KGC performance
was stable over different initial values. Making en-
semble of multiple B-CP models is made tractable
by the small memory consumption of B-CP, which
brought further performance improvement.

Bit flipping is unique in that it does not require
the loss function to be differentiable, making it
potentially applicable to a wide range of loss func-
tions. We plan to investigate this direction in our
future work. Application of bit flipping to other
binarized KGE models is another interesting di-
rection. A binary version of DistMult looks inter-
esting as a starting point, as it is closely related
to DKGE (Li et al., 2020), a recently proposed
binarized model.
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Ivana Balažević, Carl Allen, and Timothy M

Hospedales. 2019a. Hypernetwork knowledge
graph embeddings. In Proceedings of the 28th Inter-
national Conference on Artificial Neural Networks
(ICANN), pages 553–565.
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