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Abstract

The detection of metaphors can provide valu-
able information about a given text and is cru-
cial to sentiment analysis and machine trans-
lation. In this paper, we outline the tech-
niques for word-level metaphor detection used
in our submission to the Second Shared Task
on Metaphor Detection. We propose using
both BERT and XLNet language models to
create contextualized embeddings and a bi-
directional LSTM to identify whether a given
word is a metaphor. Our best model achieved
F1-scores of 68.0% on VUA AllPOS, 73.0%
on VUA Verbs, 66.9% on TOEFL AllPOS,
and 69.7% on TOEFL Verbs, placing 7th, 6th,
5th, and 5th respectively. In addition, we out-
line another potential approach with a KNN-
LSTM ensemble model that we did not have
enough time to implement given the deadline
for the competition. We show that a KNN clas-
sifier provides a similar F1-score on a valida-
tion set as the LSTM and yields different infor-
mation on metaphors.

1 Introduction

A metaphor is a form of figurative language that
creates a link between two different concepts and
conveys rich linguistic information (Lakofi and
Johnson, 1980). The complex information that ac-
companies a metaphorical text is often overlooked
in sentiment analysis, machine translation, and in-
formation extraction. Therefore, the detection of
metaphors is an important task in order to achieve
the full potential of many applications in natural
language processing (Tsvetkov et al., 2014).

The differences between a metaphorical text and
a non-metaphorical text can be subtle and require
specific domain information. For instance, in the
phrase

the trajectory of your legal career

the word trajectory is used metaphorically. To iden-
tify this metaphor, both the meaning of the word
in the context of the sentence and its literal defi-
nition must be recognized and compared. In this
case, the word trajectory is used to describe the
path of a legal career in the sentence, whereas its
basic definition involves the path of a projectile.
As a result of the ambiguity present in determining
the basic meaning of a word, as well as whether
it deviates significantly from a contextual use, de-
tecting metaphors at a word-level can be challeng-
ing even for humans. Additionally, the Metaphor
Identification Procedure used to label the datasets
(MIPVU) accounts for multiple kinds of metaphors
(Steen et al., 2010). Capturing implicit, complex
metaphors may require different information than
capturing direct, simple metaphors.

This paper describes the techniques that we uti-
lized in the Second Shared Task on Metaphor De-
tection. The competition provided two datasets: a
subset of ETS Corpus of Non-Native Written En-
glish, which contains essays written by test-takers
for the TOEFL test and was annotated for argumen-
tation relevant metaphors, and the VU Amsterdam
Metaphor Corpus (VUA) dataset, which consists of
text fragments sampled across four genres from the
British National Corpus (BNC) – Academic, News,
Conversation, and Fiction. For each dataset, par-
ticipants could compete in two tracks: identifying
metaphors of all parts of speech (AllPOS) or verbs
only (Verbs).

Our final submission uses pretrained BERT (De-
vlin et al., 2018) and XLNet (Yang et al., 2019)
transformer models, part-of-speech (POS) labels,
and a two-layer bi-directional long short-term mem-
ory (Bi-LSTM) neural network architecture. BERT
and XLNet are used to generate contextualized
word embeddings, which are then combined with
POS tags and fed through the Bi-LSTM to predict
metaphoricity for each word. By creating contex-
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tualized word embeddings using transformers, we
hoped to capture more long-range interdependen-
cies between words than would be possible using
methods such as word2vec, GloVe, or fastText. In-
deed, our model achieved F1-scores of 68.0% on
VUA AllPOS and 73.0% on VUA Verbs, improv-
ing upon results from the First Shared Task (Leong
et al., 2018). On the TOEFL task, we achieved F1-
scores of 66.9% on AllPOS, and 69.7% on Verbs.
Our scores placed 7th, 6th, 5th, and 5th respectively
in the Second Shared Task on Metaphor Detection
(Leong et al., 2020).

2 Related Works

Historically, approaches to automatic metaphor de-
tection have focused on hand-crafting a set of in-
formative features for every word and applying
a supervised machine learning algorithm to clas-
sify words as metaphorical or non-metaphorical.
Previous works have explored features including
POS tags, concreteness, imageability, semantic dis-
tributions, and semantic classes as characterized
through SUMO ontology, WordNet, and VerbNet
(Beigman Klebanov et al., 2014; Tsvetkov et al.,
2014; Dunn, 2013; Mohler et al., 2013).

Deep learning methods have also been em-
ployed for automatic metaphor detection. In the
First Shared Task on Metaphor Detection, the
top three highest scoring teams all employed an
LSTM model with word embeddings and addi-
tional features (Leong et al., 2018). Stemle and
Onysko (2018) trained fastText word embeddings
on various native and non-native English corpora,
and passed the sequences of embeddings to an
Bi-LSTM. The highest-performing model from
Bizzoni and Ghanimifard (2018) employed a Bi-
LSTM on GloVe embeddings and concreteness rat-
ings for each word. Wu et al. (2018) appended
POS and semantic class information to pretrained
word2vec word embeddings, and utilized a CNN
in addition to a Bi-LSTM in order to better cap-
ture local and global contextual information. In all
these cases, the word embeddings used are context-
independent: the same word appearing in two dif-
ferent sentences will nonetheless have the same
embedding. Thus, these embeddings may not be
able to fully capture information about multi-sense
words (for example, the word bank in river bank
and bank robber), which is crucial for properly
identifying metaphors.

More recently, Mao et al. (2019) proposed two

RNN models for word-level metaphor detection
based on linguistic theories of metaphor identifi-
cation. GloVe and ELMo embeddings are used
as input features that capture literal meanings of
words, which are compared with the hidden states
of Bi-LSTMs that capture contextual meaning. We
chose to explore transformer-based embeddings as
an alternative way to capture contextual informa-
tion.

Transformer-based models have shown state-of-
the-art results on a wide variety of language tasks,
including sentence classification, question answer-
ing, and named entity recognition. These models
rely on self-attention mechanisms to capture global
dependencies, and can be used to generate contex-
tualized word embeddings. We chose to examine
the models BERT, GPT2, and XLNet. These three
models all achieve remarkable performances on var-
ious NLP tasks, but they capture long-distance re-
lationships within the text in different ways. BERT
is an autoencoder model, consisting of a stack of
encoder layers, and is able to capture bi-directional
context using masking during training (Devlin et al.,
2018). GPT2 is an autoregressive model, consisting
of a stack of decoder layers, and thus is only able
to capture unidirectional context (Radford et al.,
2018). XLNet is also autoregressive, but it captures
bi-directional context by considering all permuta-
tions of the given words (Yang et al., 2019). Each
of these models has its advantages and disadvan-
tages that are worth exploring in the context of
metaphor detection.

3 Methodology

Our method for metaphor detection begins with
generating contextualized word embeddings for
each word in a sentence using the hidden states
of pretrained BERT and XLNet language models.
Next, those embeddings are concatenated together,
POS tags for each word are appended to the embed-
dings, and a Bi-LSTM reads the features as input
and classifies each word in the sentence.

Word Embeddings Due to limited metaphor-
annotated data, rather than training a transformer
model on our downstream task, we instead opted to
take a feature-based approach to generating contex-
tualized word embeddings from pretrained trans-
former models. This idea was inspired by the ap-
proach to the token-level named entity recogni-
tion task described in Devlin et al. (2018), which
used a number of strategies for combining hidden
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Figure 1: Our model architecture. Sentences are fed through pretrained BERT and XLNet models, concatenated
along with POS tags, passed to a Bi-LSTM, and a sigmoid layer outputs probabilities.

state representations of words from a pretrained
BERT model to generate contextualized word em-
beddings.

We installed the Python transformers library de-
veloped by huggingface (Wolf et al., 2019), which
includes a PyTorch (Paszke et al., 2019) imple-
mentation of BERT and several pretrained BERT
models. We opted to use the BERT base uncased
model, which consists of 12-layers, 768-hidden,
12-heads, and 110M parameters. For each line in
the VUA and TOEFL datasets, we use the BERT
tokenizer included in the transformers package to
pre-process the text, then generate hidden-state rep-
resentations for each word by inputting each line
into the pretrained BERT model. Each token is
given a 12x768 hidden-state representation from
BERT. We generate 768-dimension word embed-
dings by summing the values from each of the 12
hidden layers for each token. Words out-of-vocab
for BERT are split into multiple tokens represent-
ing subwords. To generate embeddings for these
words, embeddings are generated for each subword
token, then averaged together.

Similarly, we installed the huggingface imple-
mentation of XLNet and used its pretrained XLNet
base uncased model to generate embeddings for
each word in the dataset using the same method as
with BERT.

Once both embeddings are generated, we con-

catenate the BERT and XLNet embeddings for each
word to generate 1536-dimensional word embed-
dings. By combining word embeddings from mul-
tiple high-performing pretrained transformers, we
are able to capture more contextual information
for each word. Additionally, we supplement these
word embeddings with the POS tag for each word
as generated by the Stanford parser (Toutanova
et al., 2003). POS tags were shown to improve
metaphor detection in the 2018 Metaphor Detec-
tion Shared Task (Leong et al., 2018), and we find
a small improvement by including them here.

Neural Network We pass the features from each
sentence into a Bi-LSTM. The purpose of this net-
work is to capture long-range relationships between
words in the same sentence which may reveal the
presence of metaphors. We use a dense layer with
a sigmoid activation function to obtain the pre-
dicted probability of being a metaphor for each
word in the sentence. During training, we employ
a weighted binary cross entropy loss function to
address the extreme class imbalance, since non-
metaphors occur significantly more frequently than
metaphors. Hyperparameters were tuned via cross-
validation. For the testing phase, we use an en-
semble strategy which was effective for Wu et al.
(2018): we trained four copies of this Bi-LSTM
with different initializations and averaged the pre-
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dictions from each model.
Additionally, we noted that our model tended to

assign similar probabilities to different instances
of the same word in different contexts, and that
a prediction significantly higher than the average
prediction for that word was a good indicator of
the presence of metaphor, even if the prediction
fell lower than the ideal threshold. Thus, we used
the following procedure for the testing phase: label
the word as a metaphor if its predicted probability
is higher than the threshold, or if its probability is
three orders of magnitude higher than the median
predicted probability for that word in the evalu-
ation set. We found this to be a useful way of
addressing the domain shift between the training
and the test data. This concept is further explored
in Section 4.1.

4 Experiments

Word Embeddings Devlin et al. (2018) suggest
that for different token-level classification tasks,
different methods for combining hidden states from
BERT may prove effective in generating contextu-
alized word embeddings. For our task, to determine
the optimal embedding strategy, we evaluated four
different methods of combining information from
hidden states of the transformer models. To deter-
mine which performed best prior to training LSTM
models, we tested each strategy using logistic re-
gression on the word embeddings with an 80/20
training-test split. Results from logistic regression
on BERT embeddings from the VUA AllPOS data
are in Table 1. We note that the F1 scores using dif-
ferent methods of generating contextualized word
embeddings differ substantially. We use the ”sum-
all-layers” method of generating word embeddings
for our further experiments.

VUA AllPOS TOEFL AllPOS
Method P R F1 P R F1
Sum all
layers 0.672 0.531 0.593 0.569 0.596 0.582

Concat. last
4 layers 0.614 0.552 0.581 0.644 0.473 0.546

Sum last
4 layers 0.623 0.534 0.575 0.594 0.550 0.571
Second to
last layer 0.580 0.547 0.563 0.633 0.482 0.547
Last layer 0.628 0.493 0.553 0.542 0.551 0.546

Table 1: Logistic regression on various BERT word em-
beddings, VUA and TOEFL AllPOS.

Transformers Table 2 compares the perfor-
mance of the Bi-LSTM using the embeddings from

BERT, GPT2, and XLNet. Because the true test
labels were not made available to us, here we report
results on an 80/20 training-test split of the given
training data. We make the following observations.

• The LSTM models perform far better than
their logistic regression counterparts. Of the
single embedding LSTM models, the BERT
and XLNet embeddings have the best perfor-
mances. Combining BERT and XLNet embed-
dings and using an ensemble strategy further
improved our performance.

• In general, the AllPOS task is more challeng-
ing than the Verbs task. Different parts of
speech are used metaphorically in different
ways, and these multiple varieties of metaphor
must all be captured by a single model in the
AllPOS task. Correspondingly, all models
perform worse on AllPOS than Verbs in both
VUA and TOEFL datasets.

• Additionally, the models achieve a lower F1
score on the TOEFL dataset than the VUA
in both AllPOS and Verbs track. We believe
this is in part due to the smaller size of the
TOEFL dataset, and in part because linguis-
tic characteristics can differ substantially be-
tween native and non-native text. Since we
used transformer models pretrained on a na-
tive corpus, the word embeddings were likely
less informative for the TOEFL track.

• GPT2 and XLNet are both autoregressive lan-
guage models, but GPT2+LSTM performs sig-
nificantly worse than the other LSTM models.
This result suggests that bi-directional rela-
tionships between words play a crucial role
in metaphor detection. Because XLNet con-
siders every possible permutation of the given
words during training, the XLNet embeddings
likely contain more bi-directional context than
the GPT2 embeddings.

4.1 A Promising Future Approach:
K-Nearest Neighbors

In our experiments, we noted that our LSTM mod-
els tended to output similar probabilities for dif-
ferent instances of the same word independent of
context. For example, although 4 out of 14 of the
occurrences of the word capacity in the validation
set were metaphor-related, all of the LSTM predic-
tions were less than 10−5. This suggested that al-
though word embeddings from transformer models
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Model VUA AllPOS VUA Verbs TOEFL AllPOS TOEFL Verbs
P R F1 P R F1 P R F1 P R F1

Baseline* 0.608 0.700 0.651 0.600 0.763 0.672 N/A N/A N/A N/A N/A N/A
BERT+LSTM 0.644 0.689 0.666 0.662 0.730 0.694 0.618 0.648 0.633 0.611 0.670 0.639
GPT2+LSTM 0.592 0.573 0.582 0.618 0.648 0.633 0.579 0.589 0.584 0.555 0.681 0.612
XLNet+LSTM 0.622 0.622 0.622 0.650 0.684 0.667 0.644 0.646 0.645 0.633 0.681 0.656
BERT+XLNet

+LSTM 0.665 0.688 0.676 0.655 0.736 0.693 0.649 0.664 0.656 0.618 0.724 0.667
BERT+XLNet

+LSTM
(ensemble) 0.675 0.710 0.692 0.656 0.768 0.708 0.686 0.654 0.669 0.722 0.659 0.689

Table 2: Performance of LSTM models. The baseline is the highest achieved score from the First Shared Task on
Metaphor Detection.

contain more contextual information than embed-
dings from word2vec or GloVe, the model could
be improved by including even more contextual
information. We explored the idea of ensembling
an LSTM with a K-Nearest Neighbors (KNN) clas-
sification approach. We believe that the LSTM
approach would give information as to which types
of words tend to be metaphors in context, whereas
the KNN approach would clue into whether a spe-
cific use of a specific word is more likely to be
metaphorical. We were unable to fully implement
such an ensemble model for the competition, but
we detail some promising results below.

We trained a KNN-only model using our contex-
tualized word embeddings. First, we lemmatized
each word in the VUA and TOEFL datasets. For
VUA, we classified each word based on a KNN
classifier trained on all instances of the same lem-
matized word in the training data. If no such lem-
matized word existed in the training data, we clas-
sified that word using a prediction from an LSTM
model, though that occurred in only 2% of cases.
For TOEFL, we compared using training data from
TOEFL combined with VUA due to the limited
dataset. We achieved F1 scores of 0.642 and 0.608
on 80/20 training-test splits of VUA and TOEFL
respectively, not much worse than our LSTM mod-
els.

There is reason to believe the LSTM and KNN
approaches capture significantly different informa-
tion on metaphors. On the VUA validation data, the
LSTM method predicted 3751 metaphors and the
KNN predicted 3190. However, only 2372 words
were predicted as metaphors by the two models
together. Since both models have similar F1 scores,
this implies that a superior classifier can be con-
structed using information from both classifiers.

For our final submissions, we were able to adopt
a simplified implementation of this approach, la-

beling an instance of a word as metaphorical if its
LSTM prediction either was higher than a certain
threshold, or higher by a significant amount than
the median LSTM prediction of all instances of
that word. This procedure improved our F1 scores
by about 1% during the testing phase.

k Precision Recall F1

1 0.665 0.599 0.630
2 0.722 0.514 0.600
3 0.676 0.611 0.642
4 0.703 0.538 0.610
5 0.679 0.604 0.639

Table 3: KNN using sum-all BERT word embeddings,
VUA AllPOS

5 Conclusion

In this paper, we describe the best performing
model that we submitted for the Second Shared
Task on Metaphor Detection. We used BERT and
XLNet language models to create contextualized
embeddings, and fed these embeddings into a bi-
directional LSTM with a sigmoid layer that used
both local and global contextual information to out-
put a probability. Our experimental results verify
that contextualized embeddings outperform previ-
ous state-of-the-art word embeddings for metaphor
detection. We also propose an ensemble model
combining a bi-directional LSTM and a KNN, and
show promising results that suggest the two models
encode complementary information on metaphors.
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