@inproceedings{khatri-p-2020-sarcasm,
title = "Sarcasm Detection in Tweets with {BERT} and {G}lo{V}e Embeddings",
author = "Khatri, Akshay and
P, Pranav",
editor = "Klebanov, Beata Beigman and
Shutova, Ekaterina and
Lichtenstein, Patricia and
Muresan, Smaranda and
Wee, Chee and
Feldman, Anna and
Ghosh, Debanjan",
booktitle = "Proceedings of the Second Workshop on Figurative Language Processing",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/jlcl-multiple-ingestion/2020.figlang-1.7/",
doi = "10.18653/v1/2020.figlang-1.7",
pages = "56--60",
abstract = "Sarcasm is a form of communication in which the person states opposite of what he actually means. In this paper, we propose using machine learning techniques with BERT and GloVe embeddings to detect sarcasm in tweets. The dataset is preprocessed before extracting the embeddings. The proposed model also uses all of the context provided in the dataset to which the user is reacting along with his actual response."
}
Markdown (Informal)
[Sarcasm Detection in Tweets with BERT and GloVe Embeddings](https://preview.aclanthology.org/jlcl-multiple-ingestion/2020.figlang-1.7/) (Khatri & P, Fig-Lang 2020)
ACL