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Abstract

We report the results of our system on the
Metaphor Detection Shared Task at the Second
Workshop on Figurative Language Processing
2020. Our model is an ensemble, utilising
contextualised and static distributional seman-
tic representations, along with word-type con-
creteness ratings. Using these features, it pre-
dicts word metaphoricity with a deep multi-
layer perceptron. We are able to best the state-
of-the-art from the 2018 Shared Task by an av-
erage of 8.0% F1, and finish fourth in both sub-
tasks in which we participate.

1 Introduction

Metaphor detection is the task of assigning a label
to a word (or sometimes a sentence) in a piece of
text, to indicate whether or not it is metaphorical.
Some metaphors occur so frequently as to be con-
sidered word senses in their own right (so-called
conventional metaphors), whilst others are creative,
and involve the use of words in unexpected ways
(novel metaphors). Sometimes whole phrases or
even sentences can lend themselves to metaphorical
or literal interpretations.1 For these reasons and oth-
ers, human annotators might disagree about what
constitutes a metaphor—computational metaphor
detection is no doubt a challenging problem.

In this work, we participate in the 2020 Metaphor
Detection Shared Task (Leong et al., 2020). First,
we offer a description of metaphoricity, framing it
in terms of the concreteness of a word in different
contexts. Concreteness of a word in context is not
a quantity for which there exists large-scale anno-
tated data. In lieu of this, we train a metaphor detec-
tion model using input features which we expect to

1Consider drowning student, which could refer to students
submerged in water, or students struggling with coursework
(Tsvetkov et al., 2014), or the more idiomatic phrase, they
stabbed him in the back, which could be taken literally or
(more likely) metaphorically, depending on its context.
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Figure 1: Examples of verbs with varying levels of
concreteness—metaphors are in green

contain the information needed to derive this con-
textual concreteness. This model outperforms the
highest performing system of the previous shared
task (Leong et al., 2018), and finishes 4th in the two
subtasks in which we participate.

2 Concreteness and Context

Metaphor is a device which allows one to project
structure from a source domain to a target domain
(Lakoff and Johnson, 1980). For instance, in the
sentence “he attacked the government”, attacked
can be seen as a conventional metaphor, which
applies structure from the source domain of war
to the target domain of argument. Intuitively, it
seems that the context in which a word appears tells
us about the target domain, whilst the word itself
(and some knowledge about how it is used non-
metaphorically) tells us about the source. Several
existing models have exploited this difference (e.g.
Mao et al., 2019; Gao et al., 2018).

Usually, the target domain is something intangi-
ble, whilst the source domain relates more closely
to our real-world experience. Concreteness refers
to the extent to which a word denotes something
that can be experienced by the senses, and is gener-
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ally measured by asking annotators to rate words
on a numeric scale (Paivio et al., 1968; Spreen
and Schulz, 1966); abstractness is then the inverse
of concreteness. Using concreteness ratings for
metaphor identification is clearly well motivated,
as evidenced by previous work (e.g. Tsvetkov et al.,
2014, 2013; Beigman Klebanov et al., 2015).

For a word to be metaphorical in a particular
context, then, it needs to have a concrete sense
and an abstract sense, with the abstract sense ac-
tivated in that context. The concrete sense would
belong to the source domain, and the abstract sense
to the target domain. For instance, the meaning
of the word attacked in “she attacked the soldier”
is concrete, but in “she attacked the problem” it
is abstract—and thus that usage is metaphorical.
Polysemy of the word is a necessary condition;
the existence of an abstract sense is not enough,
otherwise a monosemously abstract word such as
considered in “he considered the problem” would
be metaphorical.

Figure 1 shows examples of words with differ-
ent maximum concreteness levels elicited by cer-
tain senses (columns) appearing in contexts which
result in different values of concreteness for that
particular sense (rows). The most concrete sense
of a word is a lexical property, and thus context in-
dependent. The metaphors (green) are found in the
top right quadrant—they have an abstract meaning
in context, but a concrete sense exists (as evidenced
by the examples in the bottom right quadrant). The
bottom left quadrant is greyed out, since it is con-
ceptually impossible for a word to exist there—the
concreteness of one sense of a word cannot be
greater than the concreteness of any of its senses.

3 Model Architecture

We now describe a model which uses semantic rep-
resentations of a word in and out of context to pre-
dict metaphoricity. Ideally, we would only provide
the model with a representation of the concrete-
ness of a word in context (since we believe that
would do most of the lifting), but to our knowledge,
no large-scale annotated datasets exist for context-
dependent concreteness. In most popular datasets
of concreteness annotation (e.g. Coltheart, 1981;
Brysbaert et al., 2014), concreteness is a property
assigned to each word type—but we would need the
concreteness of a word instance. In this respect, our
work resembles the abstractness classifier in Turney
et al. (2011)—although this work uses word senses

instead of instances as we do. Because contextu-
alised concreteness data is unavailable, we instead
choose features which, when given to a multi-layer
perceptron (MLP), should provide enough infor-
mation about a word for the MLP to be able to
differentiate between each cell in Figure 1.

We first provide the model with contextualised
word embeddings, which we expect will provide
some information about the target domain of the
metaphor. In the contextualised representations,
we expect there to exist a space of concrete mean-
ings and some space of abstract meanings—which
would help the network differentiate between the
top and bottom rows of Figure 1. Along with this,
we provide static word embeddings, to provide in-
formation about the source domain. Since these
static type-level embeddings will clearly contain
information about both source and target, we com-
pliment them with type-level concreteness ratings.
Such ratings should reflect the concreteness of the
most concrete sense of the word, thus allowing the
network to differentiate between the left and right
columns of Figure 1.

Figure 2 shows an overview of our architecture.
In the following paragraphs, we detail each individ-
ual component of the model.

Contextual Word Embedding For contextu-
alised embeddings, we fine-tune BERT (Devlin
et al., 2019). BERT is a sentence encoder which
utilises a transformer architecture (Vaswani et al.,
2017), and is trained with two separate tasks—
masked language modelling (a cloze task), and
next-sentence prediction. The latent space (the fi-
nal hidden state of the encoder) contains vector
representations of each input token, which change
in different contexts. Several pre-trained BERT
models are available—we use BERT large.2

Concreteness Model We define a simple model
which represents the concreteness of a word as a
linear interpolation between two vectors, represent-
ing maximal concreteness and abstractness, vcon

and vabs respectively. For each word w we obtain
a real number estimate of its concreteness, c, from
Brysbaert et al. (2014), where c = 5 indicates max-
imum abstractness, and c = 0 indicates maximum

2BERT accepts WordPiece units (Wu et al., 2016) as to-
kens, rather than words. There is not a single accepted way of
converting multiple WordPiece unit vector representations into
a single word. Following Devlin et al. (2019), we simply use
the first token of any word. This is clearly a naı̈ve method of
compositionality; improving this may strengthen our results.
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Figure 2: Architecture of our ensemble

concreteness. The output vector of the model is
defined as

c =
c

5
· vcon +

5− c

5
· vabs (1)

Out-of-vocabulary words have their own vector,
vunk. Each of vabs, vcon, and vunk are randomly
initialised and learned from data. The dimension-
ality of these vectors is a hyperparameter which is
tuned—a higher dimensionalality will likely place
more emphasis on this feature when it is fed into
the MLP as part of the ensemble model.

Static Word Embedding We initialise a ma-
trix of static 300-dimensional word embeddings
from the Word2Vec Google News pretrained model
(Mikolov et al., 2013), then fine-tune it to the data.
Out-of-vocabulary words are given their lemma’s
embedding, if present, otherwise they are initialised
randomly.

Multi-Layer Perceptron We define a deep
multi-layer percepton (MLP), which at each layer
has four components: a linear transformation, layer
normalisation, a ReLU activation function, and fi-
nally dropout (Srivastava et al., 2014). The struc-
ture is parameterised with three parameters—the
input size k, number of layers n, and first hidden
layer size h. The first linear layer of the network
has an input of size k, and an output of size h.
Each successive layer halves the size of the hidden
state. After n layers, a final linear layer converts
to a single output, which is then passed through
a sigmoid to yield the prediction. Based on this
design, we have the constraint that 2n ≤ h ≤ k,
which imposes that (1) the first hidden layer is not

larger than the input, and (2) the size of the hidden
layer does not reach 1 before the final layer.

Ensemble Model Tying all of the aforemen-
tioned models together is an ensemble model. First,
it passes each input sentence w0, · · · , wn through
the contextual embedding component to yield the
embeddings h1, · · · ,hn. To reduce their dimen-
tionality, these are each passed through a simple
linear transform, yielding h′1, · · · ,h′n. Each word
is then passed through the static embedding compo-
nent, yielding embeddings m1, · · · ,mn, which are
also projected down to m′1, · · · ,m′n. Each word is
also fed to the concreteness model, yielding con-
creteness vectors c1, · · · , cn. For each word, the
three representations (h′i, m

′
i, and ci) are concate-

nated, and passed into a deep multi-layer percep-
tron which makes the final metaphor prediction
(per-word). This model is depicted in Figure 2. Cru-
cially, though this model accepts sentences (needed
to process the contextualised word representations),
it makes predictions using the MLP on a per-word
basis—but back-propagates through BERT for all
annotated words in each sentence.

4 Experiments

Data We use the VUA corpus (Steen et al., 2010)
which was made available for the shared task
(Leong et al., 2020).3 We train a model on all

3This corpus consists of four different genres from the
British National Corpus: academic, news, conversation, and
fiction. For the Shared Task, these were all merged, but clearly
each categories’ data will be of radically different forms. We
expect our system to underperform on the transcriptions of
conversations, since this will be very different from the data
BERT was trained on.
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Subset Train Dev Total

By Tokens

Verbs 15, 323 1, 917 17, 240
All-POS 64, 537 8, 074 72, 611
Everything 161, 335 20, 169 181, 504

By Sentences

Verbs 7, 127 746 7, 873
All-POS 9, 809 1, 085 10, 894
Everything 10, 738 1, 371 12, 109

Table 1: Number of tokens and sentences in the data

the available training data—not just those marked
for the verbs or all-pos subtasks, because we found
this improved performance. We split the data in an
8:1 ratio, ensuring that the split puts 1/9 of each
subtask’s data in the development set—details of
the splits are shown in Table 1.

Training Details We train in batches of 32 sen-
tences, and employ early stopping after 20 stable
steps (based on F1 on dev). As an optimizer, we use
AdamW (Loshchilov and Hutter, 2017). We exper-
imented with three fine-tuning options: (1) unfreez-
ing the whole network and training it all at once,
(2) freezing BERT and training until early stopping
activates, then unfreezing BERT and training until
early stopping again, and (3) freezing BERT and
training until early stopping, then sequentially un-
freezing and training a single layer of BERT at a
time, and finally the whole model at once (inspired
by Felbo et al., 2017). We used option (2) in the
end, since it offered a large improvement over (1)
when we used a lower learning rate for the second
phase. We found that (3) offered no additional ad-
vantage. To find hyperparameters, we performed
a random search over the parameter space; final
hyperparameters are reported in Table 2.

Threshold Shifting The ratio of metaphors to
non-metaphors in the entire VUA dataset was not
the same as that of the verb and all-pos subsets
used by the Shared Task. Having trained the model
on all the data, we then adjust it to each different
distribution. To do this, we find the threshold for
the sigmoid output that maximises the F1 score on
each particular development set.4

4We also experimented with fine-tuning the network to
each subset, but found this led to overfitting, and was detri-
mental to performance.

Parameter Value

n-layers 4
Hidden size (h) 140
Size of ci 50
Size of h′i 150
Size of m′i 200
Learning rate I 2× 10−4

Learning rate II 2× 10−5

Weight Decay 0.05
Dropout 0.4

Table 2: Hyperparameters of the final model

Ensemble Model
CWE SWE CM F1 Dev

X 0.574
X X 0.586
X X 0.636
X X X 0.644

Table 3: Ablation study results

Ablation Study To verify that each feature con-
tributes useful information over just using a contex-
tualised representation, we first conduct a simple
ablation study, to see the performance impact of
removing either the static word embeddings or con-
creteness ratings. We train four models (with the
same hyperparameters as in Table 2), with different
combinations of the concreteness model (CM) and
static word embedding (SWE) model removed.5

Table 3 shows the results on the development set.
The contextualised word embeddings (CWE) on
their own performs the worst. Adding the embed-
dings in particular really bolsters the performance
(increasing it from 0.574 to 0.636 F1). The type-
level concreteness annotation also helps, but not
quite as much. The combination of all three fea-
tures achieves the highest F1 score.

Shared Task Performance The Shared Task re-
sults are computed as the F1 Score on held-out test
data. Our results are presented in Table 4, alongside
the results from the previous highest-performing
system (Wu et al., 2018) from the 2018 Shared Task
(Leong et al., 2018), and the highest-performing
system on this shared task. Through the use of
contextualised representations and concreteness rat-

5For this experiment we use early stopping after 5 stable
results (based on loss), BERT base rather than large, and did
not fine-tune BERT.
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Subtask F1
Model Verbs All-POS

Us 0.755 0.718
2018 Winner 0.672 0.651
2020 Winner 0.804 0.769

Table 4: Shared Task results

ings, we are able to improve substantially over the
best submission to the 2018 shared task (Wu et al.,
2018) for metaphor detection on the VUA corpus
(Steen et al., 2010), by 8.0% F1. We trail the winner
of the 2020 task by an average of 5.0% F1.

5 Conclusion

We participated in the 2020 Metaphor Identification
Shared Task (Leong et al., 2020). Our model was
designed to try and exploit knowledge of lexical
concreteness and contextual meaning to identify
metaphors. Our results improved over the previous
best performing system by an average of 8.0% F1,
but trailed behind the leader of the task by 5.0%.

In future work, we are keen to explore first train-
ing a model to identify concreteness in context,
then fine-tuning this to metaphor identification,
based on the reasoning presented in §2.
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