
Proceedings of the Second Workshop on Figurative Language Processing, pages 56–60
July 9, 2020. c©2020 Association for Computational Linguistics

https://doi.org/10.18653/v1/P17

56

Sarcasm Detection in Tweets with BERT and GloVe Embeddings

Akshay Khatri
Department of Information Technology

National Institute of Technology
Karnataka, Surathkal

akshaykhatri0011@gmail.com

Pranav P
Department of Information Technology

National Institute of Technology
Karnataka, Surathkal

hsr.pranav@gmail.com

Abstract

Sarcasm is a form of communication in which
the person states opposite of what he actually
means. It is ambiguous in nature. In this pa-
per, we propose using machine learning tech-
niques with BERT and GloVe embeddings to
detect sarcasm in tweets. The dataset is prepro-
cessed before extracting the embeddings. The
proposed model also uses the context in which
the user is reacting to along with his actual re-
sponse.

1 Introduction

Sarcasm is defined as a sharp, bitter or cutting ex-
pression or remark and is sometimes ironic (Gibbs
et al., 1994). To identify if a sentence is sarcas-
tic, it requires analyzing the speaker’s intentions.
Different kinds of sarcasm exist like propositional,
embedded, like-prefixed and illocutionary (Camp,
2012). Among these, propositional requires the use
of context.

The most common formulation of sarcasm de-
tection is a classification task (Joshi et al., 2017).
Our task is to determine whether a given sentence
is sarcastic or not. Sarcasm detection approaches
are broadly classified into three types (Joshi et al.,
2017) . They are: Rule based, deep learning based
and statistical based. Rule based detectors are sim-
ple, they just look for negative response in a pos-
itive context and vice versa. It can be done us-
ing sentiment analysis. Deep learning based ap-
proaches use deep learning to extract features and
the extracted features are fed into a classifier to get
the result. Statistical approach use features related
to the text like unigrams, bigrams etc and are fed
to SVM classifier.

In this paper, we use BERT embeddings (Devlin
et al., 2018) and GloVe embeddings (Pennington
et al., 2014) as features. They are used for getting
vector representation of words. These embeddings

are trained with a machine learning algorithm. Be-
fore extracting the embeddings, the dataset also
needs to be processed to enhance the quality of the
data supplied to the model.

2 Literature Review

There have been many methods for sarcasm de-
tection. We discuss some of them in this section.
Under rule based approaches, Maynard and Green-
wood (2014) use hashtag sentiment to identify sar-
casm. The disagreement of the sentiment expressed
by the hashtag with the rest of the tweet is a clear in-
dication of sarcasm. Vaele and Hao (2010) identify
sarcasm in similes using Google searches to deter-
mine how likely a simile is. Riloff et al. (2013)
look for a positive verb and a negative situation
phrase in a sentence to detect sarcasm.

In statistical sarcasm detection, we use fea-
tures related to the text to be classified. Most
approaches use bag-of-words as features (Joshi
et al., 2017). Some other features used in other
papers include sarcastic patterns and punctua-
tions (Tsur et al., 2010), user mentions, emoti-
cons, unigrams, sentiment-lexicon-based features
(González-Ibáñez et al., 2011), ambiguity-based,
semantic relatedness (Reyes et al., 2012), N-grams,
emotion marks, intensifiers (Liebrecht et al., 2013),
unigrams (Joshi et al., 2015), bigrams (Liebrecht
et al., 2013), word shape, pointedness (Ptáček et al.,
2014), etc. Most work in statistical sarcasm de-
tection relies on different forms of Support Vec-
tor Machines(SVMs) (Kreuz and Caucci, 2007).
(Reyes et al., 2012) uses Naive Bayes and Deci-
sion Trees for multiple pairs of labels among irony,
humor, politics and education. For conversational
data,sequence labeling algorithms perform better
than classification algorithms (Joshi et al., 2016).
They use SVM-HMM and SEARN as the sequence
labeling algorithms (Joshi et al., 2016).



57

For a long time, NLP was mainly based on sta-
tistical analysis, but machine learning algorithms
have now taken over this domain of research provid-
ing unbeaten results. Dr. Pushpak Bhattacharyya,
a well-known researcher in this field, refers to this
as “NLP-ML marriage”. Some approaches use
similarity between word embeddings as features
for sarcasm detection. They augment these word
embedding-based features with features from their
prior works. The inclusion of past features is key
because they observe that using the new features
alone does not suffice for an excellent performance.
Some of the approaches show a considerable boost
in results while using deep learning algorithms over
the standard classifiers. Ghosh and Veale (2016)
use a combination of CNN, RNN, and a deep neu-
ral network. Another approach uses a combina-
tion of deep learning and classifiers. It uses deep
learning(CNN) to extract features and the extracted
features are fed into the SVM classifier to detect
sarcasm.

3 Dataset

We used the twitter dataset provided by the hosts of
shared task on Sarcasm Detection. Initial analysis
reveals that this is a perfectly balanced dataset hav-
ing 5000 entries. There are an equal number of sar-
castic and non-sarcastic entries in it. It includes the
fields label, response and context. The label speci-
fies whether the entry is sarcastic or non-sarcastic,
response is the statement over which sarcasm needs
to be detected and context is a list of statements
which specify the context of the particular response.
The test dataset has 1800 entries with fields ID(an
identifier), context and response.

Most of the time, raw data is not complete and
it cannot be sent for processing(applying models).
Here, preprocessing the dataset makes it suitable to
apply analysis on. This is an extremely important
phase as the final results are completely dependent
on the quality of the data supplied to the model.
However great the implementation or design of the
model is, the dataset is going to be the distinguish-
ing factor between obtaining excellent results or
not. Steps followed during the preprocessing phase
are: (Mayo)

• Check out for null values - Presence of null
values in the dataset leads to inaccurate pre-
dictions. There are two approaches to handle
this:

– Delete that particular row - We will be
using this method to handle null values.

– Replace the null value with the mean,
mode or median value of that column
- This approach cannot be used as our
dataset contains only text.

• Tokenization and remove punctuation - Pro-
cess of splitting the sentences into words and
also remove the punctuation in the sentences
as they are of no importance for the given
specific task.

• Case conversion - Converting the case of the
dataset to lowercase unless the case of the
whole word is in uppercase.

• Stopword removal - These words are a set of
commonly used words in a language. Some
common English stop words are “a”, “the”,
“is”, “are” and etc. The main idea behind this
procedure is to remove low value information
so as to focus on the important information.

• Normalization - This is the process of trans-
forming the text into its standard form. For
example, the word “gooood” and “gud” can
be transformed to “good”, “b4” can be trans-
formed to “before”, “:)” can be transformed
to “smile” its canonical form.

• Noise removal - Removal of all pieces of
text that might interfere with our text anal-
ysis phase. This is a highly domain dependent
task. For the twitter dataset noise can be all
special characters except hashtag.

• Stemming - This is the process of converting
the words to their root form for easy process-
ing.

Both training and test data are preprocessed with
the above methods. Once the above preprocessing
steps have been applied we are ready to move to
the model development.

4 Methodology

In this section, we describe the methods we used
to build the model for the sarcasm detection.

4.1 Feature Extraction
Feature extraction is an extremely important fac-
tor along with pre-processing in the model build-
ing process. The field of natural language pro-
cessing(NLP), sentence and word embeddings are



58

majorly used to represent the features of the lan-
guage. Word embedding is the collective name
for a set of feature learning techniques in natu-
ral language processing where words or phrases
from the vocabulary are mapped to vectors of real
numbers. In our research, we used two types of
embeddings for the feature extraction phase. One
being BERT(Bidirectional Encoder Representa-
tions from Transformers) word embeddings (De-
vlin et al., 2018) and the other being GloVe(Global
Vectors) embeddings (Pennington et al., 2014).

4.1.1 BERT embeddings
‘Bert-as-service’ (Xiao, 2018) is a useful tool for
the generation of the word embeddings. Each word
is represented as a vector of size 768. The embed-
dings given by BERT are contextual. Every sen-
tence is represented as a list of word embeddings.
The given training and test data has response and
context as two fields. Embeddings for both context
and response were generated. Then, the embed-
dings were combined in such a way that context
comes before response. The intuition to this being
that it is the context that elicits a response from a
user. Once the embeddings are extracted, the se-
quence of the embeddings were padded to get them
to the same size.

4.1.2 GloVe embeddings
The results given by BERT not being up to the mark
led us to search for a twitter specific embedding
and thus we chose GloVe embeddings specifically
trained for twitter. It uses unsupervised learning
for obtaining vector representation of words. The
embeddings given by GloVe are non-contextual.
Here we decided to choose GloVe twitter sentence
embeddings for training the models as it would
capture the overall meaning of the sentence in a
relatively lesser amount of memory. This generated
a list of size 200 for each input provided. Once the
sentence embeddings were extracted, the context
and the response were combined such that context
comes before response. Context embeddings were
generated independent of the response so that the
sentiment of response would not effect the senti-
ment of the context.

4.2 Training and Predictions

After extraction of the word embeddings, the next
step is to train these to build a model which can be
used to predict the class of test samples. Classifiers
like Linear Support Vector Classifier(LSVC), Lo-

gistic Regression(LR), Gaussian Naive Bayes and
Random Forest were used. Scikit-learn (Pedregosa
et al., 2011) was used for training these models.
Word embeddings were obtained for the test dataset
in the same way mentioned before. Now, they are
ready for predictions.

5 Reproducibility

5.1 Experimental Setup
Google colab with 25GB RAM was used for the ex-
periment, which includes extraction of embedding,
training the models and prediction.

5.2 Extracting BERT embeddings
We use the bert as a service for generating the
BERT embeddings. We spin up BERT as a service
server and create a client to get the embeddings.
We use the uncased L-12 H-768 A-12 pretrained
BERT model to generate the embeddings.

All of the context(i.e 100%) provided in the
dataset was used for this study. Word embeddings
for the response and context are generated sepa-
rately. Embeddings for each word in the response
is extracted separately and appended to form a list.
Every sentence in the context is appended one after
the other. The same is done for response embed-
dings. The embeddings of the context and that of
response fields are concatenated to get the final
embedding.

5.3 Extracting the GLOVE embeddings
We used genism to download glove-twitter-200 pre-
trained model. Embeddings for the response and
context are extracted separately. Sentences in the
given context are appended to form a single sen-
tence. Later we generate the sentence embeddings
for response and context separately. The context
embeddings and response embeddings are concate-
nated to generate the final embedding.

5.4 Training the model
We use the Scikit-learn machine learning library
to train the classifiers(SVM, Logistic Regres-
sion, Gaussian Naive Bayes and Random Forest).
Trained models are saved for later prediction. Us-
ing the saved models, we predict the test samples
as SARCASM or NOT SARCASM.

6 Results

The result was measured using the metric F-
measure. F-measure is a measure of a test’s ac-



59

Classifier F-measure
Linear Support Vector Classifier 0.598

Logistic Regression 0.6224
Gaussian Naive Bayes 0.373

Random Forest 0.577

Table 1: Results with BERT embeddings excluding
context

Classifier F-measure
Linear Support Vector Classifier 0.616

Logistic Regression 0.630

Table 2: Results with BERT embeddings including
both context and response

curacy and is calculated as the weighted harmonic
mean of the precision and recall of the test (Zhang
and Zhang, 2009). Now, we discuss the results
obtained with BERT and GloVe separately.

6.1 With BERT

Among the classifiers mentioned in the previous
section, a good result was received from SVM and
logistic regression, with the latter giving the best
results. Table 1 shows the results of training the
classifiers only on the response and excluding the
context. Table 2 shows the results obtained with
BERT including the context. It is clear that taking
the context into consideration boosts the result.

6.2 With GloVe

The results for this approach gave much better re-
sults when compared to the BERT embedding ap-
proach. Also, GloVe was much faster than BERT.
Among the two classifiers logistic regression gave
the better results of the two. Table 3 shows the
results obtained with GloVe.

7 Conclusion

Sarcasm detection can be done effectively using
word embeddings. They are extremely useful as
they capture the meaning of a word in a vector rep-
resentation. Even though BERT gives contextual

Classifier F-measure
Linear Support Vector Classifier 0.679

Logistic Regression 0.690

Table 3: Results with GloVe embeddings including
both context and response

word representations i.e the same word occuring
multiple times in a sentence may have different vec-
tors, it didn’t perform to the mark when compared
to GloVe which gives the same vector for a word
occuring multiple times. However, this cannot be
generalized. It may depend on the dataset. Among
the classifiers, logistic regression always outper-
formed the other classifiers used in this study.

Acknowledgments

We would like to thank Dr. Anand Kumar M for his
immense support, patient guidance and enthusiastic
encouragement throughout the research work. We
would also like to thank the reviewers for their
useful suggestions to improvise the paper.

References
Elisabeth Camp. 2012. Sarcasm, pretense, and the

semantics/pragmatics distinction. Noûs, 46(4):587–
634.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Aniruddha Ghosh and Tony Veale. 2016. Fracking sar-
casm using neural network. In Proceedings of the
7th workshop on computational approaches to sub-
jectivity, sentiment and social media analysis, pages
161–169.

R.W. Gibbs, R.W. Gibbs, Cambridge University Press,
and J. Gibbs. 1994. The Poetics of Mind: Figurative
Thought, Language, and Understanding. The Poet-
ics of Mind: Figurative Thought, Language, and Un-
derstanding. Cambridge University Press.

Roberto González-Ibáñez, Smaranda Muresan, and
Nina Wacholder. 2011. Identifying sarcasm in twit-
ter: A closer look. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies: Short
Papers - Volume 2, HLT ’11, page 581–586, USA.
Association for Computational Linguistics.

Aditya Joshi, Pushpak Bhattacharyya, and Mark J Car-
man. 2017. Automatic sarcasm detection: A survey.
ACM Computing Surveys (CSUR), 50(5):1–22.

Aditya Joshi, Vinita Sharma, and Pushpak Bhat-
tacharyya. 2015. Harnessing context incongruity for
sarcasm detection. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 757–762, Beijing, China. As-
sociation for Computational Linguistics.

https://books.google.co.in/books?id=V_W8M9WOK8cC
https://books.google.co.in/books?id=V_W8M9WOK8cC
https://doi.org/10.3115/v1/P15-2124
https://doi.org/10.3115/v1/P15-2124


60

Aditya Joshi, Vaibhav Tripathi, Pushpak Bhat-
tacharyya, and Mark James Carman. 2016. Harness-
ing sequence labeling for sarcasm detection in dia-
logue from tv series ’friends’. In CoNLL.

Roger Kreuz and Gina Caucci. 2007. Lexical influ-
ences on the perception of sarcasm. In Proceed-
ings of the Workshop on Computational Approaches
to Figurative Language, pages 1–4, Rochester, New
York. Association for Computational Linguistics.

Christine Liebrecht, Florian Kunneman, and Antal
van den Bosch. 2013. The perfect solution for de-
tecting sarcasm in tweets #not. In Proceedings
of the 4th Workshop on Computational Approaches
to Subjectivity, Sentiment and Social Media Analy-
sis, pages 29–37, Atlanta, Georgia. Association for
Computational Linguistics.

Diana Maynard and Mark Greenwood. 2014. Who
cares about sarcastic tweets? investigating the im-
pact of sarcasm on sentiment analysis. In Pro-
ceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC-2014),
pages 4238–4243, Reykjavik, Iceland. European
Languages Resources Association (ELRA).

Matthew Mayo. A general approach
to preprocessing text data. https:
//www.kdnuggets.com/2017/12/
general-approach-preprocessing-text-data.
html.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Tomáš Ptáček, Ivan Habernal, and Jun Hong. 2014.
Sarcasm detection on Czech and English twitter.
In Proceedings of COLING 2014, the 25th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 213–223, Dublin, Ireland.
Dublin City University and Association for Compu-
tational Linguistics.

Antonio Reyes, Paolo Rosso, and Davide Buscaldi.
2012. From humor recognition to irony detection:
The figurative language of social media. Data
Knowledge Engineering, 74:1–12.

Ellen Riloff, Ashequl Qadir, Prafulla Surve, De Lalin-
dra Silva, Nathan Gilbert, and Ruihong Huang. 2013.
Sarcasm as contrast between a positive sentiment
and negative situation. EMNLP, pages 704–714.

Oren Tsur, Dmitry Davidov, and Ari Rappoport. 2010.
Icwsm - a great catchy name: Semi-supervised
recognition of sarcastic sentences in online product
reviews.

Tony Vaele and Yanfen Hao. 2010. Detecting ironic
intent in creative comparisons. In European Con-
ference on Artificial Intelligence, volume 215, pages
765–770.

Han Xiao. 2018. bert-as-service. https://github.
com/hanxiao/bert-as-service.

Ethan Zhang and Yi Zhang. 2009. F-Measure, pages
1147–1147. Springer US, Boston, MA.

https://www.aclweb.org/anthology/W07-0101
https://www.aclweb.org/anthology/W07-0101
https://www.aclweb.org/anthology/W13-1605
https://www.aclweb.org/anthology/W13-1605
http://www.lrec-conf.org/proceedings/lrec2014/pdf/67_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/67_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2014/pdf/67_Paper.pdf
https://www.kdnuggets.com/2017/12/general-approach-preprocessing-text-data.html
https://www.kdnuggets.com/2017/12/general-approach-preprocessing-text-data.html
https://www.kdnuggets.com/2017/12/general-approach-preprocessing-text-data.html
https://www.kdnuggets.com/2017/12/general-approach-preprocessing-text-data.html
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/C14-1022
https://doi.org/10.1016/j.datak.2012.02.005
https://doi.org/10.1016/j.datak.2012.02.005
https://github.com/hanxiao/bert-as-service
https://github.com/hanxiao/bert-as-service
https://doi.org/10.1007/978-0-387-39940-9_483

