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Introduction

With billions of individual pages on the web providing information on almost every conceivable topic,
we should have the ability to collect facts that answer almost every conceivable question. However,
only a small fraction of this information is contained in structured sources (Wikidata, Freebase, etc.) –
we are therefore limited by our ability to transform free-form text to structured knowledge. There is,
however, another problem that has become the focus of a lot of recent research and media coverage:
false information coming from unreliable sources.

To ensure accuracy, this content must be verified. However, the volume of information precludes
human moderators from doing so. It is paramount to research automated means to verify accuracy
and consistency of information published online and the downstream systems (such as Question
Answering,Search and Digital Personal Assistants) which rely on it. The FEVER series of workshops
has been a venue for ongoing research in this area.
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Abstract

Automatic fact checking is an important task
motivated by the need for detecting and pre-
venting the spread of misinformation across
the web. The recently released FEVER chal-
lenge provides a benchmark task that assesses
systems’ capability for both the retrieval of re-
quired evidence and the identification of au-
thentic claims. Previous approaches share
a similar pipeline training paradigm that de-
composes the task into three subtasks, with
each component built and trained separately.
Although achieving acceptable scores, these
methods induce difficulty for practical applica-
tion development due to unnecessary complex-
ity and expensive computation. In this paper,
we explore the potential of simplifying the sys-
tem design and reducing training computation
by proposing a joint training setup in which
a single sequence matching model is trained
with compounded labels that give supervision
for both sentence selection and claim verifica-
tion subtasks, eliminating the duplicate compu-
tation that occurs when models are designed
and trained separately. Empirical results on
FEVER indicate that our method: (1) outper-
forms the typical multi-task learning approach,
and (2) gets comparable results to top perform-
ing systems with a much simpler training setup
and less training computation (in terms of the
amount of data consumed and the number of
model parameters), facilitating future works
on the automatic fact checking task and its
practical usage.

1 Introduction

The increasing concern with the spread of misinfor-
mation has motivated research regarding automatic
fact checking datasets and systems (Pomerleau and
Rao, 2017; Hanselowski et al., 2018a; Bast et al.,
2017; Pérez-Rosas et al., 2018; Zhou et al., 2019;
Vlachos and Riedel, 2014; Wang, 2017; Shu et al.,

Our code will be publicly available on our webpage.

2019a,b). The Fact Extraction and VERification
(FEVER) dataset (Thorne et al., 2018a) is the most
recent large-scale dataset that enables the devel-
opment of data-driven neural approaches to the
automatic fact checking task. Additionally, the
FEVER Shared Task (Thorne et al., 2018b) intro-
duced a benchmark, the first of this kind, that is
capable of evaluating both evidence retrieval and
claim verification.

Several top-ranked approaches on FEVER (Nie
et al., 2019a; Yoneda et al., 2018; Hanselowski
et al., 2018b) decompose the task into 3 subtasks:
document retrieval, sentence selection, and claim
verification, and follow a similar pipeline training
setup where sub-components are developed and
trained sequentially. Although achieving higher
scores on benchmarks, pipeline training is time-
consuming and imposes difficulty for fast applica-
tion development since downstream training relies
on data provided by a fully-converged upstream
component. The impossibility of parallelization
also causes data-inefficiency as training the same
input sentence for both sentence selection and
claim verification requires twice the computation,
whereas humans can learn the task of sentence se-
lection and claim verification jointly.

In this work, we simplify the training procedure
and increase training efficiency for sentence se-
lection and claim verification by merging redun-
dant components and computation that exist when
training the two tasks separately. We propose a
joint training setup in which sentence selection and
claim verification are tackled by a single neural
sequence matching model. This model is trained
with a compounded label space in which for a given
claim, an input sentence that is labeled as “NON-
SELECT” for sentence selection module training
will also be labeled as “NOTENOUGHINFO” for
claim verification module training. Similarly, in-
put evidence that is labeled as “SUPPORTS” or

∗ Equal contribution
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“REFUTES” for claim verification module training
will also be labeled as “SELECT” for sentence se-
lection module training.

To validate our new setup, we compare with the
previous pipeline setup and a multi-task learning
setup which trains the two tasks alternately. Fig. 1
illustrates differences among these three setups.

Results indicate that: our method (1) outper-
forms the multi-task learning setup, and (2) yields
comparable results with a top performing pipeline-
trained system while consuming less than half the
number of data points, reducing the parameter size
by one-third, and converging to a functional state
much faster than the pipeline-trained system. We
argue that the aforementioned design simplification
and training acceleration are valuable especially
during time-sensitive application development.

2 Related Work

2.1 Previous FEVER Systems

Many of the top performing FEVER 1.0 systems,
all achieving greater than 60% FEVER score on the
respective leaderboard (Nie et al., 2019a; Yoneda
et al., 2018; Hanselowski et al., 2018b), share the
same pipeline training schema in which document
retrieval, sentence selection, and claim verification
are all trained separately.

While Nie et al. (2019a) proposed formalizing
sentence selection and claim verification as a simi-
lar problem, sentence selection and claim verifica-
tion are still trained separately on the task, which
contrasts with our setup. Additionally, Yin and
Roth (2018) proposed a hierarchical neural model
to tackle both sentence selection and claim verifi-
cation at the same time, but did not induce compu-
tational savings as in our setup.

2.2 Information Retrieval

Neural networks have been successfully applied
to information retrieval tasks in Natural Language
Processing (Huang et al., 2013; Guo et al., 2016;
Mitra et al., 2017; Dehghani et al., 2017; Qi et al.,
2019; Nie et al., 2019b) with a focus on rele-
vant retrieval. Information retrieval is generally a
relevance-matching task whereas claim verification
is a more semantics-intensive task. We consider
using a single semantics-focused model to conduct
both sentence retrieval and claim verification.

2.3 Natural Language Inference
Natural Language Inference (NLI) requires a sys-
tem to classify the logical relationship between two
sentences in which one is the premise and one is
the hypothesis. This classifier decides whether the
relationship is entailment, contradiction, or neu-
tral. Several large-scale datasets have been created
for this purpose, including the Stanford Natural
Language Inference Corpus (Bowman et al., 2015)
and the Multi-Genre Natural Language Inference
Corpus (Williams et al., 2018). This task can be
formalized as a semantic sequence matching task,
which bears resemblance to both the sentence re-
trieval and claim verification tasks.

2.4 Multi-Task Learning
Multi-task learning (MTL) (Caruana, 1997) has
been successfully used to merge Natural Language
Processing tasks (Luong et al., 2016; Hashimoto
et al., 2017; Dong et al., 2015) for improved per-
formance. Parameter sharing, in particular sharing
of certain structures such as label spaces, has been
used widely in several NLP tasks for this purpose
(Liu et al., 2017; Søgaard and Goldberg, 2016).
Zhao et al. (2018) used a multi-task learning setup
for FEVER that shared certain layers between sen-
tence selection and claim verification modules. Au-
genstein et al. (2018) used shared label spaces in
MTL for sequence classification. Following this
work, Augenstein et al. (2019) used shared label
spaces for automatic fact checking. However, the
labels involved in this work were limited to claim
verification labels only, and did not incorporate
sentence selection as we do in this paper.

2.5 Fake News Detection
In addition to the FEVER shared task, other recent
work in fake news detection has focused on several
aspects of data collection and statement verification.
Shu et al. (2019b) looked into the role of social
context in fake news detection. Additionally, Shu
et al. (2019a) also explored creating explainable
fake news detection.

3 Model

3.1 Sequence Matching Model
Sentence selection and claim verification can be
easily structured as the same sequence matching
problem in which the input is a pair of textual se-
quences and the output is a semantic relationship
label for the pair. Nie et al. (2019a) proposed using
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Figure 1: Different training setups. In the pipeline setup, sentence selection and claim verification models are
trained separately. In the multi-task setup, the two tasks are treated separately, but use a single model. In the
compounded-label training setup, the training is simplified to a single task by mixing the data of the two tasks
and allowing controlled supervision between the two tasks. S, R, NEI, SL, and NSL represent “SUPPORTS”,
“REFUTES”, “NOTENOUGHINFO”, “SELECT”, and “NON-SELECT”, respectively.

the same architecture, the neural semantic match-
ing network (NSMN), on the two tasks and showed
it was effective on both. Thus, we use the same
NSMN model with a modified output layer in our
experiments.

3.2 Neural Semantic Matching Network
(NSMN)

For convenience, we give a description similar to
the original paper (Nie et al., 2019a) about the
model below.
Encoding Layer:

Ū = BiLSTMe(U) ∈ Rd1×n (1)

H̄ = BiLSTMe(H) ∈ Rd1×m (2)

where U ∈ Rd0×n and H ∈ Rd0×m are the two
input sequences, d0 and d1 are input and output
dimensions, and n and m are lengths of the two
sequences.
Alignment Layer:

A = Ū>H̄ ∈ Rn×m (3)

where an element in A[i,j] indicates the alignment
score between i-th token in U and j-th token in H.
Aligned sequences are computed as:

Ũ = H̄ · Softmaxcol(A>) ∈ Rd1×n (4)

H̃ = Ū · Softmaxcol(A) ∈ Rd1×m (5)

where Softmaxcol is column-wise softmax, Ũ is the
aligned representation from H̄ to Ū and vice versa
for H̃. The aligned and encoded representations
are combined as:

F = f([Ū, Ũ, Ū− Ũ, Ū ◦ Ũ]) ∈ Rd2×n (6)

G = f([H̄, H̃, H̄− H̃, H̄ ◦ H̃]) ∈ Rd2×m (7)

where f is one fully-connected layer with a rectifier
as an activation function and ◦ denotes element-
wise multiplication.
Matching Layer:

R = BiLSTMm([F,U∗]) ∈ Rd3×n (8)

S = BiLSTMm([G,H∗]) ∈ Rd3×m (9)

where U∗ and H∗ are sub-channels of the input U
and H without GloVe, provided to the matching
layer via a shortcut connection.
Output Layer:

r = Maxpoolrow(R) ∈ Rd3 (10)

s = Maxpoolrow(S) ∈ Rd3 (11)

h(r, s, |r− s|, r ◦ s) = m (12)

where function h denotes two fully-connected lay-
ers with a rectifier being applied on the output of
the first layer.

3.3 Compounded-Label Output Layer
We propose the following compounded-label out-
put layer for simpler, more efficient training. Given
the input pair xi, the NSMN model is:

m = NSMN(xi) (13)

where m ∈ R4 is the output vector of NSMN in
which the first three elements correspond to claim
verification and the last element to sentence selec-
tion. Then, the probabilities are calculated as:

ycv = softmax(m[0:3]) (14)

yss = sigmoid(m3) (15)

where m[0:3] denotes the first three elements
of m and ycv ∈ R3 denotes the probabil-
ity of predicting the relation between the in-
put and claim as “SUPPORTS”, “REFUTES”, or
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“NOTENOUGHINFO”, while m3 denotes the fourth
element of m and yss ∈ R indicates the probabil-
ity of choosing the input as evidence for the claim.
This allows us to transfer the model’s outputs to
predictions in a compact way.

3.4 Compounded-Label Training
In order to simplify the training procedure and in-
crease data efficiency, we introduce compounded-
label training. Consider the model output vector:

ŷi =




ycv

yss
1− yss


 (16)

where ŷi ∈ R5 is the concatenation of ycv and
[yss, 1− yss]>. To optimize the model, we use the
entropy objective function:

J = −yi · log(ŷi) (17)

In a typical classification setup, the ground truth
label embedding yi is a one-hot column vector cho-
sen from an identity matrix, where the dimension
equals the total number of categories. However,
our compounded-label embedding is structured as
the matrix with some supervision provided in the
zero-area of one-hot embeddings shown below:



1 0 0 0 0
0 1 0 0 0
0 0 1 0 λ2
λ1 λ1 0 1 0
0 0 0 0 1




(18)

The first 3 columns are label embed-
dings for “SUPPORTS”, “REFUTES”, and
“NOTENOUGHINFO” in verification and the last 2
columns are the label embeddings for “SELECT”
and “NON-SELECT” in sentence selection, resp.
Thus, for a given claim, “SUPPORTS” and
“REFUTES” evidence will also give supervision as
positive examples to sentence selection weighted
by λ1 and “NON-SELECT” sentences will also give
supervision as “NOTENOUGHINFO” evidence to
claim verification weighted by λ2.

4 Experimental Setup

We focused on comparing the following five
NSMN1 training setups for sentence selection and
claim verification. We obtain upstream document
retrieval data using the method in Nie et al. (2019a).
Training details are in the appendix.

1We remove the external WordNet features from NSMN
for simplicity and speed.

Pip. Mul. Mix. Cmp.

Shared Parameters 7 3 3 3
Mix. in Same Batch 7 7 3 3
Supv. for Other Task 7 7 7 3

Table 1: Properties of different training setups. “Pip.”,
“Mtl.”, “Mix.”, “Cmp.” stand for pipeline, multi-task
learning, direct mixing, and compounded-label training
setup, respectively. ‘Supv.’=Supervision.

Model FEVER Score Rec. # Param Data

D.M. 57.92 85.3 18.2M 11.5M
MTL. 62.25 85.3 18.2M 14.4M
Rdc-Pip. 61.82 83.7 18.2M 11.4M
C.L. 64.68 86.6 18.2M 3.52M

Pip. 65.37 86.8 27.6M 9.6M

Table 2: Final performance, evidence recall, model
size, and data consumption (until convergence) for
all 5 setups. We measure data consumption as the
amount of data the model used for parameter updat-
ing, e.g., 10K updates w/ batch size 32 consumes 320K
data. ‘D.M.’=direct mixing, ‘C.L.’=compounded-label,
‘MTL.’=multi-task learning, ‘Rdc-Pip.’=pipeline w/ re-
duced size, ‘Pip.’=pipeline (Nie et al., 2019a).

Pipeline: We train separate sentence selection and
claim verification models as in Nie et al. (2019a).

Multi-task Learning: We follow the neural multi-
task learning setup called alternate training (Dong
et al., 2015; Luong et al., 2016; Hashimoto et al.,
2017), where each batch contains examples from a
single task only. We build a single NSMN model
for both selection and verification and alternatively
optimize the two tasks.

Direct Mixing: We simply blend the input exam-
ples of the two tasks into the same batch, providing
additional simplicity over our multi-task learning
setup in which batches need to be task-exclusive.

Compounded-Label Training: We also blend the
inputs of the two tasks, but counter to direct mixing,
we use the compounded-label embedding described
in Sec. 3 for optimization and downsample the
input examples to reduce training time.

Reduced Pipeline: This is the same pipeline setup
as described above, except that we reduce the
model sizes for both sentence selection and ver-
ification such that the total model size is equal to
all other setups that use only a single joint model.
This experiment gives a fair comparison between
each of the setups by canceling out the parameter-
size variance. Table 1 shows a comparison of the
first four different setups.
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Figure 2: Model performance for different setups with
respect to number of sequence pairs consumed. We
only show performance until the consumption of the
first 30×320K data points.

5 Results and Analysis

FEVER Score Performance: We observe from
Table 2 that compounded-label training outper-
forms2 both the multitask learning and direct mix-
ing setups. We speculate that the performance
gap is due to the fact that in the multi-task and
direct mixing training setups, the same model is
trained by separated and different supervisions of
two tasks, resulting in oscillation and making it
difficult to reach a better global minimum. How-
ever, in the compounded-label setup, training the
model on one task always gives a subtly-controlled
supervision on the other task. This not only applies
natural regularization on the targeted task itself,
but also pushes the model towards a better state for
both tasks.

Next, we also show that the compounded-label
setup achieves a higher FEVER score than the
reduced-pipeline setup (3rd row in Table 2), in-
dicating its ability to model the two tasks jointly in
a more compact and parameter-efficient way. Al-
though the full pipeline setup gives a slightly higher
FEVER score, the compounded-label setup has the
advantage of reducing parameter size by one-third,
requiring less than half the training computation,
and improving the training efficiency (elaborated
on in the following subsection). Finally, we also
compare recall scores, since this is most related
to the FEVER score, as validated by Nie et al.
(2019a).
Efficiency: In Fig. 2, we show the training effi-

2In Table 2, the improvements of compounded-label over
the first three entries are significant with p < 10−5 while
the improvement of full pipeline over compounded-label is
significant with p < 0.05. Stat. significance was computed
on bootstrap test with 100K iterations (Noreen, 1989; Efron
and Tibshirani, 1994).

Model FEVER LA F1

Pipeline 62.69 66.20 53.71
Compounded-Label 61.65 66.21 50.28

Table 3: Performance of systems on blind test results.

ciency of different approaches by tracking perfor-
mance with the number of data points consumed.3

Parameter update settings are equal across all ex-
periments and thus show an accurate depiction of
the speedup independent of batch size, etc. For
fair comparison, there is no FEVER score for the
first 22 × 320K data points in the pipeline setup
since these data points are consumed in the sep-
arate upstream sentence selection training. The
compounded-label training setup exhibits a more
stable training curve than the other setups during
initial training, and reaches a 60%+ FEVER score
after seeing only 1,280K data points. This indicates
that the compounded-label setting allows the model
to quickly reach a stable and functional state. This
is valuable for online learning on streaming data,
where the model is trained with real-time human
feedback. On the contrary, the performance of the
multi-task learning and direct mixing setups fluc-
tuates at a low level during initial training stages,
which shows that optimization oscillation makes
training difficult in these setups.
Blind Test Results: In Table 3 we compare the two
setups on the blind test set. Compounded Label
achieved 61.65% FEVER score and 66.21% label
score (LA) while the pipeline setup got 62.69%
and 66.20% for FEVER score and LA, respectively.
Since the upper bound is dependent on document
retrieval quality, we report the upper bound of these
scores as 92.42% following Nie et al. (2019a). Our
method was able to yield results comparable to the
pipeline model on FEVER score and even higher
results on label score, with simpler design, faster
convergence and only two-thirds the number of
parameters.

6 Conclusion

We present a simple compounded-label setup for
jointly training sentence selection and claim veri-
fication. This setup provides higher training effi-
ciency and lower parameter size while still achiev-
ing comparable results to the pipeline approach.

3We measure the training efficiency based on the size of
data consumed until convergence rather than training time
or the full training size because it gives a fair measurement
about how fast the model can reach a fully-functional state
independent of computational resources and platforms.
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A Appendix

A.1 NSMN Output Layer Modifications

The dimension of final NSMN output vector can
be customized depending on the downstream task.
In the pipeline setting, multi-task learning setting,
and direct mixing setting, m = 〈m+,m−〉 for sen-
tence selection, where m+ ∈ R is a scalar value in-
dicating the score for selecting the current sentence
as evidence and m− gives the score for discard-
ing it. For claim verification, m = 〈ms,mr,mn〉,
where the elements of the vector denote the score
for predicting the three labels, namely SUPPORTS,
REFUTES, and NEI, respectively. However, in the
compounded-label setting, m ∈ R4 and the model
is optimized with a compact label embedding de-
scribed in the paper.

A.2 Training Details

This section includes the training details for sen-
tence selection and verification. We use the
pageview method in Nie et al. (2019a) to obtain the
same upstream document retrieval data for all of
our four setups.

Pipeline: In the pipeline and the reduced-size-
pipeline setup, we use exactly the same training
setup as in Nie et al. (2019a) for sentence selection
and claim verification.

Multi-task Learning: In this setup, we choose
batch as 64 and use Adam optimizer with default
initial parameters. The mixing ratio for sentence
selection and claim verification is set to 1 thus the
two tasks are both trained alternately every two
batches. As in Nie et al. (2019a), we downsample
the training data for the sentence selection task at
the beginning of each epoch.

Data Mixing: We use a batch size of 64 and
Adam optimizer with default settings. As our two
subtasks contain different amounts of training data,
we use the data size ratio as the task mixing ratio
within each batch. We guarantee that each label is
present at least once in each mini-batch.

Compounded-Label: We use a batch size of 32
and Adam optimizer with default settings. We
downsample the negative examples for sentence
selection with the probability of p (this is done at
the beginning of every epoch) and randomly mix
and shuffle the training data for both sentence se-
lection and claim verification into one input set and
train the single model with compounded-label as
described in the paper. p is set to be 0.1 at the first
epoch and 0.025 otherwise. λ1 and λ2 are set to be
1 and 0.5 respectively.

Hyper-parameter Selection: In the experi-
ments for multi-task learning, data mixing and
compounded-label settings, the batch size is chosen
from either 64 or 32 by optimizing final FEVER
Score.4 In multi-task learning, the mixing ratio
of sentence selection to claim verification is tuned
from {1, 2}. For the compounded-label setting, λ1
and λ2 are tuned from {1, 0.9} and {0.45, 0.5}
respectively based on the intuition that supporting
and refuting sentences can be also treated as posi-
tive evidence examples with high confidence while
partially relevant sentences that cannot verify the
claim can be treated as weakly related evidence.

4We observed a failure of convergence when we choose
batch size as 32 in multi-task learning settings.
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Abstract

This work explores the application of tex-
tual entailment in news claim verification and
stance prediction using a new corpus in Ara-
bic. The publicly available corpus comes in
two perspectives: a version consisting of 4,547
true and false claims and a version consisting
of 3,786 pairs (claim, evidence). We describe
the methodology for creating the corpus and
the annotation process. Using the introduced
corpus, we also develop two machine learning
baselines for two proposed tasks: claim verifi-
cation and stance prediction. Our best model
utilizes pretraining (BERT) and achieves 76.7
F1 on the stance prediction task and 64.3 F1 on
the claim verification task. Our preliminary ex-
periments shed some light on the limits of au-
tomatic claim verification that relies on claims
text only. Results hint that while the linguis-
tic features and world knowledge learned dur-
ing pretraining are useful for stance prediction,
such learned representations from pretraining
are insufficient for verifying claims without ac-
cess to context or evidence.

1 Introduction

Although fake news is not an emerging phe-
nomenon and has been documented throughout
history, the prevalence and wide spread of misin-
formation over the internet has captured significant
proportion of public attention in recent years. This
is in part linked to the low barrier for content gen-
eration through the advent of the internet and so-
cial media (Allcott and Gentzkow, 2017) and the
fact that false news spread faster than true news
(Vosoughi et al., 2018) rendering it increasingly
dangerous to public discourse. The widespread ex-
posure in the U.S. for example has been reported by
researchers who found that the average American
encountered between one and three stories from
known publishers of fake news during the month

before the 2016 election (Allcott and Gentzkow,
2017).

Since manual fact-checking by human experts
does not scale well with the amount of informa-
tion shared on the web, there is a growing body
of work in recent years aimed at developing au-
tomatic tools to target fake news, misinformation
and credibility of content on social media in gen-
eral (Rubin et al., 2016; El Ballouli et al., 2017;
Baly et al., 2018a,b; Wang et al., 2018; Saleh et al.,
2019; Zhang et al., 2019). Several datasets were de-
veloped to further aid research on this topic1 (Dar-
wish et al., 2017; Wang, 2017; Baly et al., 2018b;
Thorne et al., 2018). We refer readers to (Thorne
and Vlachos, 2018; Pierri and Ceri, 2019) for a
more comprehensive overview of recent research
on fake news, propaganda and misinformation.

Despite the increased attention, most of the work
has been focusing on the English language. Tools,
resources and datasets available in Arabic are lim-
ited (Darwish et al., 2017; Baly et al., 2018b; El-
sayed et al., 2019). As such, this work contributes
to recent efforts targeting Arabic by introducing
a new publicly available corpus in Arabic that is
suitable to study claim verification and semantic
entailment (Katz, 1972).

2 Related Work

In recent years, there has been rapid progress
in developing systems and tools for automatic
fact checking and claim verification. Various ap-
proaches were developed which relied on a diverse
set of methods and information to verify claims.
Most relevant to this work are approaches that
used content such as textual information in the title
and/or body of the claims to predict their veracity.
Among this direction of research those that consid-
ered a machine learning approach (Potthast et al.,

1FNC: http://www.fakenewschallenge.org/
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Given a news title, write two news titles that:

A- Paraphrase the original title:
Has same meaning but is worded differently by
rephrasing and changing Syntax, using verb
synonyms, using different words to describe the
same information such as locations, counts and dates.

B- Contradict the original title:
Looks similar to the original title but has
contradicting meaning (both cannot be true in the
same context) by reversing meaning without
negating main verb, using antonym of main verb
with rephrasing, changing key information using world
knowledge such as locations, counts and dates.

Table 1: Guidelines for rewriting news titles.

2017; Wang et al., 2018; Alzanin and Azmi, 2019)
including deep learning techniques (Hanselowski
et al., 2017; Baly et al., 2018b; Popat et al., 2018;
Chawla et al., 2019; Helwe et al., 2019; Lv et al.,
2019).

Datasets: There are limited but growing datasets
related to claim verification (Al Zaatari et al.,
2016; Darwish et al., 2017; Wang, 2017; Baly
et al., 2018b; Thorne et al., 2018; Alkhair et al.,
2019; Alzanin and Azmi, 2019; Elsayed et al.,
2019). However, datasets focusing on Arabic re-
main scarce (Darwish et al., 2017; Baly et al.,
2018b; Elsayed et al., 2019). Recently, work on the
application of textual entailment for claim verfica-
tion has been explored and new datasets combining
stance prediction and claim verfication were intro-
duced (Baly et al., 2018b; Thorne et al., 2018).

This work is most in line with that direction. We
developed a new corpus in Arabic that can be used
jointly for claim verification and textual entailment
recognition. However, our new corpus differs from
the aforementioned datasets in that it is at the sen-
tence level, hence, we are disentangling the tasks of
claim verification and textual entailment from the
task of evidence extraction (Information Retrieval)
and focusing on the former. We also start from
real news titles and generate true/false claims from
them. Our aim is to mitigate one type of bias that
results from starting with fake news collected in
the wild: bias in the distribution of topics among
the true/false claims. While some forms of biases
about the world are useful in determining the ve-
racity of a claim, some can be problematic. We
can imagine a dataset that contains more positive2

news in the ”fake” class than in the ”true” class.
2Positive here refers to sentiment

A system trained on such data could predict the
class ”fake” with higher confidence for any claim
that has a positive tone compared to one that has a
negative or neutral tone. Such surface level biases
in topics and linguistic styles could arguably result
in models that do not generalize well.

3 The corpus

In this part, we describe our Arabic News Stance
(ANS) corpus.3 We derived two perspectives of the
corpus suitable for claim verification and stance
classification. Please refer to Appendix A to read
our data statement about the corpus.

3.1 Data Collection

In contrast to Baly et al. (2018b) and more in line
with Thorne et al. (2018), we start with true news ti-
tles (reference) and generate fake/true claims from
them. The corpus generating process can be sum-
marized in two stages: 1) generating true/false
modifications of existing news titles through crowd-
sourcing; and 2) validating the generated claims by
annotating them in a separate phase.

We derive our corpus by sampling a subset of
news titles from the most recent version of the
Arabic News Texts (ANT) corpus (Chouigui et al.,
2017); A collection of Arabic news from multiple
news media sources in the Middle East. The dataset
was suitable for our task as it covers several topics
of news (politics, sports, etc.) sourced from several
credible mainstream news outlets (BBC, CNN, Al
Arabiya, etc.). The following is an example of a
news title from this dataset:

¡�AmÌ'@ 	áÓ 	©» 100 	à 	Q�K �èQ	m��  ñ�®� ��KA �®k
�Y�®ËAK. ú
G. Q

	ªË @
“Facts about the falling of a boulder

weighing 100 kg. of the west wall in Jerusalem.”

Generating true/false claims We used crowd-
sourcing to generate true/false claims. Starting
from a news title, we recruited annotators to modify
each news title into a new claim. For true claims,
annotators were asked to paraphrase the original
sentence by changing its syntax and wording while
maintaining the integrity of the information. We
allowed for the use of world knowledge to modify
the information. For example, replacing cities with

3Data available at: https://github.com/latynt/ans
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Type Translation Arabic

Reference Wall Street records largest losses in 6 weeks ©J
K. A�

@ 6 ú


	̄ QKA� 	k Q�.»

@ Éj. ��� �IK
Q��� Èðð

Paraphrase Losses in Wall Street are the highest in 6 weeks ©J
K. A�@ �é�J� ú

	̄ úÎ«


B@ ù
 ë �IK
Q��� Èðð ú


	̄ QKA� 	k
Contradiction Profits in Wall Street in the last six weeks �èQ�
 	gB@ �é�J�Ë@ ©J
K. A�B@ ú


	̄ �IK
Q��� Èðð ú

	̄ I. �A¾Ó

Reference Death of a journalist who reported on Russian Mercenaries �é 	�ÓA 	« 	¬ðQ 	£ ú

	̄ AK
Pñ� ú


	̄ �ðQË@ �é�̄ 	Q�KQÖÏ @ 	á« I. �J» ù

	®m�� �èA 	̄ð

in Syria in mysterious circumstances

Paraphrase Death of a journalist in mysterious circumstances after he reported AK
Pñ� ú 	̄ �ðQË@ �é�̄ 	Q�KQÖÏ @ 	á« I. �J» 	à

@ YªK. �é 	�ÓA 	« 	¬ðQ 	£ ú 	̄ ù 	®m�� �èA 	̄ð

on Russian Mercenaries in Syria

Contradiction Death of a journalist after battling with illness 	�QÖÏ @ ©Ó ¨@Qå� YªK. ù 	®m�� �èA 	̄ð
Reference 5.5 Billion withdrawn from emerging markets by investors in one week ¨ñJ.�


AK. �éJ ��A 	JË @ ��@ñ�


B@ 	áÓ 	áK
QÒ�J���ÖÏ @ �HAK. ñm�� PBðX PAJ
ÊÓ 5.5

Paraphrase Nearly 6 Billion withdrawn in a week from emerging markets �éJ ��A 	JË @ ��@ñ�

B@ ú


	̄ ¨ñJ.�

@ �HAK. ñm�� PBðX PAJ
ÊÓ �é�J� �éK. @Q�̄

Contradiction Almost a million in withdrawals from emerging markets �éJ ��A 	JË @ ��@ñ�

B@ ú


	̄ 	àñJ
ÊÖÏ @ ú
Í@ñk �HAK. ñm��

Table 2: Examples of modifications by annotators. Green highlights a change in line with reference. Red highlights a conflicting
part of the sentence with the reference sentence.

countries and celebrities and politicians with their
nationalities.

For false claims, to insure that the modification
results in meaningful mutation of the semantic in-
formation, the instructions (Table 1) stated that
the modified sentence should contradict the origi-
nal title in such a way that both cannot simultane-
ously be true in the same context. Annotators were
asked to avoid simple negation and were encour-
aged to use different strategies for modifying the
sentences. Our analysis of a sample of the collected
data showed that different annotators utilized differ-
ent strategies at different rates. For example, some
annotators predominantly altered years, counts and
locations that appeared in the original titles while
others modified the semantics of the modified sen-
tences to have opposite meaning (detained vs. re-
leased, supported vs. opposed, etc.).

We relied on Amazon Mechanical Turk4 and
Upwork 5 to recruit annotators. We only considered
Arabic native speakers for news title rewriting. All
annotators had to pass a language qualification test
similar to our task. Data was randomly assigned to
annotators in batches of 500. To insure the quality
of the generated data, we sampled data during the
annotation from each batch and re-annotated any
batch containing errors in more than 10% of the
sample by resending the batch to the annotator after
explaining the errors. See Table 2 for examples
of generated claims using different modification
strategies.

3.2 Data Validation And Analysis
To evaluate the quality of our data, we performed
a second round of annotation on the generated

4https://www.mturk.com
5https://www.upwork.com/

news titles. We derived a new task in which an-
notators were presented with a pair of sentences
and asked to supply a hypothesis about how they
are semantically related. This task is related to
the the semantic concepts of entailment and con-
tradiction (Katz, 1972; Bowman et al., 2015) but
with the aim of validating our generated ture/fake
claims. We highlight a notable difference compared
to other work on stance classification. In contrast
to the commonly used four classes adopted in other
datasets 6 (agree, contradict, discuss, unrelated),
we elect to merge labels (discuss, unrelated) into
one (other/not enough information) resulting in
three classes – paraphrase, contradiction, other/not
enough information for each pair of news titles.
Our motivation is that despite the general value
of discriminating between irrelevant documents7

(unrelated) and documents that are related to the
claim but do not make a stance about the claim
(discuss), both classes represent the same position
in the context of stance prediction. We, therefore,
treat them as one class. We found that this is also
similar to the approach by Thorne et al. (2018).

To present annotators with a small set of the
third class (other), we first considered randomly
pairing news titles from our corpus. We hypothe-
sized that randomly paired news titles will be dis-
cussing unrelated news and would naturally be as-
signed the label other by annotators. However and
upon examining examples of this method, we no-
ticed that telling the (other) class apart from the
two classes was dis-proportionally trivial since the
randomly paired sentences differed significantly

6For example: Fake News Challenge (FNC)
7Documents in this case refer to sentences but could be

any body of text. Hence, in this work we use both terms
interchangeably.
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Number of Annotators # %
3 2594 60.9%
4 1239 29.1%
5 426 10.0%

Annotator Labels Overlap # %
< 75% 470 11.0%
75 - 99% 210 4.9%
100% 3579 84.0%

Majority/Author Labels Overlap # %
Majority Label = Author’s Label 3766 99.4%
Majority Label 6= Author’s Label 23 0.6%

Fleiss k
3 total annotators 0.83
4 total annotators 0.81
5 total annotators 0.83

Table 3: Statistics for the annotation results. The au-
thor’s label is the label obtained from the worker who
rewrote the news title. Majority label is the consensus
of 75% or higher of the annotators.

(discussed different topics and contained no over-
lapping words) compared to pairs from the para-
phrase, contradict classes. Predicting this class,
therefore, can be reduced to checking for the ab-
sence of overlap in words from the paired titles. As
an alternative selection criteria to random pairing,
we used a similarity metric to select pairs that look
more similar. We calculate the F1 score of over-
lapping ngrams in the paired titles weighted by the
ngram size similar to Trinh and Le (2018). In our
case however, we consider ngrams at the character
level given the short length of the sentences. We
included ngrams of size 2 to 6 and set the minimum
score to 0.1.

A total of 4,259 pairs were labeled by 3 to 5 an-
notators. We considered the author’s rewritten sen-
tences as labels (for the paraphrase and contradict
classes). Table 3 shows the annotation statistics.
The Fleiss k scores (calculated separately for exam-
ples labeled by 3, 4 and 5 annotators) show overall
a very high level of agreement (> 0.81) suggesting
that the quality of the dataset is sufficiently high.
For the final data, we included only pairs with in-
ter annotator agreement of 75% or higher, hence,
dismissing all data with 2 out of 3 majority vote or
worse.

Figures 1 and 2 provide some details about the
length of the written claims in the final dataset
compared to the original reference sentences. We
noticed that on average, claims are shorter than the
original references with contradicting claims being
shorter than paraphrasing claims. This could be
due to workers aiming to minimize time spent per
each example. Another likely explanation is the

fact that contradicting a statements by replacing or
removing key words is easier than paraphrasing a
statement.
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Figure 1: Length of sentences in dataset (rewritten vs.
reference)
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Figure 2: Comparison in rewritten sentences

4 Experiments

In this section, to demonstrate the utility of the
corpus, we derive two tasks useful for evaluating
news veracity and stance prediction and develop
two baselines to evaluate on the proposed tasks.
We describe the proposed tasks and details of the
baselines in this section and the results in section 5.

4.1 Tasks

Claim Only Verification: In this setting, we ex-
plore the task of verifying claims based only on
information in the claims themselves. In our cor-
pus, we assess the veracity of a claim ci from our
corpus D based solely on the textual information of
the claim. The task is, hence, a binary classification
where an estimator needs to map an input to a label
Y which can be either fake or not fake:
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Class # %
Not Fake 3072 67.6%
Fake 1475 32.4%

Table 4: Class distribution for claim verification. (#: total
number of examples. %: percentage of all data)

p(Y |ci), ci ∈ D

We consider all original news titles (reference sen-
tences) in our corpus to belong to the not fake class.
We rely on the fact that the reference sentences
originated from reputable mainstream media in the
Middle East. Our fake class examples consist of
the sentences corrupted by annotators that passed
the data validation process described in Section 3.1.
Table 4 shows the distribution of classes for this
task.

It is important to discern the limited scope in
defining news veracity in this work: the incorrect-
ness of the corrupted sentence is not a universal
statement about the claim. We note the fact that sev-
eral of the corrupted sentences can be factual/not
fake in other contexts. As such, we consider them
fake in regards to the related event/context - in this
case our reference sentence (original news titles).
Further analysis exposed two instances where the
modified sentences matched other original news
titles. Both examples were excluded from the cor-
pus for this task. However, such cases hint at the
limits of claim verification using claim text only.
We further explore this in section 5 and share some
insights.

Stance Prediction This task is a direct reflection
of our annotation process. Given a reference sen-
tence ri and a claim ci, predict the label Y (Agree,
Contradict, Other/Not enough information) from
the claim/reference pair (ci, ri).

p(Y |ci, ri), (ci, ri) ∈ D

Table 5 shows the distribution of classes in our
corpus for the stance prediction task.

4.2 Methods
We evaluate two baselines on both tasks. For mod-
eling, we considered two classes of models that
have been largely adopted by the NLP community.
The models are described in the next section.

Class # %
Disagree 2399 63.4%
Agree 1301 34.4%
Other 86 2.3%

Table 5: Class distribution for stance prediction. (#: total
number of examples. %: percentage of all data)

Recurrent Perspective Matching: Our first
baseline is a simple RNN model that uses Long
Short Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997) as the main building block to
encode the input. LSTM models encode the input
sequentially and can model temporal dependencies
useful to semantic tasks. In our implementation for
both tasks, we consider both character level and
word level representations of the input sentence(s)
separately. In each case, we represent every input
word/character with a unique d-dimensional vector
that is learned during training. These vectors are
then passed through the LSTM layer in sequence
and the output of the last step (at the end of the sen-
tence) is used as the encoding of the sentence(s).
For the claim verification task, the claim encoding−→
h t can be described by:

−→
h t =

−−−−→
LSTM(

−→
h t−1, xt) t = 1, ...,Mi

Where Mi is the length size of the sentence corre-
sponding to example i and xt is the character/word
at position t.
In stance prediction, the input consists of a pair
of sentences (reference r, claim c). Each is en-
coded using the same LSTM layer to obtain their
encoding:

−→r t =
−−−−→
LSTM(−→r t−1, xt) t = 1, ...,M r

i

−→c t =
−−−−→
LSTM(−→c t−1, xt) t = 1, ...,Mk

i

To obtain the interaction representation
−→
h t,
−→rt and

−→ct are multiplied element-wise. We experimented
with cosine similarity and concatenation and found
the element-wise multiplication and concatenation
to work slightly better than cosine similarity:

−→
h t = (−→rt ◦

−→
k t)

The resulting encoding in both tasks
−→
h t is then

passed through a linear layer with non-linearity
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(dev) (test)
Claim Verification Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Majority Class 68.1 34.1 50.0 40.5 67.1 33.6 50.0 40.2

LSTM character level
char, 10(emb), 100(hid), 0(dropout) 70.2 65.7 56.8 55.4 67.3 60.2 54.6 52.5
char, 10(emb), 100(hid), 30.0(dropout) 70.6 67.9 56.5 54.6 67.8 61.3 55.1 53.1

LSTM word level
word, 50(emb), 50(hid), 0(dropout) 68.1 60.4 54.8 52.9 65.8 57.2 53.9 52.4
word, 50(emb), 100(hid), 0(dropout) 68.6 61.8 56.4 55.5 64.5 55.4 53.3 52.1

Stance Prediction

Majority Class 62.4 20.8 33.3 25.6 63.8 21.3 33.3 26.0

LSTM character level
char, 10(emb), 50(hid), 0(dropout) 62.2 20.7 33.3 25.6 64.4 21.5 33.3 26.1
char, 50(emb), 50(hid), 0(dropout) 62.4 20.8 33.3 25.6 64.1 21.4 33.3 26.0
char, 50(emb), 50(hid), 30.0(dropout) 62.5 43.0 33.7 26.6 64.4 46.4 34.0 27.5

LSTM word level
word, 10(emb), 50(hid), 0(dropout) 62.1 38.7 39.2 38.8 62.0 37.8 38.1 37.8
word, 50(emb), 50(hid), 30.0(dropout) 63.0 39.9 40.7 40.3 59.8 37.4 38.2 37.8

Table 6: Results for the claim verification and stance prediction Tasks.

(ReLu) followed by a softmax function to convert
the output to probabilities for each class:

p(Y = c|hi) = softmax(ReLu(Wc
−→
hi + bc))

Wc and bc are learnable parameters associated with
each class c in the corresponding task.
Prediction in both tasks is done by selecting the
label with the highest probability:

argmax
c

p(Y = c|hi)

Pretrained Transformer: Pretraining and trans-
fer learning (Devlin et al., 2018a; Peters et al., 2018;
Radford et al., 2019) has recently gained attention
as a popular approach to acquiring universal lin-
guistic features useful in many downstream NLP
tasks and was shown to be successful in improving
on the state of the art in many downstream NLP
tasks with minimal fine-tuning. Lv et al. (2019)
have successfully explored BERT for the task of
fake news detection in English and proposed an
extension that improves on fine-tuned BERT. In ad-
dition to the aforementioned supervised methods,
we evaluate BERT (Devlin et al., 2018a) on both
tasks in our corpus. We are not aware of any other
work that explored pretraining for claim verifica-
tion and stance prediction in Arabic.

BERT is based on the Transformer model first
introduced by Vaswani et al. (2017). Transformer-
based models have recently become common in
many NLP tasks including question answering and

entailment classification (Devlin et al., 2018b; Rad-
ford, 2018). For both tasks, we utilize a publicly
available implementation that has been trained on
a multilingual dataset including Arabic.8. We elect
to adhere to the proposed approach recommended
by Devlin et al. (2018a) for future reproducibility.
Since our implementation is identical to the one
provided by the authors, we will omit the detailed
description of the model architecture and refer read-
ers to (Vaswani et al., 2017)9.

Task Prec. Rec. F1

Claim Verification
Fake 51 55 53
Not Fake 77 75 76
Macro Avg. 64.1 64.6 64.3

Stance Detection
Agree 65 63 64
Disagree 80 81 80
Other 86 86 86
Macro Avg. 76.8 76.6 76.7

Table 7: Results of using pretraining (BERT) on claim
verification and stance prediction tasks.

5 Results

For the recurrent perspective models, we trained
all models for 100 epochs using Adam optimizer
(Kingma and Ba, 2014) with 0.001 learning rate.
We conducted hyper-parameter tuning on the de-

8We use BERT-Base, Multilingual Cased: 104 languages,
12-layer, 768-hidden, 12-heads, 110M parameters

9See also:
http://nlp.seas.harvard.edu/2018/04/03/attention.html
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Prediction Label Translation Arabic

Fake Fake Historic agreement between Europe and Japan to support trump I. Ó@Q�K �èY«A�ÖÏ 	àAK. AJ
Ë @ ð AK. ðPð

@ 	á�
K. ú


	m�'
PA�K ��A 	®�K @
Fake True Historic agreement between Europe and Japan to confront trump I. Ó@Q�K �éêk. @ñÖÏ 	àAK. AJ
Ë @ ð AK. ðPð


@ 	á�
K. ú


	m�'
PA�K ��A 	®�K @
True Fake First women’s interest channel in Gaza soon to see the light AJ. K
Q�̄ Pñ	JÊË Qê 	¢�� �è 	Q 	« ú


	̄ �éJ
KA�	� �éJ
 	KñK
 	Q 	®Ê�K �èA 	J�̄ Èð

@

True True First women’s interest channel in Gaza faces uncertain fate Bñêm.× @Q�
�Ó ék. @ñ�K �è 	Q 	« ú

	̄ �éJ
KA�	� �éJ
 	KñK
 	Q 	®Ê�K �èA 	J�̄ Èð


@

Fake True Ethiopia assures Egypt of its Nile share ÉJ
 	JË AK. Qå�Ó �é�k úÎ« AîD�Qk Y»ñ�K AJ
K. ñJ
�K

@

Fake Fake Ethiopia apathetic about Egypt’s right of the Nile water ÉJ
 	JË @ è AJ
Ó 	áÓ Qå�Ó �é�m�'.
�éJ
 	JªÓ Q�
 	« AJ
K. ñJ
�K


@

Table 8: Examples of claim verification task predictions using fine-tuned BERT highlighting the model’s invariant labels for
similar sentences with different meanings.

velopment set. For the pretrained BERT model,
we fine-tune on our data for 3 epochs using BERT
BPE units.

Table 6 shows the top results of all experiments
for both tasks. We report the accuracy and F1

(Macro unweighted average). In the claim veri-
fication task, results show that in general, word
based models perform comparably to character
based models but we note that all results do not
provide significant gains (53.1 vs. 40.2 F1) com-
pared to the baseline (majority class) which could
be explained by the small training data size but
might hint at an ill-defined task. We explore this
further below. In the stance prediction task, experi-
ments show word based models outperform charac-
ter based models (37.8 vs 27.5 F1). This could be
due to the limited size of our corpus which is not
sufficient for character based models to learn words
and phrases from scratch and capture the semantic
representation needed for stance prediction.

Results for the pretraining experiments (shown
in Table 7) show significant improvement of the
pretrained model over the models trained only on
our corpus. This is similar to findings by Lv
et al. (2019). However, the improvement is dis-
proportionally larger in the stance prediction task
(76.7 vs. 37.8 F1) and the large gains do not carry
over to the claim verification task (64.3 vs. 53.1
F1). The imbalance in gains also confirms our intu-
ition about the limitation of claim only verification
which we discuss next.

Limits Of Claim Only Verification: We briefly
mentioned in Section 4.1 the limited scope of
claim verification in a setting were the decision
about the veracity of a claim can be made us-
ing only the text of the claim. We hypothesize
that the task might not be learnable through a di-
rect mapping from the claim text to the veracity
space. Given that the initial results of the fine-

tuned BERT model supported this intuition, we
elected to manually inspect a sample of the pre-
dictions and noticed that in many cases the model
was predicting the same label for claims that look
similar but are semantically different. We share
a sample of these cases in Table 8. This sug-
gests that while the linguistic features learned dur-
ing pretraining were useful for textual entailment
(stance prediction task), the veracity of a claim
cannot be made using only implicit world knowl-
edge learned during pretraining. A simple example
highlighting this limitation is the reference news
title PBðYË@ ©k. @Q�K ©Ó Yª��
 I. ë 	YË@ “Gold prices
increase amidst a falling dollar.”’ and its contra-
dicted rewritten version ”

�
AJ
ÖÏ A« ¡J.î�E I. ë 	YË@ PAª�


@

“Gold prices fall globally”. Here, it is easy to ar-
gue that the contradiction can be true in another
context and hence, a decision about the veracity of
this claim should only be made in reference to a
particular context/event. We believe that explicitly
associating each claim with evidence or context is
the more appropriate approach for claim verifica-
tion.

These initial experiments suggest that discriminate
models trained using claim only information might
rely on biases in the topics, linguistic styles, tones
and implicit world-knowledge learned from train-
ing data to make predictions. Results of the perfor-
mance of such models could, therefore, be inflated
if the training data is not uniformly distributed
across languages, topics, writing styles, political
ideologies etc. While we believe that our dataset
collection process which yields classes that share
the same distribution of topics and news sources
mitigated these types of biases, we also note that
the annotation process and human factor introduced
other types of biases that could be present in the
data.
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6 Conclusion

In this work we presented a new publicly available
corpus for textual entailment and its use in studying
misinformation in the Arabic language. We shared
some insights about the creation of the corpus and
the baselines developed to evaluate the corpus. We
further explored the use of pretraining (Devlin et al.,
2018a) and developed a strong baseline for our
tasks. Our experiments additionally shed light on
the limits of ”claim-only” misinformation detec-
tion methods that rely solely on the stated claims
without use of accompanying evidence. We hope to
explore this further in future work. As we plan to
also explore the use of generated data in studying
the robustness of misinformation detection meth-
ods against adversarial data with varying linguistic
styles, political ideologies and world-knowledge.
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A Data Statement

In line with recent efforts addressing ethical issues
that can result from the use of data and technol-
ogy and following the recommendations of Bender
and Friedman (2018), we are sharing the follow-
ing information that we believed is relevant to our
dataset and the collection process. We encourage
future use of the data to include a summary of this
information.

A.1 Language Variety
To study and build tools in the areas of stance pre-
diction and claim verification. Data was selected
from news titles and rewritten by annotators for
the purpose of generating statements and statement
pairs. Part of the dataset was a random subset of
the ANT corpus which was created through web-
crawling news sources in the Middle East. As dif-
ferent tools and annotation were included in the
creation of the data, we expect the distribution of
topics, opinions and language to incorporate dif-
ferent types and levels of bias. To the best of our
knowledge, the data is in Standard Arabic (’arb’)
with few exceptions such as abbreviations. At least
Latin script (’Latn’) is present.

A.2 Annotator Demographic
A total of 8 crowd-source workers mostly from the
Middle East contributed to the annotations. Anno-
tators were selected based on their fluency in the
Arabic language. Demographic information was
not available at the time annotation for all recruited
individuals. Of the information available, we are
aware of at least 1 woman, 2 men and 3 individuals
who are Arabic native speakers.

A.3 Text Characteristics
The dataset includes a subset of the news titles
from ANT news corpus (v2.1) which included 5
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news sources (BBC, Al Arabiya, CNN, Sky News,
France24) and 6 categories (culture, economy, inter-
national news, Middle East, sport, technology) col-
lected from February 2018 to October 2018. Data
also includes rewritten versions of the news titles
by the annotators following the provided guidelines
(see Table 1).
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Abstract

Textual patterns (e.g., Country’s president
Person) are specified and/or generated for
extracting factual information from unstruc-
tured data. Pattern-based information extrac-
tion methods have been recognized for their
efficiency and transferability. However, not ev-
ery pattern is reliable: A major challenge is
to derive the most complete and accurate facts
from diverse and sometimes conflicting extrac-
tions. In this work, we propose a probabilistic
graphical model which formulates fact extrac-
tion in a generative process. It automatically
infers true facts and pattern reliability without
any supervision. It has two novel designs spe-
cially for temporal facts: (1) it models pattern
reliability on two types of time signals, includ-
ing temporal tag in text and text generation
time; (2) it models commonsense constraints
as observable variables. Experimental results
demonstrate that our model significantly out-
performs existing methods on extracting true
temporal facts from news data.

1 Introduction

Temporal fact extraction is to extract (entity, value,
time)-factual tuples from text data (e.g., news,
tweets) for specific attributes. It acts as one of
the fundamental tasks in knowledge base construc-
tion, knowledge graph population, and question
answering. For example, if we were interested
in country’s president, the entity would be of
type Location.Country, the value would be
of type Person, and the time would be a valid
year in the person’s presidential term. Thanks to
name entity recognition (NER) and typing systems
(Del Corro et al., 2015), pattern-based informa-
tion extraction methods generate patterns consisted
of entity types (Jiang et al., 2017; Li et al., 2018;

1This work was done when the first author was a visiting
undergraduate student at Notre Dame.

Reimers et al., 2016). They are widely used for
good transferability across domains and datasets,
unsupervised manner requiring no or very few an-
notations, and high efficiency. The typed patterns
give only the association between entity and value.
Two types of time signals can be attached to the
pairs, forming temporal triples: One is temporal
tag in text, e.g., the year tag next to the entity/value
mentions in the sentence; the other is text gener-
ation time, i.e., the year the text document was
posted. For example, given two sentences:
1) “... The former French [Country: France]
president Jacques Chirac [Person], a self-styled
affable rogue who was head of state from 1995
[temporal tag] to 2007 ...” (posted on Sept. 26,
2019 [text generation time])
2) “... Emmanuel Macron [Person], now Presi-
dent of France [Country], graduated from ENA
in 2004 [temporal tag] ...” (posted on Sept. 19,
2019 [text generation time])

Pattern-based methods discover two patterns:
• P1: former Country president Person
• P2: Person, now president of Country,

Then the methods can extract the following tuples.
We label 4 and 7 for correct tuples and incorrect
ones, respectively:
4 (France, Jacques Chirac, 1995): P1 and temporal tag;

7 (France, Jacques Chirac, 2019): P1 and text gen. time;

7 (France, Emmanuel Macron, 2004): P2 and temporal tag;

4 (France, Emmanuel Macron, 2019): P2 and text gen. time.

We have the following observations:
• O1: Not every pattern is reliable: the pattern

“Person visited Country” is very likely to
be unreliable. Not every pattern is unreli-
able: the pattern “current Country’s pres-
ident Person” is very likely to be reliable.
The above two pattern examples are somehow
half and half. So, patterns have reliability.
• O2: For temporal fact extraction, different

types of time signals might be either reliable
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or unreliable depending on the pattern. So,
there is a dependency between pattern and
type of time signal, in terms of reliability.

Existing truth finding approaches assumed that
a structured “source-object-claim” database was
given and then estimated the reliability of source
for inferring whether the claim was true or false
(Yin et al., 2008; Zhao and Han, 2012; Zhao et al.,
2012). For example, a source could be a book
seller, an object could be a book’s author list, and
a claim could be an author list that a seller gave
for a book. One conclusion was that probabilistic
graphical models (PGM) (Zhao and Han, 2012;
Zhao et al., 2012) have advantages of estimating
source reliability over the general data distributions,
compared with bootstrapping algorithms (Yin et al.,
2008; Li et al., 2018; Wang et al., 2019). However,
PGM-based truth finding models have not yet been
developed for the task of information extraction.
Estimating the reliability of textual patterns is new
(O1). Moreover, when we focus on temporal fact
extraction, modeling the dependency between pat-
tern and type of time signals is also new (O2).

In truth finding, it is critical to define conflicts.
For the book seller’s example, we assume that one
book can have only one true author list; so if we
knew one list was true, then any different list of the
same book would be false. This originated from our
commonsense. Fortunately, we have quite a few
commonsense rules for temporal facts, i.e., specific
attributes. On country’s president, we know that
• one president serves only one country;
• one country has only one president at a time;
• however, one country can have multiple presi-

dents in the history (e.g., USA, France).
For the attribute sports team’s player, we have com-
monsense rules:
• one player serves only one club at a time;
• however, one club has multiple players and

one player can serve multiple clubs in his/her
career.

We generalize possible commonsense rules:
• C1: one value matches with only one entity;
• C2: one entity matches with only one value;
• C3: one value matches with only one entity at

a time;
• C4: one entity matches with only one value at

a time.
So, we know that the attribute country’s president
follows C1 and C4; and the attribute sports team’s
player follows C3. The third challenge (O3) is

the necessity of modeling the commonsense (e.g.,
C1–C4) for identifying conflicts, estimating pattern
reliability, and finding true temporal facts.

To address the three challenges (O1–O3), we pro-
pose a novel Probabilistic Graphical Model with
Commonsense Constraints (PGMCC), for finding
true temporal facts from the results from pattern-
based methods. The given input is the observed
frequency of tuples extracted by a particular pattern
and attached with a particular type of time signal.
We model information source as a pair of pattern
and type of time signal. We represent the source
reliability as an unobserved variable. It becomes
a generative process. We first generate a source.
Next we generate a (entity, value, time)-tuple. Then
we generate the frequency based on the source re-
liability and the tuple’s trustworthiness (i.e., prob-
ability of being a truth). Moreover, we generate
variables according to the commonsense rules if
needed – the variable counts the values/entities that
can be matched to one entity/value with or with-
out a time constraint (at one time) from the set of
true tuples. Given a huge number of patterns (i.e.,
57,472) and tuples (i.e., 116,631) in our experi-
ments, our proposed unsupervised learning model
PGMCC can effectively estimate pattern reliability
and find true temporal facts.

Our main contributions are:
• We introduce the idea of PGM-based truth

finding to the task of pattern-based temporal
fact extraction.
• We propose a new unsupervised probabilistic

model with observed constraints to model the
reliability of textual patterns, the trustworthi-
ness of temporal tuples, and the commonsense
rules for certain types of facts.
• Experimental results show that our model can

improve AUC and F1 by more than 7% over
the state-of-the-art.

The rest of this paper is organized as follows.
Section 2 introduces the terminology and defines
the problem. Section 3 presents an overview as well
as details of the proposed model. Experimental
results can be found in Section 4. Section 5 surveys
the literature. Section 7 concludes the paper.

2 Terminology and Problem Definition

2.1 Terminology

Definition 1 (Temporal fact: (entity, value,
time)-tuple)). Let F = {f1, f2, f3, . . . } be the set
of temporal facts. Each fact f is in the format of
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(entity, value, time). F was extracted by textual
pattern-based methods.

Definition 2 (Pattern s). Let P(∗) = {p(∗)1 , . . . }
be the set of pattern source, here ∗ ∈ {post, tag}
stands for the type of time signal (i.e., “text gen.
time” and “temporal tag”). One pattern paired
with different types of time signals will be treated
as different pattern sources.

Definition 3 (Extraction). Let E =
{e1, e2, e3, . . . } be the set of extractions.
Our generative model will take E as input. An
extraction item e is in the format of (f , p(∗), o).
Here o stands for the observed frequency of fact
tuples f that were extracted by pattern p(∗) in E .

Definition 4 (Constraint). Each commonsense rule
(constraint) is represented as a variable. The vari-
able is likely to be observed as 1. Examples:
• one value matches with only one entity,

denoted as C1v−1e that counts the number of
such entities.
• one entity at one time matches with only

one value, denoted as C1(e,t)−1v that counts
the number of values.

2.2 Problem Definition

Suppose the set of extractions E have been obtained
by pattern-based methods from text data. We define
the problem as follows: Given a set of extractions
E , pattern sources P(∗), and the constraints Ca for
attribute a, infer truth T for all temporal facts F
contained in E and quality information for each
pattern source p(∗).

3 Proposed Approach

We mainly discussed the model detail of PGM with
multiple Constraints C1(e,t)−1v and C1v−1e, since
it’s the most complicated scenario while model-
ing constraint. The given input is the observed
frequency of fact tuples extracted by a particular
pattern and attached with a particular type of time
signal. Figure 1 gives the plate notation of our
model. Each node represent a variable. Blue nodes
indicate hyper-parameter. Gray nodes stand for ob-
servable variable. And white nodes stand for latent
variables we want to infer.

3.1 Generative Process

Our approach based on PGM is a generative pro-
cess. We first generate a source. Next we generate
a (entity, value, time)-tuple. Then we generate the

Figure 1: Probabilistic Graphic Model with Common-
sense Constraint {C1(e,t)−1v , C1(v)−1e }

frequency based on the source reliability and the tu-
ple’s trustworthiness. Moreover, we generate vari-
ables according to the commonsense constraints.
The variables counts the values/entities that can be
matched to one entity/value with or without a time
constraint (at one time) from the set of true tuples.
The concrete meaning of each variable has been
given in Table 1.

Temporal fact trustworthiness. For each tempo-
ral fact f ∈ F , we first draw θf , i.e., the prior truth
probability of fact f , from a Beta distribution with
hyper-parameter β0 and β1:

θf ∼ Beta(β0, β1). (1)

β0 and β1 represent the prior distribution of fact
reliability. In practice, if we have a strong prior
knowledge about how likely all or certain temporal
facts are true, we can model it with the correspond-
ing hyper-parameters. Otherwise, if we do not have
a strong belief, we set a uniform prior, which means
it’s equally likely to be true or false, and our model
can still infer the truth from other factors. After
drawing the θf , we generate the truth label lf from
a Bernoulli distribution with parameter θf :

lf ∼ Bernoulli(θf ). (2)

Pattern source reliability. As aforementioned, a
reliable pattern source is more likely to extract true
facts with higher counts, and extract false facts
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Table 1: Symbols and their descriptions.

Symbol Description
θf [0, 1], trustworthiness of tem-

poral fact tuple f
lf Boolean: label of temporal

fact f
oe Integer: the observed fre-

quency of fact fe extracted by
pattern p(∗)e

λp
(∗)

0 , λp
(∗)

1 Real numbers: reliability
of pattern p(∗) on giving
false/true fact tuples

C1v−1e Real number: the number of
entities given one value v

C1(e,t)−1v Real number: the sum of val-
ues given one entity e and one
time t

Hyper-Parameter
µ0, µ1 Integers: prior counts of

false/true tuples extracted by
a textual pattern

κ0, κ1 Integers: prior sums of
false/true tuples extracted by a
textual pattern

β0, β1 Integers: prior counts of
false/true tuples

with lower counts. Therefore, we choose average
count of false/true as latent pattern reliable weight,
it’s represented as λp

(∗)
0 , λp

(∗)
1 for pattern p(∗). The

Gamma distribution is utilized because it is the con-
jugate prior of Poisson distributions. Initially, these
two parameters are generated from Gamma dis-
tribution with hyper-parameter {µ0, κ0}/{µ1, κ1},
respectively. µ0 and µ1 represent the prior number
of false/true fact the pattern extract, and κ0 and κ1
determine the prior sum of false/true fact count:

λp
(∗)

0 ∼ Gamma(µ0, κ0); (3)

λp
(∗)

1 ∼ Gamma(µ1, κ1) (4)

Extraction observation. For each extraction e ∈
E , it is composed of {f, p(∗), o}. fe denotes the
temporal fact f belongs to e, p(∗) denotes where it’s
extracted, oe stands for extraction e’s observation
count. When the truth label of fact fe is false, oe
is generated from Poisson distribution with p(∗)’s
false speaking side parameter λp

(∗)
0 . While fe is

true, oe is generated from Poisson Distribution with

p(∗)’s true speaking side parameter λp
(∗)

1 :

oe ∼ Poisson(λp
(∗)

0 ) if lfe = 0,

oe ∼ Poisson(λp
(∗)

1 ) if lfe = 1.
(5)

Constraints. Finally, we draw the constraint vari-
ables. In temporal fact extraction, we define two
variables C1(e,t)−1v and C1v−1e. C1(e,t)−1v limits
the number of truth on certain constraint key {e, t}.
There are as many C1(e,t)−1v variables as unique
{e, t} keys:

Ce,t =
∑

f

lf , f ∈ Fe,t, (6)

where Fe,t denotes a set of f with same {e, t}.
Each C1(e,t)−1v is generated by Fe,t set.
C1v−1e ilimits the truth of fact with same {v}:

Cv =
∑

e∈E
le,v





le,v = 1, if ∃lf = 1,
f ∈ Fe,v;

le,v = 0, otherwise.
(7)

where Fv denotes set of fact with value v, Fe,v

stands for a set of temporal fact f with same {e, v},
Fe,v ∈ Fv. le,v denoted the truth label of v, e.
Each C1v−1e is generated by Fv. If there is true
fact f ∈ Fe,v, then le,v equals to one, otherwise,
le,v equal with zero.

4 Experiments

4.1 Dataset
We focus on attribute country’s president and ex-
periment on the same data set in the work of (Wang
et al., 2019). It has 9,876,086 news articles (4 bil-
lion words) published from 1994–2010. We have
57,472 patterns, 116,631 temporal fact tuples, and
1,326,164 extractions. The dataset’s ground truth
was collected from Google and Wikipedia. It in-
cludes 3,175 true temporal facts of 130 countries.

4.2 Experiment Settings
4.2.1 Competitive methods
We compare our model with:
• TRUTHFINDER (Yin et al., 2008): It was a
bootstrapping algorithm for structured data using
C1v−1e.
• LTM(Zhao and Han, 2012): It was a probabilis-
tic model, assuming that the truth about an object
contains more than one value. We set “object” as
{entity, time} and set value as the temporal fact’s
value.
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Table 2: Our proposed model performs better than baseline methods on finding temporal facts.

Method
Constraints Evaluation Setting

e: Country; v: Person; t: year On (e,v,t) On (e,v,[tmin,tmax])
C1v−1e C1(e,t)−1v AUC F1 AUC F1

TRUTHFINDER 7 0.0006 0.0012 0.0006 0.0012
LTM 7 7 0.1319 0.0199 0.2030 0.0218
LTM 7 4 0.0212 0.0505 0.0407 0.0793
TRUEPIE 4 7 0.0587 0.1430 0.0587 0.1430
MAJVOTE 7 4 0.3336 0.4318 0.4958 0.5927
TFWIN 4 4 0.4746 0.6361 0.5523 0.6489
Ours (PGMCC) 7 4 0.4840 0.6502 0.6006 0.7254
Ours (PGMCC) 4 4 0.4987 0.6634 0.6075 0.7316

• TRUEPIE (Li et al., 2018): It was a bootstrap-
ping method using C1(v)−1e and estimating pattern
reliability.
• MAJVOTE (Goldman and Warmuth, 1995): It
used the weighted majority voting strategy and re-
turned the most frequent temporal fact.
• TFWIN (Wang et al., 2019): It was the state-of-
the-art bootstrapping method for truth discovery
on fact extraction. However, error propagation is
serious in its iterative process.

4.2.2 Evaluation settings

All the methods can only find truth of temporal fact
at one time point, e.g., (French, Jacques Chirac,
1995). However, due to the incompleteness of fact
description in data, some time points of tempo-
ral facts could be missing. One way to improve
the evaluation is to composite true temporal fact
time points {e, v, t} into temporal fact time period
{e, v, [tmin, tmax]}. We evaluate the performance
on both temporal fact time point {e, v, t} and tem-
poral fact time period {e, v, [tmin, tmax]}. To eval-
uate on time period {e, v, [tmin, tmax]}, we look
at every single time points (e, v, t) in the period
(t ∈ [tmin, tmax]).

4.2.3 Evaluation metrics

We evaluate all competitive methods using preci-
sion, recall, F1 score, and AUC (Area Under the
Curve). Precision is the the fraction of temporal
fact truth among all the temporal fact that were la-
belled as true. Recall is the fraction of true tempo-
ral facts our approach finds among the ground truth
temporal facts. F1 score is the harmonic mean of
precision and recall. For all of the metrics, higher
score indicates that the method performs better.

4.3 Effectiveness

The results are given in Table 2. Our proposed
method PGMCC consistently outperforms all the
baselines on finding (country, president, time)-facts
(i.e., presidential terms).

PGMCC vs LTM: PGMCC performs signifi-
cantly better than LTM (+34.5% AUC; +64.4%
F1) on evaluating time points, and performs better
with (+40.45% AUC; +71.2% F1) on evaluating
time periods. LTM was designed to solve struc-
tured truth finding like the bookseller example. So,
there were many conflicts when applied to tempo-
ral fact extraction. PGMCC has multi-constraint
as observable variables to alleviate the issue.

PGMCC vs TFWIN: PGMCC performs bet-
ter than TFWIN (+2.4% AUC; +2.8% F1) on
evaluating time points, and performs better with
(+5.2% AUC; +8.3% F1) on evaluating time peri-
ods. TFWIN started with seed patterns and defined
constraints as a rule to eliminate conflicting tuples.
However, the inference on conflicts was based on
local information (i.e., the current pattern reliability
estimation). During this process, error might prop-
agate through iterations. PGMCC is a probabilistic
graphical model that can avoid error propagation
by modeling constraints as variables and inferring
truth with the global data distributions.

PGMCC with different constraints: See the last
two rows in Table 2. For both PGMCC and
TFWIN models, a complete constraint set, i.e.,
{C1(v)−1e and C1(e,t)−1v}, gives the best perfor-
mance. Partial constraint cannot fully identify con-
flicts or false tuples. C1(e,t)−1v plays a significant
role in extracting country’s president.
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Table 3: Pattern’s reliability for country’s presidency.

Textual Pattern p rp(post) rp(tag)

president Person of Country 0.920 0.870
Country’s current president Person, 0.978 0.250
Country’s newly elected president , Person , 0.970 0.030
Person, now president of Country, 0.750 0.110
Person, who has ruled Country 0.438 0.994
$COUNTRY’s former president Person 0.113 0.994
Person, who ruled Country 0.607 0.758
Country president Person signed 0.553 0.327
Country premier Person 0.012 0.010
Country foreign minister Person 0 0
Country golfer Person 0 0

4.4 Pattern Source Reliability Analysis
Table 3 presented some pattern examples and their
scores. Here are our observations. First, the pat-
tern “president Person of Country” is the only
pattern that shows high reliability on both types of
time signals (above 0.85). Second, the textual pat-
terns that describe the current presidency are likely
to have higher reliability on text gen. time than
temporal tag, because the presidency was likely to
be in the same time as the document was gener-
ated. These patterns usually have words such as
“current”, “newly”, and “now”. Third, the textual
patterns that describe the past presidency are likely
to have higher reliability on “tag” than “post”, be-
cause the presidency was likely to be in the same
time as the event (described in the sentence) hap-
pened but before the time of the document being
generated. These patterns usually have words such
as “have governed”, “have ruled”, “former”, and
“formerly”.

5 Related Work

In this section, we review two relevant fields to our
work, temporal fact extraction and truth discovery.

5.1 Truth Discovery
In big data era, the issue of “Veracity” on resolving
conflicts among multi-source information is quite
serious (Berti-Equille, 2015; Vydiswaran et al.,
2011; Waguih and Berti-Equille, 2014; Dong et al.,
2009; Galland et al., 2010; Xiao et al., 2016; Yin
and Tan, 2011). Truth discovery methods find trust-
worthy information from conflicting multi-source
(Xiao et al., 2015; Li et al., 2015). Several truth
discovery methods have been proposed for various
scenarios, and they have been successfully applied

in diverse application domains. A few truth discov-
ery methods are probabilistic model. LTM solved
the “Book’s author list problem” and modeled
its source in two-fold quality (Zhao et al., 2012).
GTM solved the task of finding true numeric value
of “New York City’s population” (Zhao and Han,
2012). TEXTTRUTH found the true answer for a
question from multi users (Zhang et al., 2018b).

5.2 Temporal Fact Extraction

Temporal fact extraction is to extract (entity, at-
tribute name, attribute value)-tuples along with
their time conditions from text corpora (Sil and
Cucerzan, 2014; Hoang-Vu et al., 2016; Chekol,
2017; Zhang et al., 2018a; Shang et al., 2018; Zeng
et al., 2019; Jiang et al., 2019). Textual patterns
have been proposed to extract structured data from
unstructured text data in an unsupervised way, such
as E-A patterns (Gupta et al., 2014), parsing pat-
terns (Nakashole et al., 2012), and meta patterns
(Jiang et al., 2017). However, patterns are of differ-
ent reliability and extractions are sometimes con-
flicting. In order to get reliable temporal fact, we
addressed this problem using truth discovery.

6 Limitations and Future Work

Though the proposed approach show effectiveness
in experiments, it and/or the study has several lim-
itations. First of all, because collecting temporal
factual truth for a variety of attributes is very expen-
sive, in this study, we only studied a single relation
type. In future work, we will apply the approach to
other types of temporal-facts if correct constraints
can be defined, such as sports team’s players and
spouse relationship. Second, though the patterns
were generated by automated mining technologies
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such as Meta Patterns (Jiang et al., 2017) (in other
words, they are not hand-crafted), the pattern min-
ing as a preprocessing step is needed. The approach
is not end-to-end.

7 Conclusions

In this work, we proposed a probabilistic graphical
model for inferring true facts and pattern reliabil-
ity. It had two novel designs for temporal facts:
(1) it modeled pattern reliability on temporal tag
in text and text generation time; (2) it modeled
commonsense constraints as observable variables.
Experimental results demonstrated that our model
outperformed existing methods.
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Abstract

In the field of factoid question answering
(QA), it is known that the state-of-the-art tech-
nology has achieved an accuracy comparable
to that of humans in a certain benchmark chal-
lenge. On the other hand, in the area of non-
factoid QA, there is still a limited number of
datasets for training QA models, i.e., machine
comprehension models. Considering such a
situation within the field of the non-factoid
QA, this paper aims to develop a dataset for
training Japanese how-to tip QA models. This
paper applies one of the state-of-the-art ma-
chine comprehension models to the Japanese
how-to tip QA dataset. The trained how-to
tip QA model is also compared with a fac-
toid QA model trained with a Japanese factoid
QA dataset. Evaluation results revealed that
the how-to tip machine comprehension perfor-
mance was almost comparative with that of
the factoid machine comprehension even with
the training data size reduced to around 4%
of the factoid machine comprehension. Thus,
the how-to tip machine comprehension task re-
quires much less training data compared with
the factoid machine comprehension task.

1 Introduction

Recent advances in the field of QA or machine
comprehension are mostly in the domain of fac-
toid QA related to Wikipedia articles and news ar-
ticles (Yi et al., 2015; Pranav et al., 2016, 2018).
One of the most well-known QA datasets and
benchmark tests is the Stanford Question Answer-
ing Dataset (SQuAD) (Pranav et al., 2016, 2018),
which is a reading comprehension dataset, consist-
ing of questions posed by crowdworkers on a set
of Wikipedia articles, where the answer to every
question is a text segment, or span, from the cor-
responding reading passage, or the question might

be unanswerable. It is reported1 that state-of-the-
art machine comprehension models trained with
SQuAD outperform humans (Devlin et al., 2019;
Zhang et al., 2019).

However, apart from the issues related to devel-
oping benchmark datasets for factoid QA and im-
proving state-of-the-art general-purpose machine
comprehension models, there is a relatively lim-
ited number of published literature that handles is-
sues, such as the development of datasets for non-
factoid QA and the application of state-of-the-art
general-purpose machine comprehension models
to those non-factoid datasets. Typical non-factoid
QA tasks include opinion QA, definition QA, rea-
son QA, and how-to tip QA.

Among various kinds of non-factoid knowl-
edge which are the key to developing tech-
niques for non-factoid QA tasks, a recent
study (Ohkawa et al., 2018) examined the types
of Japanese websites which include various how-
to tips related to job hunting, marriage, and
apartment. The study (Ohkawa et al., 2018) also
aims to automatically identify those how-to tip
websites, which will be an important knowledge
source for training how-to tip QA models. Con-
sidering such a situation, within the field of non-
factoid QA, this paper studies how to develop a
dataset for training Japanese how-to tip (hereafter
throughout the paper, we use the simplified term
“tip”) QA models. As examples in this paper, we
developed tip QA datasets for ‘job hunting,” “mar-
riage,” “apartment,” “hay fever,” “dentist,” and
“food poisoning,” where “job hunting” and “mar-
riage” tip QAs are for both training and testing,
while other tip QAs are only for testing. For “job
hunting”, Figure 1 presents a typical example of a
tuple of a context, a tip question, and an answer.
Furthermore, in order to understand rough idea of

1 https://rajpurkar.github.io/
SQuAD-explorer/
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Figure 1: An example of the machine comprehension model of tip QA for “job hunting” together with
an example of a tuple of a context C, a question Q, and answer A (extracted from a column web page
entitled “Formatting Tips for Your Curriculum Vitae (CV)” (https://www.thebalancecareers.com/
curriculum-vitae-format-2060351) from a tip website titled “The Balance Careers”
(https://www.thebalancecareers.com/) )

the (how-to) tip questions we study in this paper in
the broader sense, we manually classify them into
five types as shown in Table 1 and also shown sev-
eral examples for each of the five types and their
statistics within the dataset we developed in this
paper.

This paper then applies BERT (Devlin et al.,
2019), one of the state-of-the-art machine com-
prehension models, to a Japanese tip QA dataset.
The trained tip QA model is also compared with
a factoid QA model which is also trained with
a Japanese factoid QA dataset. Evaluation re-
sults revealed that the tip machine comprehension
performance was almost comparative with that of
the factoid machine comprehension even with the
training data size reduced to around 4% of the
factoid machine comprehension. Thus, the tip
machine comprehension task requires much less
training data compared with the factoid machine
comprehension task.

2 Query Focuses and Collecting Web
Pages

This section briefly describes the workflow of col-
lecting web pages. First, the notion of query fo-
cus is a keyword used for every search request re-
lated to a specific subject. For example, whenever
the aim was to collect web pages about anything

related to job hunting, the word “job hunting”
was always put at the beginning of the query, and
all available suggested keywords provided by the
search engine were collected, such as “job hunting
self-promotion” and “job hunting portfolio.” Us-
ing all such suggested keywords as queries (called
search engine suggests or suggests), the search en-
gine is crawled, and top 10 results for each suggest
are collected.

2.1 Collecting Search Engine Suggests

Web search engine suggests are the query key-
words automatically offered by a search engine
when a user types part of a search query. Such
suggested keywords can be seen as frequent user
activities logged by the search engine, and they
mostly lead to pages on trending topics. For a
given query focus keyword, about 100 specified
types of Japanese hiragana characters were en-
tered into Google R⃝ search engine from which
up to 1,000 suggests were collected. These 100
types of Japanese hiragana characters include the
Japanese alphabet consisting of 50 characters,
voiced and semi-voiced variants of voiceless char-
acters and Youon.
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tip question type examples rate (%)
essential, words of caution, reminder what is the essential of ∼ ? / what are the words of caution

on ∼ ? / what should one take care of when ∼ ?
23.6

characteristics, definition, knowledge,
fact, rule

what is the characteristics of ∼ ? / what is ∼ ? / which
documents are required to submit to the city hall when ∼ ?

18.5

method and how-to tip (in the narrower
sense)

how can I do ∼ ? / what is the tip, know-how, hack for doing
∼ ?

16.6

reason, cause, background, purpose what is the reason for ∼ ? / why ∼ ? / what is the purpose of
∼ ?

4.3

habit, experience, recommendation (tip
of any type other than the above four
types)

what is the recommendation when ∼ ? / what should I use
when ∼ ? / when should I start ∼ ?

37.0

total — 100

Table 1: Statistics of the Classification of Tip Question Types

2.2 Collecting Web Pages

Google Custom Search API2 was used to scrape
web pages from the search engine. Using the web
search engine suggests collected in the previous
section combined with the query focus keyword as
queries (in the form of AND search), the first 10
pages returned per search query are collected. The
set of web pages queried by suggest s can be rep-
resented as D(s,N), where N is 10 as a constant
standing for top N pages. Additionally, the search
engine suggests were saved for every web page.
Since different search engine suggests could lead
to the same web page, one web page could have
multiple suggests. Let S be the set of all suggests
about one query focus. Then, the set of web pages
scraped using all possible suggests is represented
as D.

D =
∪

s∈S

D(s,N)

3 Selecting Candidates of Tip Websites

This paper employs LDA (latent Dirichlet allo-
cation) (Blei et al., 2003) to model topic distribu-
tions among documents. Let D be a document set
containing all collected web pages and K (= 50
in this paper) be the number of topics. When the
topic model is applied, topic distribution P (zn |d)
is available for every d (d ∈ D). Every docu-
ment d is assigned a topic with the highest prob-
ability among all its P (zn | d). The net effect is
that for every topic zn, there is a group D(zn)
(n = 1, . . . , K) of corresponding documents that
are assigned to zn.

2 https://developers.google.com/
custom-search/

Then, domain names are extracted from all col-
lected web pages based on their URLs. The do-
main names that have corresponding web pages
reside in 10 or more sets D(zn) (n = 1, . . . ,K),
i.e., they have their web pages under more than or
equal to 10 topics which are considered as candi-
dates for tip websites3. Out of those candidates
whose numbers are 31 for job-hunting in this ex-
periment, 14 domain names were randomly se-
lected, for all of which tip QAs were successfully
collected. Henceforth, the set of those 14 tips web-
sites will be denoted as T . Similarly, for mar-
riage, 13 domain names have their web pages un-
der more than or equal to 10 topics and are consid-
ered as candidates for tip websites. For all of those
13 domain names, tip QAs were successfully col-
lected. Thus, for marriage, the set of those 13 tips
websites will be denoted as T .

4 Collecting Tip QAs

4.1 Collecting Web Pages of Tip Websites

From each website out of the set T of tip websites,
web pages are collected as the source for collect-
ing tip QAs. First, from each website of T , all of
its web pages are collected into set Dinf(T ). Then,
the LDA topic model (Blei et al., 2003) P (zn | d)
(available for every d (d ∈ D)) trained in Sec-

3 Ohkawa et al. (2018) examined quantitative charac-
teristics of tip websites. Furthermore, it is reported in
Ohkawa et al. (2018) that domain names of candidate tip
websites can be collected from those that have correspond-
ing web pages in sets D(zn) of web pages for multiple topics
zn (n = 1, . . . , K). It is observed, however, that typical tip
websites actually have their web pages under far more than
two topics and typically, more than or equal to 10 topics.
Thus, in this paper, it was decided to select domain names
which have their web pages under more than or equal to 10
topics as candidates for tip websites.
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# Pairs of question
and answer

1 2 3 4 5 Total

# Web pages (%)
131

(28.1)
102

(21.9)
64

(13.7)
33

(7.1)
136

(29.2)
466

(100)

Table 2: # Pairs of QA collected from a web page (for “job hunting” and “marriage”)

tion 3 with the set D of web pages scraped using
all possible suggests is applied to each web page d
within set Dinf(T ). According to the probability
distribution P (zn|d) of topics zn (n = 1, . . . , K)
for each web page d, the topic zn with the highest
probability is assigned to d. Then, the set of web
pages to which the topic zn is assigned is denoted
as Dinf(zn, T ):

Dinf(zn, T ) =
{

d ∈ Dinf(T )
∣∣∣

zn= argmax
zu (u=1,...,K)

P (zu|d)
}

For the query focus “job hunting,” out of the total
K = 50 topics, |Dinf(zn, T )| > 0 holds, i.e., at
least one web page is assigned to 42 topics for job
hunting and 29 for marriage.

4.2 “Column Pages” as the Source for
Collecting Tip QAs

This study analyzes the types of web pages which
tend to include more and more tips compared with
other types of web pages. This paper examines tip
websites which include column pages containing
various tips and also include other types of web
pages, such as pages for commercial sale of prod-
ucts or pages with reviews and experiences. How-
ever, most tips are found only in column pages
but not in other types of pages. The type of web
pages which tend to include tips are mostly col-
umn pages.

Out of the set Dinf(zn, T ) of web pages defined
in the previous section, all the column pages are
extracted into a subset:

Dinf
c (zn, T )

In the case of the query focus “job hunting,” out
of 42 topics satisfying |Dinf(zn, T )| > 0, 36 top-
ics satisfy |Dinf

c (zn, T )| > 0, i.e., include column
pages. For “marriage”, all the 29 topics satisfy
|Dinf

c (zn, T )| > 0. For each topic zn, all the web
pages in this set are used as a source for collecting
tip QAs.

4.3 Procedure for Collecting Tip QAs
This section describes the procedure for collect-
ing tip questions and examples, such as those pre-
sented in Figure 1. From each web page within the
set Dinf

c (zn, T ) constructed in the previous sec-
tion, tuples of context C, question Q, and answer
A are manually collected. Specifically, within
each column web page, every paragraph is exam-
ined, and it is decided whether a pair of a ques-
tion and an answer can be collected from the para-
graph. From each column web page, at most 5
pairs of a question and an answer are collected.
Figure 1 presents an example of collecting a tuple
of a context, a question, and an answer from a col-
umn web page of a “job hunting” tip website. In
this example, context C, the following paragraph
about font choice and font size is selected:

There’s no need to use ornate fonts that
are difficult to read; . . . Your font size
should be between 10 and 12 points, al-
though . . .

From this paragraph, a pair of question Q “What is
the font size for CV?” and answer A “between 10
and 12 points” is extracted. Table 2 lists the dis-
tribution of the number of the pairs of a question
and an answer collected from a web page for “job
hunting” and “marriage”.

For the query focus “job hunting,” out of the
overall 1,268 column web pages collected follow-
ing the procedure of this paper, 352 pages were
actually examined, out of which 907 pairs of tip
QAs are collected. For the query focus “marriage,”
out of the overall 3,075 column web pages col-
lected following the procedure of this paper, 114
pages were actually examined, out of which 432

pairs of tip QAs are collected. For “apartment”
query focuses, 50 pairs of tip QAs are collected.
For other query focuses “hay fever,” “dentist,” and
“food poisoning,” a total of 50 pairs of tip QAs are
collected. Table 3 presents an example of Japanese
tip QAs for each of “job hunting,” “marriage,” and
“hay fever.” These numbers and examples are all
for SQuAD1.1 type answerable questions only.
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Context C Question Q Answer A

履歴書に短所を書く時は前向きにまとめるようにします．「工夫して克服
した」「直すように努力している」などと書けば悪いイメージの短所で
好印象を与えることも可能です．自分の短所の中で努力すれば改善しそ
うなものを選ぶと書きやすいでしょう．

履歴書に短所を書く時のポイントは?
(What is the tip when including one’s weak
points into one’s resume?)

前向きに
まとめる
(Organize them
positively.)

一年の中でも結婚式の費用を抑えやすく比較的安い月と
いえるのが 1月・2月．寒さが厳しいシーズンであるた
め，結婚式の施行数もそれほど多くなく，通常よりも割
安なプランを用意している会場が多数あります．また，
希望の日程で日取りを抑えやすいのも魅力．キャンドル
の炎を使ったやさしい光のライトアップやキラキラと輝
く装飾など，冬らしいコーディネートを取り入れるのも
オススメです．

一年の中でも結婚式の費用を抑えやすく
比較的安い月は?
(In which month, is it the easiest to save
money for a wedding?)

1月・2月
(January and
February)

そのため花粉の季節は，室内の湿度を 50∼55%ほどに
保てるように加湿器を使用しましょう．

花粉の季節に保つべき室内の湿度の目安は?
(How much indoor humidity should be
maintained in the pollen season?)

50∼55%
(50∼55%)

Table 3: Examples of Japanese tip QAs selected from training and test datasets used in evaluation (tuples of Context
C, Question Q, and Answer A for query focuses “job hunting,” “marriage,” and “hay fever”, for SQuAD1.1:
answerable questions)

From these tip QAs of SQuAD1.1 type with an-
swerable questions, tip QAs of SQuAD2.0 type
with unanswerable questions are manually cre-
ated. From a tuple of a context C, a question Q,
and an answer A of SQuAD1.1 type, which is an-
swerable in that the context C includes the answer
A to the question Q, the annotator manually cre-
ated another tuple, which is an unanswerable QA,
of a context C ′ ( ̸= C), a question Q′ (= Q),
and the answer A′ = ⟨null⟩. Here, within ex-
actly the same column web page of the tip website,
from which the context C is extracted, the anno-
tator searched for another paragraph other than C,
which does not include any answer to the original
question Q. The selected paragraph C ′ constitutes
the context of a tip QA of SQuAD2.0 type with an
unanswerable question. Note that it is quite impor-
tant to search for C ′ within exactly the same col-
umn web page of the tip website, from which the
context C is extracted. For example, in the case
of the tip QA on “job hunting” in Figure 1, for the
question Q “What is the font size for CV?”, within
the same column web page about “job hunting”,
another paragraph C ′ other than C is selected. The
selected paragraph C ′ still presents a certain tip
about job hunting and CV, while it does not in-
clude any tip about the font size for CV. We fol-
low this strategy simply because it avoids tip QAs
with unanswerable questions becoming much eas-
ier to answer compared with tip QAs with answer-
able questions. With this strategy, for each of al-
most all the tip QAs of SQuAD1.1 type answer-
able questions, we successfully created at least one
tip QA of SQuAD2.0 type with an unanswerable
question.

5 Applying BERT to Tip Machine
Comprehension

5.1 Dataset for Evaluation

In this paper, we developed two types of datasets
for evaluation: one for SQuAD1.1 type answer-
able questions only and another for SQuAD2.0
type answerable and unanswerable questions.
This paper presents evaluation results with the
SQuAD2.0 type dataset. For the SQuAD2.0 type
dataset, Table 4 presents the statistics of train-
ing and test datasets for evaluation in this pa-
per. Table 4 (a) presents those of the training and
test datasets for Japanese factoid QAs4. Those
Japanese factoid QAs, which are of SQuAD2.0
type, are manually collected from Japanese quiz
data by automatically identifying context texts
from Japanese version of Wikipedia and then man-
ually judging whether each identified context in-
cludes the answer to the question. Table 4 (b) and
Table 4 (c) present the statistics of training and test
datasets for Japanese tip QAs about “job hunting”
and “marriage”. Similarly, Table 4 (d) presents
those for test datasets for Japanese tip QAs about
“apartment,” “hay fever,” “dentist,” and “food poi-
soning”5.

4 http://www.cl.ecei.tohoku.ac.jp/rcqa/
(in Japanese)

5 Four annotators participated in the procedure of collect-
ing tip QAs, where we measured inter-annotator agreement
rate according to AC1 (Gwet, 2008), but not to kappa (Cohen,
1960), mainly because two or more annotators tend to have
high overall agreement rate, causing imbalanced class label
distribution and instability of kappa. AC1 inter-annotator
agreement is measured through the two sub-procedures: i.e.,
i) manually judging whether the questions selected by two
out of three annotators are semantically equivalent when ex-
actly the same context paragraph is given to the three anno-
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(a) Factoid QAs

# tuples of a context,
a question and an answer

( answerable /
unanswerable )

average
# words
within a
context

average
# words
of a
question

Train. 27, 645/28, 906 88.2 26.1

Test 49/51 82.8 27.1

(b) Tip QAs: “job hunting”

# tuples of a context,
a question and an answer

( answerable /
unanswerable )

average
# words
within a
context

average
# words
of a
question

Train. 755/845 63.0 10.7

Test 50/54 71.3 9.7

(c) Tip QAs: “marriage”

# tuples of a context,
a question and an answer

( answerable /
unanswerable )

average
# words
within a
context

average
# words
of a
question

Train. 382/382 44.2 11.2

Test 50/48 68.7 10.2

(d) Tip QAs: “apartment,” “hay fever,” “dentist,” and “food poisoning”

query
focus

# tuples of a context,
a question and an answer

( answerable /
unanswerable )

average
# words
within a
context

average
# words
of a
question

apartment 50/49 82.0 10.3

hay fever,
dentist,
food
poisoning

50/43 71.0 9.5

Table 4: Statistics of training and test datasets

5.2 BERT Implementation

As the version of BERT (Devlin et al., 2019) im-
plementation which can handle a text in Japanese,
the TensorFlow version6 and the Multilingual
Cased model7 were used as the pre-trained model.

tators, and ii) manually judging whether the answers selected
by two out of three annotators are semantically equivalent
when exactly the same pair of a question and a context is
given to the three annotators (their detailed procedures are
omitted for space restriction). Average of AC1 is 0.61 for the
sub-procedure i) and 0.92 for the sub-procedure ii), which are
sufficiently high.

6 https://github.com/google-research/bert
7 Trained with 104 languages, available from

https://github.com/google-research/bert/
blob/master/multilingual.md.

Before applying BERT modules, MeCab8 was ap-
plied with IPAdic dictionary, and the Japanese text
was segmented into a morpheme sequence. Then,
within the BERT fine-tuning module, the Word-
Piece module with 110k shared WordPiece vocab-
ulary was applied, and the Japanese text was fur-
ther segmented into a subword unit sequence. Fi-
nally, the BERT fine-tuning module for machine
comprehension9 was applied as well as the fine-
tuned model. The BERT pre-trained model was
fine-tuned with the following three types of train-

8 http://taku910.github.io/mecab/ (in
Japanese)

9 run_squad.py, with the number of epochs as 2,
batch size as 8, and learning rate as 0.00003.
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Figure 2: Evaluation results (exact match + partial match)

ing datasets:

(i) The training dataset of factoid QAs in Table 4
(a).

(ii) The training datasets of the tip QA about “job
hunting” in Table 4 (b) and “marriage” in Ta-
ble 4 (c).

(iii) Mix of (i) and (ii).

Here, note that we train a single model with each
of these three training datasets (i)∼(iii), i.e., a sin-
gle factoid machine comprehension model with
(i), a single tip machine comprehension model
with (ii), and a single machine comprehension
model for the mixture of factoid and tip with (iii).
It is especially important to note that we train a
single tip machine comprehension model with the
tip QA datasets about “job hunting” and “mar-
riage”, then evaluate it against the tip QA test
datasets about all the query focuses, i.e., ‘job hunt-
ing,” “marriage,” “apartment,” “hay fever,” “den-
tist,” and “food poisoning.”

5.3 Evaluation Result
In the evaluation, it is manually judged whether
the answer predicted by the fine-tuned model and
the reference answer partially match or not. We
prefer manual evaluation rather than automatic
evaluation, mainly because we prefer the quality
of evaluation than avoiding the cost of evaluation.
Figure 2 presents the evaluation results for the tip

QA test datasets about “job hunting,” “marriage,”
“apartment,” and a mix of “hay fever,” “dentist,”
and “food poisoning,” as well as for the factoid
QA test dataset. As clearly seen from these re-
sults, for all the tips test datasets, (ii) training only
with tip QAs and (iii) training with a mix of tip QA
and factoid QA training datasets outperforms and
(i) training only with factoid QAs. For the factoid
QA test datasets, on the other hand, (i) training
only with factoid QAs and (iii) training with a mix
of tip QA and factoid QA training datasets outper-
forms (ii) training only with tip QAs. This result
supports the conclusion that the tip machine com-
prehension task is essentially different from the
factoid machine comprehension task. But, still,
for tips on “job hunting,” “marriage,” and the mix
of “hay fever,” “dentist,” and “food poisoning,”
training with a mix of tip QA and factoid QA
training datasets slightly outperforms training only
with tip QAs. This result indicates that the tip ma-
chine comprehension task still to some extent ben-
efits from a large-scale factoid QA training dataset
when only small-scale tip QAs are available.

Another interesting finding is that, in tip ma-
chine comprehension, the single model fine-tuned
with tip QA training datasets on “job hunting” and
“marriage” performed well in tip machine com-
prehension of other query focuses, such as “apart-
ment,” “hay fever,” “dentist,” and “food poison-
ing.” Thus, in tip comprehension, it is sufficient
to collect tip QA only for one or two query fo-
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Figure 3: Comparing learning curves of factoid QAs, tip QAs, and training with a mix of factoid and tip QAs
(exact match + partial match)

cuses, such as “job hunting” and “marriage,” and
then to fine-tune the tip machine comprehension
model which is applicable to tip machine compre-
hension on any query focus.

Figure 3 also presents a comparison of learning
curves for the following three cases:

(a) Training with 5%, 10%, . . ., 95%, and 100%
of factoid QA training dataset of (i) in the
previous section and testing with the factoid
QA test dataset from Table 4 (a) (plotted in
blue).

(b) Training with 10%, 20%, . . ., 90%, and
100% of the tip QA training datasets on “job
hunting” and “marriage” of (ii) in the previ-
ous section and testing with the tip QA test
dataset on “job hunting” of Table 4 (b) (plot-
ted in orange).

(c) Training with a mix of (a) and (b), where the
factoid QA training dataset of (a) is always
with its 100% size, whereas the tip QA train-
ing dataset on “job hunting” of (b) has a size
of 10%, 20%, . . ., 90%, and 100% sizes and
testing with the tip QA test dataset on “job
hunting” of Table 4 (b) (plotted in green).

As can be seen from these results, the learning
curve (b) of tip QAs and that (c) of the mix of fac-
toid and tip QAs perform comparatively well and
outperform that of factoid QAs (a) in the range of
around a few thousand training data size. This re-
sult indicates that, at least for tip machine com-

prehension of “job hunting”, benefit from a large-
scale factoid QA training dataset is very little.
Far more important finding in this result is that
the tip machine comprehension performance is al-
most comparative with that of the factoid machine
comprehension even when trained with as little as
around 4% (≒ 2,364/56,551) of the training data
size of the factoid machine comprehension. Thus,
it can be concluded that the tip machine com-
prehension task requires much less training data
compared with the factoid machine comprehen-
sion task.

6 Related Work

In the field of developing QA datasets or machine
comprehension datasets which may include non-
factoid QAs, quite a limited number of datasets
are publicly available in any language. In En-
glish, MS MARCO (Nguyen et al., 2016) has
been developed using Bing’s search logs and pas-
sages of retrieved web pages, which may in-
clude non-factoid QAs. Question types in MS
MARCO are classified into numeric, entity, loca-
tion, person, and description (phrase). In Chinese,
DuReader (He et al., 2018) has been developed us-
ing Baidu Search and Baidu Zhidao, which is a
Chinese community-based QA site. DuReader’s
question types are classified into entity, descrip-
tion, and yes-no questions on fact or opinion.
DuReader’s QAs definitely include non-factoid
ones. Another type of non-factoid QA dataset is
NarrativeQA (Kočiský et al., 2018) dataset (in En-
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glish), which contains questions created by editors
based on summaries of movie scripts and books.
In the case of the Japanese language QA dataset,
there is quite a limited number of publicly avail-
able factoid QA datasets, and one of them was in-
troduced in Section 5.1. There is no publicly avail-
able Japanese non-factoid QA dataset.

7 Conclusion

This paper explored a way to develop a dataset
for training Japanese tip QA models, and it ap-
plied BERT (Devlin et al., 2019) to a Japanese tip
QA dataset. Evaluation results revealed that the
tip machine comprehension performance was al-
most comparative with that of the factoid machine
comprehension even with the training data size re-
duced to around 4% of the factoid machine com-
prehension. Thus, the tip machine comprehension
task requires much less training data compared
with the factoid machine comprehension task.

Future direction of this work includes ap-
plying the proposed framework of tip machine
comprehension to other languages, such as En-
glish and Chinese. In both languages, fac-
toid QA datasets are publicly available (e.g.,
SQuAD (Pranav et al., 2016, 2018) for English
and CMRC2018 (Cui et al., 2018) for Chinese),
and it is quite attainable to train a factoid ma-
chine comprehension model by fine-tuning the
BERT pre-trained model and then to directly ap-
ply the factoid machine comprehension model to
the tip machine comprehension task. Actually,
as a preliminary work, a Chinese factoid ma-
chine comprehension model is trained by fine-
tuning the pre-trained Multilingual Cased model
with CMRC2018 Chinese factoid QA dataset1011,
and then applying it to 30 Chinese tip questions
on “marriage” with context texts. As a result,
around 50% accuracy for manual evaluation is
achieved by exact and partial match, which is al-
most comparative to the performance achieved in
the Japanese tip machine comprehension task re-
ported in this paper. Thus, it is expected that ex-
tending the proposed framework of tip machine
comprehension to other languages, such as En-
glish and Chinese, is quite straightforward.

Another future direction is to extending the pro-
posed framework of tip machine comprehension

10 https://hfl-rc.github.io/cmrc2018/
english/

11 https://github.com/ymcui/cmrc2018

to open domain tip machine comprehension. This
extension is similar to the extension of existing
factoid machine comprehension with Wikipedia
texts’ paragraphs as contexts to open domain ma-
chine comprehension with the whole Wikipedia
articles (Chen et al., 2017). In the extended open
domain tip machine comprehension framework,
the document retriever module is realized based on
the tip websites search and column web page col-
lection architectures proposed in this paper. The
document reader module can be easily realized by
simply applying the tip machine comprehension
model of this paper.

Another definitely important future direction
should be to invent a technique of how to automate
the procedure of collecting column web pages and
generating the tuple of a context C, a question Q,
and answer A. This task can be regarded as that of
training a tip machine comprehension model from
a noisy training dataset.
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Abstract

Recent work has suggested that language mod-
els (LMs) store both common-sense and fac-
tual knowledge learned from pre-training data.
In this paper, we leverage this implicit knowl-
edge to create an effective end-to-end fact
checker using a solely a language model, with-
out any external knowledge or explicit re-
trieval components. While previous work on
extracting knowledge from LMs have focused
on the task of open-domain question answer-
ing, to the best of our knowledge, this is the
first work to examine the use of language mod-
els as fact checkers. In a closed-book set-
ting, we show that our zero-shot LM approach
outperforms a random baseline on the stan-
dard FEVER task, and that our finetuned LM
compares favorably with standard baselines.
Though we do not ultimately outperform meth-
ods which use explicit knowledge bases, we
believe our exploration shows that this method
is viable and has much room for exploration.

1 Introduction

Pre-trained language models have recently lead to
significant advancements in wide variety of NLP
tasks, including question-answering, commonsense
reasoning, and semantic relatedness (Devlin et al.,
2018; Radford et al., 2019; Peters et al., 2018;
Radford et al., 2018). These models are typi-
cally trained on documents mined from Wikipedia
(among other websites). Recently, a number of
works have found that LMs store a surprising
amount of world knowledge, focusing particularly
on the task of open-domain question answering
(Petroni et al., 2019; Roberts et al., 2020). In this
paper, we explore whether we can leverage the
knowledge in LMs for fact checking.

We propose an approach (Fig. 1b) that replaces
the document retriever and evidence selector mod-
els in traditional fact-checking (Fig. 1a) with a

∗Work done while at Facebook AI.

(a) Traditional fact-checking
pipeline.

(b) Our new fact-
checking pipeline.

Figure 1: Traditional fact-checking pipeline (left) vs.
Our LM-based pipeline (right)

single language model that generates masked to-
kens. This offers a number of advantages over the
traditional approach: first, the procedure is over-
all simpler, requiring fewer resources and compu-
tation – we do not need to maintain an explicit
knowledge base external to our LM, and we do
not need an explicit retrieval step. The latter in
particular can lead to a huge speedup in the sys-
tem, since we can skip the time-consuming step
of searching over a potentially massive space of
documents. Second, LMs are widely-available and
are currently attracting significant research effort.
Thus, research in language-modeling, particularly
in improving LMs ability to memorizing knowl-
edge, may also improve the overall effectiveness
of our fact-checking pipeline. Lastly, our system
further shifts the paradigm towards “one model for
all” — LMs have been used for a wide variety of
tasks, and now also for fact checking.

In order to determine the feasibility of our
approach, we start with a human review study
where participants are given a claim from FEVER
(Thorne et al., 2018a), and are asked to validate
the claim using only a BERT language model. We
found that users had reasonable success in deter-
mining claim validity. Empowered by the results,
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we design an end-to-end neural approach for utiliz-
ing BERT as a fact checker (see Figure 1b). At a
high level, we first generate an evidence sentence
by masking the claim and using BERT to “fill in”
the mask. We then feed the generated sentence,
alongside the original claim, to a verification clas-
sifier model that classifies whether the claim is sup-
ported, refuted, or the information is insufficient to
make a call.

The rest of the paper is organized as such: Sec-
tion 2 gives an overview of the problem space.
Section 3 describes our preliminary experiments.
Sections 4 and 5 highlights our main methods (i.e.
end-to-end model, experimental setup), and 6 re-
ports our main results. Sections 7 and 8 conclude
our paper with a discussion and future works.

2 Background

Task The main goal of fact-checking is to vali-
date the truthfulness of a given claim. Each claim
is assigned one of three labels: support, refute, or
not enough information (NEI) to verify.

Dataset We use FEVER (Thorne et al., 2018a), a
large-scale fact-checking dataset with around 5.4M
Wikipedia documents. Claims were generated by
extracting sentences from Wikipedia (with possible
mutations), and were annotated by humans with
their verification label and/or evidence sentences
from Wikipedia.

Traditional pipeline Traditional fact-checking
systems (Fig. 1a) access knowledge within an ex-
ternal knowledge base (i.e. Wikipedia) to validate
a claim. They use a multi-step, pipelined approach,
which involve IR-modules, such as document re-
trievers and evidence selectors, for retrieving the
appropriate evidence, and verification modules that
take in {claim, [evidences]} pairs and pre-
dict a final verification label

Our pipeline As shown in Fig.1b, our proposed
pipeline replaces both the external knowledge base
as well as the IR modules with a pretrained lan-
guage model. In the remainder of this paper, we
utilize BERT. Future work can explore other lan-
guage models.

Querying the Language Model In Petroni et al.
(2019), language models were used as knowledge
base to answer open-domain questions. To do this,
the authors devised a probe known as “LAMA”,

which generates fill-in-the-blank cloze-style state-
ments from questions. For example, in order to
answer the question ‘Where is Microsoft’s head-
quarter?’, the question would be rewritten as as
‘Microsoft’s headquarter is in [MASK]’ and fed
into a language model for the answer.

Inspired by LAMA (Petroni et al., 2019), we also
generate evidences from language models through
fill-in-the-blank style tasks.

3 Exploratory Experiments

In order to determine the feasibility of our ap-
proach, we began by conducting a human review
study on 50 random-selected claims from FEVER
(Thorne et al., 2018a). Participants were asked to
validate each claim with only a language model, by
following these steps:

1. Mask a token from the claim, depending on
component of the claim we wish to verify:
Thomas Jefferson founded the University
of Virginia after retiring→ Thomas Jeffer-
son founded the University of [MASK] af-
ter retiring.
In this example, the user is verifying which
university was founded by Thomas Jefferson.
Note that the user could alternatively choose
to mask Thomas Jefferson in order to verify
the founder of University of Virginia.

2. Get the top-1 predicted token from the LM.
Top-1 predicted token = Virginia.

3. If predicted token matches the masked token,
the claim is supported, otherwise it is refuted.
Virginia ≡ Virginia→ SUPPORTS

In other words, we asked participants to serve as
the “masking” and “verification classifier” compo-
nents of our fact-checking pipeline in Fig. 1b.

Two participants examined the 50 claims, and
eventually achieved an average accuracy of 55%. 1

We also conducted this zero-shot study on a
larger scale and in a more systematic way, by taking
all claims in the full FEVER dataset, and always
masking the last token.2 Otherwise, we preserve
steps 2 and 3 from above. Even with this naı̈ve

1Both participants had NLP background, and both were
familiar with FEVER and the fact-checking task. We also as-
sumed both participants were capable of selecting the optimal
position to mask.

2We omit examples for which the masked token is not in
BERT’s vocab.
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token-matching approach, we were able to obtain
precision 56% and F1 59% for the positive label
(SUPPORT).

Our preliminary experiments’ results illustrate
that, with a good masking mechanism and verifica-
tion model, language models can indeed feasibly
be used for fact-checking.

4 End-to-End Fact-Checking Model

Enlightened by results from our preliminary exper-
iments, we devise an end-to-end model that auto-
mates and improve upon the masking and verifica-
tion steps that were conducted by humans. Specifi-
cally, we resolve two limitations: 1. manual mask-
ing of claims, and 2. naı̈ve validation of the pre-
dicted token that fails to deal with synonyms and
other semantic variants of the answer.

Automatic Masking We mask the last named
entity in the claim, which we identify using an off-
the-shelf Named-Entity-Recognition (NER) model
from spaCy Honnibal and Montani (2017). In par-
ticular, we choose to mask named entities in order
to better ensure that the token we mask actually
makes use of the knowledge encoded in language
models. (Otherwise, we may mask tokens that only
make use of the LM’s ability to recover linguis-
tic structures and syntax – for instance, masking
stopwords). This hinges on the observation that,
for most claims, its factuality hinges upon the cor-
rectness of its entities (and the possible relations
between them), and not on how specifically the
claim is phrased.

Verification using Entailment To move beyond
naı̈vely matching predicted and gold tokens, we
leverage a textual entailment model from Al-
lenNLP (Gardner et al., 2018) to validate our LM
predictions. Note that textual entailment models
predict the directional truth relation between a text
pair (i.e. “sentence t entails h” if, typically, a hu-
man reading t would infer that h is most likely
true).

Full-pipeline steps Detailed steps for our end-to-
end model (Fig. 2) are as follows:

1. Masked the last named entity found by the
NER model.

2. Get the top-1 predicted token from the LM,
and fill in the [MASK] accordingly to create
the “evidence” sentence.

Figure 2: Detailed illustration of our pipeline

3. Using the claim and generated “evidence” sen-
tence, obtain entailment “features” using out-
puts from the last layer of the pretrained en-
tailment model (before the softmax).

4. Input the entailment features into a multi-layer
perceptron (MLP) for final fact-verification
prediction.

5 Experiments

5.1 Experiment setup

We conduct our experiments on the FEVER claim
verification dataset (Thorne et al., 2018a) using the
standard provided splits. We use the publicly avail-
able 24-layer BERT-Large as our language model,
which was pre-trained on Wikipedia in 2018.3

The MLP was optimized using Adam, and
trained with a mini-batch size of 32. The learn-
ing rate was set to 0.001 with max epoch size 200
and epoch patience of 30. The embedding size of
the entailment features (from the pre-trained entail-
ment model) was 400, and our MLP classifier had
hidden size of 100.

5.2 Evaluation Metric

The traditional pipeline was evaluated using
FEVER scoring, which is a stricter form of scoring
that treats predictions to be correct only when cor-
rect evidences were retrieved. Since our pipeline

3It’s possible the model was trained on a later Wikipedia
dump than what’s released as part of FEVER, but pre-training
BERT from scratch is beyond the scope of this paper.
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Model Label prec recall f1 accuracy macro prec macro recall macro f1

BERTfreeze

REFUTES 0.36 0.69 0.47
0.38 0.39 0.38 0.33SUPPORTS 0.43 0.09 0.15

NEI 0.39 0.35 0.37

BERTfinetune

REFUTES 0.62 0.55 0.58
0.57 0.57 0.57 0.57SUPPORTS 0.54 0.67 0.59

NEI 0.57 0.49 0.53

BERTasKB
REFUTES 0.76 0.38 0.51

0.49 0.59 0.49 0.44SUPPORTS 0.41 0.92 0.57
NEI 0.58 0.15 0.24

SoTA (Thorne et al., 2018b) * - - - - 0.68 - - -

Table 1: Performance comparison between BERT-as-encoder models (BERTfreeze, BERTfinetune) and BERT-
as-LM model (BERTasKB) (*We report fact-checking label accuracy, not FEVER score - a stricter form of
scoring

does not utilize an external knowledge base, and
does not have an evidence retriever, we only ex-
amine the correctness of the final verification step
using precision, recall, F1 and accuracy. We leave
generating evidences with language models for fu-
ture work.

5.3 Baselines

We introduce two language model baselines for
comparison. The first baseline, BERTfreeze, uses
an MLP layer on top of a frozen BERT encoder to
make predictions (gradients backpropagate to the
MLP layer only). In this baseline, we aim to extract
the already stored knowledge within BERT model
as an embedding vector, and avoid finetuning the in-
ternal layers, in order to disentangle BERT’s knowl-
edge from it’s ability to serve as a high-capacity
classifier.

The second baseline, BERTfinetune, allows all
the model layers to be updated based on the fact-
verification loss from the MLP layer. This baseline
captures BERT’s ability as both a language model,
and a high-capacity text encoder.

Note that the dataset is evenly distributed among
the three classes, therefore a random baseline
would yield an accuracy of 33%. Also note that the
Fever-baseline model introduced by the task orga-
nizers achieves accuracy score of 48.8% (Thorne
et al., 2018b).

6 Results and Discussion

The results of the three models are reported in Ta-
ble 1. We observe that our proposed approach
(BERTasKB) outperforms BERTfreeze on all
metrics suggesting that querying language models
in QA style is a better approach for extracting their
encoded knowledge. Similarly, BERTasKB
model achieves an accuracy score of 49% which

is comparable to Fever-baseline at 48.8%, except
without the need for explicit document retrieval
and evidence selection. This suggests that lan-
guage models, used as sources of knowledge for
fact checking, are at least as effective as standard
baselines. However, there is still much room for
future research, as the state-of-the-art model on the
Fever shared task achieves an accuracy score of
68.21% (Thorne et al., 2018b).

On the other hand, we find that BERTasKB
lags behind BERTfinetune, as expected, on most
metrics. We hypothesize this is due to the high
capacity of the model, in comparison, and to the
effectiveness of BERT models in text classifica-
tion. Upon examining the results of these two mod-
els closely, we find that BERTasKB struggles
mightily with the NEI category (F1 score of 0.24
vs 0.53) indicating that our current approach might
need specific modules to better tackle that cate-
gory. As both models seem to be equally adept in
identifying the support class (0.57 vs 0.59 F1),
indicating that BERTasKB is unable to distin-
guish between refute and NEI classes. Future
work can further investigate techniques to identify
these two categories.

Interestingly, the BERTfreeze achieves an accu-
racy score of 38% which is slightly better than a
random baseline which achieves 33%.

7 Analysis of Token Prediction Results

In this section, we provide some examples of to-
kens predicted from BERT to understand the per-
formance of “evidence generation”.

First two examples in Table 2 (a, b) are exam-
ples with correct fact-check labels from zeroshot
setting. When a claim has enough context, and con-
tains rather rare names such as “Sarawak”, BERT
manages to predict correct tokens.
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ID Claim Masked Token Predicted Token Label
a Kuching is the capital of [MASK]. Sarawak Sarawak SUPPORTS
b The Beach’s director was Danny [MASK]. Boyle Boyle SUPPORTS
c Tim Roth was born in [MASK] 1961 London SUPPORTS
d Chile is a [MASK]. country democracy SUPPORTS
e Seohyun [MASK]. sings Park SUPPORTS

Table 2: Examples of token predictions from BERT in zeroshot setting. a, b are correctly fact-checked examples,
and c, d, f are wrongly fact-checked examples.

We also provide detailed analysis on the error
cases to facilitate future work in making further
improvements:

• One common form of errors is that, the en-
tity type of token prediction is biased towards
the way how the training data was written.
For example, sentence c from Table 2 illus-
trates a common claim structure in FEVER
dataset which talks about the birth-year of a
person (e.g., Tim Roth). However, 100% of
our test samples with such structure always
predict city/country (e.g., London). The rea-
son is, in Wikipedia, the birth-years are al-
ways written in the following structure “PER-
SON (born DATE)” (e.g., “Tim Roth (born 14
May 1961)”), and birth city/country written in
“PERSON was born in city/country” structure
(e.g., “Roth was born in Dulwich, London”).
Therefore, to obtain birth-year, the claim had
to be written as Tim Roth (born [MASK]) to
predict correctly.

• Sentence d is another example that the entity
type of token prediction is hard to control. “is
a...” is a very general prefix phrase, making
it hard for BERT model to correctly predict
correct entity type.

• There are lots of short claims in FEVER test
set (approx. 1100 samples) which has less
than 5 tokens (e.g. sentence e). Since there is
very little context, BERT struggles to predict
correctly.

One of the the main insight we get from these
analysis is that, the way the language model is
initially pre-trained, greatly determines the way it
should be “queried”.

8 Conclusions & Future Work

In this paper, we explored a new fact-checking
pipeline that use language models as knowledge

bases. Unlike previous pipelines that required dedi-
cated components for document retrieval and sen-
tence scoring, our approach simply translates a
given claim into a fill-in-the-blank type query and
relies on a BERT language model to generate the
“evidence”. Our experiment shows that this ap-
proach is comparable to the standard baselines on
the FEVER dataset, though not enough to beat the
state-of-the-art using the traditional pipeline. How-
ever, we believe our approach has strong potential
for improvement, and future work can explore us-
ing stronger models for generating evidences, or
improving the way how we mask claims.

In the future, we will investigate sequence-to-
sequence language models such as BART (Lewis
et al., 2019) or T5 (Raffel et al., 2019), that have re-
cently shown to be effective on generative question-
answering (Roberts et al., 2020). Similarly, our
proposed approach seem to struggle with correctly
identifying NEI cases, and we plan to investigate
adding specific modules to deal with NEI. Lastly,
we plan to explore new ways of pre-training lan-
guage models to better store and encode knowl-
edge.
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Abstract

We propose two measures for measuring the
quality of constructed claims in the FEVER
task. Annotating data for this task involves the
creation of supporting and refuting claims over
a set of evidence. Automatic annotation pro-
cesses often leave superficial patterns in data,
which learning systems can detect instead of
performing the underlying task. Humans also
can leave these superficial patterns, either vol-
untarily or involuntarily (due to e.g. fatigue).
The two measures introduced attempt to detect
the impact of these superficial patterns. One is
a new information-theoretic and distributional-
ity based measure, DCI; and the other an ex-
tension of neural probing work over the ARCT
task, utility. We demonstrate these measures
over a recent major dataset, that from the En-
glish FEVER task in 2019.

1 Introduction

The FEVER task frames verification of claims
given knowledge as a retrieval and three-class en-
tailment problem. Given a claim, supporting or
refuting text must be found, and a judgment made
as to whether or not the text supports the claim.

One way in which annotation performance
lapses present is with the use of shortcuts. An easy
shortcut for this task would be to insert a few direct
negation words into claim texts, thus making them
clash with the associated evidence. A recent study
of ARCT, the Argument Reasoning Comprehen-
sion Task, in which systems have to pick a warrant
given a claim a premise, found that annotators were
prone to inserting words such as ‘not’ when con-
structing negative examples, which later models
(such as BERT) could then pick up on (Niven and
Kao, 2019). These superficial shortcuts were preva-
lent to the extent that removing this information led
to a significant drop in BERT argument reasoning
performance, from 77% to 50%.

Mindful of the similar nature of the ARCT and
FEVER tasks, we apply an extended version of
Niven & Kao’s metric to the FEVER dataset, and
present an information theoretic measure over skip-
grams in FEVER claims to detect candidate super-
ficial features.

2 Annotation in FEVER

The annotation process for FEVER is involved.
The FEVER dataset (Thorne et al., 2018) comprises
a total of 185,445 claims created from Wikipedia
articles and annotated as either SUPPORTS,
REFUTES or NOTENOUGHINFO. Additionally,
claims that are labelled SUPPORTS and REFUTES
also come with the evidence against which this
judgement has been made. This FEVER data was
created with the help of 50 annotators and in two
stages: First creating claims from Wikipedia ar-
ticles, then labelling them against evidence from
Wikipedia. The claim generation stage entails pro-
viding annotators with a randomly sampled sen-
tence from the introductory section of an English
Wikipedia article and asking them to create claims
about the article’s entity. In addition to basing
their claims on the provided sentence alone, an-
notators were also given the choice to utilize in-
formation from hyperlinked articles to allow for
more complex claims (Thorne et al., 2018). Anno-
tators were also asked to create different variants
of these claims by, for example, negating, general-
izing or replacing part of the claim. This was done
to introduce refutable and non-verifiable claims
into the dataset. While trialing, the authors real-
ized that “the majority of annotators had difficulty
generating non-trivial negation mutations [...] be-
yond adding ‘not’ to the original” (Thorne et al.,
2018). We investigate the impact of these trivial
negations on the quality of the dataset later on. In
the second stage, annotators labeled the previously
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created claims as either SUPPORTS, REFUTES
or NOTENOUGHINFO. For the first two classes,
annotators also marked the sentences they used
as evidence for their decision. Once again, the
annotators had access to articles hyperlinked in
the entity’s article as well. The final dataset is
segmented into multiple subsets, with the training
set retaining a majority of the claims at a size of
145,449. The quality of their annotations is en-
sured by cross-checking labels through five-way
agreement, Super-Annotators and even validation
by the authors themselves. Yet, despite spotting
the issue with non-trivial negations early in the
process, they do not report on any investigations
into the quality of their claims. One might argue
that annotation accuracy loses its importance if the
task is performed on the basis of biased data. Nev-
ertheless, as with most complex annotation tasks
over language, the complex nature of this annota-
tion process is prone to annotation exhaustion and
shortcuts (Pustejovsky and Stubbs, 2012).

3 Quality Metrics

We propose two quality metrics for FEVER.
The goal of FEVER data is to help train infer-
ence/verification/entailment tools that are well-
generalised. Thus, a quality metric should help
detect when annotated data risks being unsuitable
for that purpose. The new metrics outlined here are
generic and can be applied to data for other clas-
sification tasks. They are proposed with the goal
of identifying surface-level linguistic patterns that
‘leak’ class information, helping dataset builders
improve the quality of their data.

3.1 Dataset-weighted Cue Information

The first metric we propose is a simple informa-
tion theoretic measure of how much a pattern con-
tributes to a classification. In this case, patterns are
extracted using skip-grams. These capture a good
amount of information about a corpus (Guthrie
et al., 2006) while also giving a way of ignoring
the typically-rare named entities that are rich in
FEVER claims and focusing on the surrounding
language. The metric is the weighted inverse in-
formation gain of a skip-gram relative to a pair of
classes. Weighting is determined by the frequency
of documents bearing the skip-gram in the corpus,
which normalises skew from highly imbalanced but
rare phrases. For dataset D and cue k, where cues
are e.g. skip-gram features:

IG(D, k) = H(D)−H(D|k) (1)

We are interested in items that cause high infor-
mation gain, i.e. 1− IG(D, f).

This should be weighted with the impact that
a pattern can potentially have in a given dataset
and split. For this reason, feature counts should be
normalised by the size of each class. That is, when
calculating entropy:

H(X) = −Σn
i=1P (xi)logP (xi) (2)

Let Dcue=k be the set of data bearing cue k, and
Dclass=y be the set of data with class label y drawn
from the set of class labels Y . The normalised
distribution N of cue frequencies for cue k is:

N = {|Dcue=k ∩Dclass=i|
|Dcue=k|

|i ∈ Y } (3)

Given this class-balanced dataset weighting, we
can then define the information-based factor λh
trivially thus:

λh = 1−H(N) (4)

A term is also required to correct for the rareness
of features. Features that occur only for one class,
but are seldom, should not receive a high value.
On the other hand, knowing that features in lan-
guage typically follow a Zipfian frequency distri-
bution (Montemurro, 2001), one should still have
useful resolution beyond the most-frequent items.
Thus we specify a frequency-based scaling factor
λf as a root of the scaled frequency weight:

λf = (|dk̂ : d ∈ D||D|−1)
1
s (5)

Where s is a scaling factor corresponding to
the estimated exponent of the features’ power law
frequency distribution. For English, s = 3 gives
reasonable results (i.e. taking the cube root).

These two are combined taking their squared
product to form DCI:

DCI =
√
λh × λf (6)

A note regarding language: in this case, we con-
sider 1, 2, and 3-grams, with skips in the range of
[0, 2]. This is suitable for English; other languages
might benefit from broader skip ranges.
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3.2 Cue Productivity and Coverage Probes

We follow the approach of Niven and Kao (2019)
in determining a productivity and coverage score
for each cue in the data. As the structure of their
dataset is fundamentally different from the dataset
presented in Thorne et al. (2018), we have made
amendments to their methodology in order to attain
comparable results.

As in Niven and Kao (2019), we consider any
uni- or bigram a potential cue. We extract these
cues from the claims in the dataset and take note of
the associated label. This allows us to calculate the
applicability of a given cue (αk), which represents
the absolute number of claims in the dataset that
contain the cue irrespective of their label. Let T be
the set of all cues and n the number of claims.

αk =
n∑

i=1

1

[
∃k ∈ T

]
(7)

The productivity of a cue (πk) is the frequency
of the most common label across the claims that
contain the cue. In practical terms, the productivity
is the chance that a model correctly labels a claim
by assigning it the most common label of a given
cue in the claim.

πk =

max

[∑n
i=1 1

[
∃j, k ∈ Tj

]]

αk
(8)

From this definition productivity may be in the
range [ 1

m , 1] where m is the number of unique la-
bels – three in our case. The coverage of a cue (ξk)
is defined by Niven and Kao (2019) as ξk = αk/n.
We retain this definition with the caveat that, due
to the fundamentally different architecture of the
data, we derive αk differently.

This approach assumes a balanced dataset with
regard to the frequency of each label. If executed
on an imbalanced dataset, a given cue’s productiv-
ity would be dominated by the most frequent label,
not because it is actually more likely to appear in
a claim with that label but purely since the label is
more frequent overall. We generate a balanced sam-
ple by undersampling majority classes. In order
to not discard data from the majority classes, how-
ever, we repeat the process ten times with random
samples. We find that this is a better compromise
than oversampling minority classes or introduc-
ing class weights when calculating productivity, as

Cue Productivity Coverage
a 0.36 0.34
is 0.38 0.32
in 0.37 0.30
the 0.36 0.26
was 0.35 0.25

Table 1: Top five cues by coverage

Cue Productivity Coverage
not 0.86 0.04
only 0.90 0.04

Table 2: High-productivity cues

those methods inflate the productivity of rare cues
that appear exclusively in the smallest class.

Productivity values alone are not necessarily
comparable across datasets. Niven and Kao (2019)
acknowledge that a cue is only useful to a machine
learning model if πk > 1/m. In their case, every
claim can have two possible labels, i.e. m = 2. For
the FEVER dataset three labels exist. This means
that the productivity threshold at which cues start
becoming useful to a model is higher in the ARCT
task. We should therefore actually consider the
utility of a cue to the model (ρk).

ρk = πk −
1

m
(9)

4 Running the metrics

4.1 Neural Probe Results

We apply the described methodology to the FEVER
training dataset presented in Thorne et al. (2018)
and thereby determine productivity and coverage
for 14,320 cues. Considering the cues with a pro-
ductivity of 1, i.e. cues that could predict the label
with a 100% accuracy, is not particularly relevant
as none of them have a coverage over 0.01, mean-
ing that they only appear in ≤ 1% of claims. In
fact, there are 12,126 cues that only ever appear
with one label (≈ 85%).

Table 1 shows the cues with the highest cov-
erage. It is dominated by common English stop
words with productivity near the minimum of 1

3 .
This means that to a machine learning model these
cues provide very little utility in finding a shortcut.
Some of the more common cues do still provide
some utility though. The cues “an”, “to” and “and”
each appear in 6-8% of all claims and provide 0.44,
0.53 and 0.49 productivity respectively.
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Cue Utility Coverage Harmonic Mean
to 0.19 0.07 0.10
an 0.10 0.08 0.09
and 0.15 0.06 0.09
is 0.04 0.32 0.08
not 0.53 0.04 0.07
only 0.56 0.04 0.07

Table 3: Top seven cues by harmonic mean of utility
and coverage

These values pale, however, in comparison to the
slightly less common but considerably more pro-
ductive cues “not” and “only” (see table 2). While
these only have a coverage of 0.04 each (Table 2,
they provide productivity of 0.86 and 0.90 respec-
tively. Even though Thorne et al. (2018) explicitly
mention that they attempted to minimize the use
of “not” for the creation of refuted claims, we find
that in our sample claims containing “not” were
labelled REFUTES 86% of the time. We find no
other cues with comparable coverage to reach such
high productivity.

Niven and Kao (2019) find that in the Argu-
ment Reasoning Comprehension Task (ARCT)
dataset (Habernal et al., 2018) the cue “not” has a
productivity of 61% and coverage of 64%. In the
FEVER training data “not” to has a higher produc-
tivity but lower coverage.

For “not” this provides a utility value of ≈ 0.11
in ARCT and ≈ 0.53 in the train set of FEVER,
meaning that in the FEVER data the cue provides
a significantly higher utility to a ML model.

This conclusion is only drawn from the utility
alone though. For the sake of comparability across
both utility and coverage, we condense these val-
ues to one metric by taking their harmonic mean.
We choose the harmonic mean as it assigns higher
values to cues that are both utilisable and cover-
ing. For “not” this results in ≈ 0.19 in ARCT and
≈ 0.07 in the FEVER training data.

Considering cues by their harmonic mean of util-
ity and coverage suggests that despite their high
productivity, “not” and “only” might not be the
most relevant cues in the data, being preceded by
common stop words that yet provide noticeable
utility (see Table 3).

Besides “not”, some relatively neutral, such as
“to” and “and”, also appear in a somewhat imbal-
anced manner. In fact, in our samples 53% of
claims containing “to” are labelled as REFUTES

DCI Classes Skipgram
unigrams

0.5830 support/refute only
0.5684 refute/not enough not
0.4953 support/refute not
0.4860 refute/not enough only
0.4564 support/refute incapable
0.4486 support/not enough person

skip-2-bigrams
0.3278 refute/not enough (’is’, ’not’)
0.3226 support/refute (’only’, ’.’)
0.3212 refute/not enough (’not’, ’a’)
0.3103 support/refute (’There’, ’a’)
0.3100 refute/not enough (’not’, ’.’)
0.3052 support/refute (’only’, ’a’)

skip-2-trigrams
0.2511 refute/not enough (’is’, ’not’, ’.’)
0.2503 refute/not enough (’is’, ’not’, ’a’)
0.2488 refute/not enough (’not’, ’a’, ’.’)
0.2466 support/refute (’There’, ’is’, ’a’)
0.2396 support/refute (’is’, ’not’, ’.’)
0.2347 support/refute (’only’, ’a’, ’.’)

Table 4: Highest DCI skip-grams, i.e. most class-
informative superficial features, in the English FEVER
dataset

and 49% of claims containing “and” are labelled
as SUPPORTS. These distributions are hard to pre-
dict. We therefore encourage analyses of this dur-
ing dataset construction.

4.2 DCI Results

DCI enables ranking of superficial n-grams. Ta-
ble 4 presents the most informative superficial
patterns in the FEVER data. We can see that
“not” plays a prolific role, especially as part of
a trigram. This might be what one would ex-
pect given the high utility of this word (Table 3).
Both support/refute and refute/not-enough-data par-
titions give the most highly-ranked skip-grams;
support/not-enough-data doesn’t generate annota-
tion artefacts as frequently.

5 Discussion

Applying productivity, utility and coverage indi-
cates a dearth of the sort of superficial features in
FEVER that were present in previous tasks (namely
the ARCT dataset). This is somewhat at odds with
other work over FEVER. Schuster et al. (2019) find
that local mutual information (LMI) reveals some
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n-grams that are strongly-associated with negative
examples, and are able to predict claim veracity
based on claims alone. The phrases that Schuster et
al. find match those top-ranked by our DCI metric.

We can therefore see that mutual information-
based measures (LMI, DCI) find different biases
to frequency-associative measures, such as those
use to find cues in the ARCT task. It may be worth
applying e.g. LMI or DCI to the ARCT data to see
if complementary results emerge.

Note that we examine all n- and skip-grams
in the dataset, without smoothing. Suntwal et al.
(2019) experiment with removing named entities
and rare noun-phrases from their dataset when train-
ing models. While this is likely to reduce variances
in the data representation, enhancing the signal, the
goal of this work is to find the strongest signals,
and go down from there, rather than remove noise
in a “bottom-up” fashion.

This is not the first investigation into biases re-
lated to crowdsourcing and human annotation: Be-
linkov et al. (2019) find patterns in corpora for
inference. Sabou et al. (2014) and Bontcheva
et al. (2017) discuss best practices in crowdsourc-
ing for corpus creation. Notably, the number of
annotations created by a single annotator should
be capped strongly, to avoid nuances of a single
worker’s style disrupting the data significantly –
rather, many annotators should contribute to the
data. We propose further controlling quality by
looking for superficial patterns during the anno-
tation process, and asking annotators to consider
re-formulating their input choices if such patterns
are present.

6 Conclusion

Annotators are prone to introducing artefacts, cer-
tainly in the construction of datasets involving syn-
thesis of claims and counterclaims. This paper
presented metrics and an analysis of the English
FEVER dataset with three previously-used mea-
sures: productivity, coverage and utility; and a new
measure, dataset-weighted cue information. We
find that the FEVER dataset is somewhat free of
superficial artefacts, and present a truncated set of
its most-informative (or most distracting) patterns.
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Abstract
The alarming spread of fake news in social me-
dia, together with the impossibility of scaling
manual fact verification, motivated the devel-
opment of natural language processing tech-
niques to automatically verify the veracity of
claims. Most approaches perform a claim-
evidence classification without providing any
insights about why the claim is trustworthy or
not. We propose, instead, a model-agnostic
framework that consists of two modules: (1)
a span extractor, which identifies the crucial
information connecting claim and evidence;
and (2) a classifier that combines claim, evi-
dence, and the extracted spans to predict the
veracity of the claim. We show that the spans
are informative for the classifier, improving
performance and robustness. Tested on sev-
eral state-of-the-art models over the FEVER
dataset, the enhanced classifiers consistently
achieve higher accuracy while also showing re-
duced sensitivity to artifacts in the claims.

1 Introduction

The increased quantity of information that circu-
lates in social media and on the Web every day,
together with the high cost of assessing its veracity,
has demanded the application of natural language
processing (NLP) techniques to the task of fact
verification. In the last years, the NLP commu-
nity has proposed a large number of datasets and
approaches for addressing this task, facing compli-
cated challenges that are still far from being solved.

The task of fact verification can be split into
(i) retrieving one or more candidate pieces of ev-
idence; (ii) assessing whether they are either sup-
porting or refuting a claim, or whether they con-
tains insufficient information to state either of the
above. In this paper, we mostly focus on the rea-
soning between the claim and the evidence.

To generate models that work on real world data,
fact verification solutions are expected to: (i) per-

Claim Susan Sarandon was nominated for five Emmy Awards.
Evidence [wiki/Susan Sarandon] On television, she is a five-time

Emmy Award nominee, including for her guest roles on the
sitcoms Friends 2001 and Malcolm in the Middle (2002),
and the TV films Bernard and Doris (2007) and You Don’t
Know Jack (2010).

Label SUPPORT

Claim Fantastic Beasts and Where to Find Them was released
only in North America on November 18, 2016.

Evidence [wiki/Fantastic Beasts and Where to Find
Them (film)] Fantastic Beasts and Where to Find

Them premiered in New York City on 10 November 2016
and was released worldwide on 18 November 2016 in 3D,
IMAX 4K Laser and other large format cinemas.

Label REFUTE

Claim Ian Brennan is a film screenwriter.
Evidence [wiki/Ian Brennan (writer)] Ian Brennan (born April 23,

1978) is a television writer, actor, producer and director.
Label NOT ENOUGH INFORMATION

Figure 1: Examples of claim-evidence pairs from the
FEVER dataset. The evidence spans extracted by our
system are underlined and presented in color.

form well not only on synthetic datasets but also in
realistic scenarios, where both text form and text
content are highly unpredictable; (ii) produce trans-
parent decisions, providing an explanation for their
verdict, so that the readers may consider whether
trusting them or not.

To address these two requirements, we propose a
model-agnostic framework that includes two mod-
ules: (i) a span extractor that aims to identify in the
evidence the pieces of relevant information that are
informative with respect to the claim; (ii) a clas-
sifier that uses the claim, evidence and extracted
spans to predict whether the evidence is support-
ing, refuting or containing insufficient information.
The spans extracted by the first module are useful
to enhance the classifier and inform the user. Hu-
mans can in fact exploit the spans to effectively
understand why a claim is true or false.

We evaluate our pipeline with three highly per-
forming neural models on the FEVER dataset
(Thorne et al., 2018), comparing the uninformed to
the informed setting. While this dataset includes
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ground truth for both evidence retrieval and evi-
dence classification, in this paper we only exploit
the latter annotations. Our experiments show that
the models informed with the extracted spans con-
sistently achieve higher performance than their un-
informed counterparts, demonstrating the useful-
ness of spans. We also evaluate our models on the
challenging SYMMETRIC FEVER dataset (Schuster
et al., 2019), which tests system’s robustness in
absence of FEVER’s artifacts. We find the models
trained with our pipeline to achieve higher accu-
racy.

Finally, we assess the quality of the extracted
spans as decision rationales to be shown to end-user.
Manually examining a subset of outputs shows that
67% of the support and 88% of the refute spans
are well explanatory with respect to the decision,
leading to an aggregated score of 75%.

2 Related Work

Fake news detection has recently gained interest in
the NLP community. Most of the initial works have
focused on style (Feng et al., 2012) and linguistic
approaches (Pérez-Rosas and Mihalcea, 2015). De-
spite the good performance in synthetic datasets,
these methods failed when applied to real-world
data. New approaches based on fact verification
over retrieved evidence have therefore taken the
stage in the literature.

Datasets. Several fact verification datasets were
developed over the last decade. Vlachos and Riedel
(2014) created a dataset which consisted of 221
statements and hyperlinks to pieces of evidence
of various formats. Many datasets were created
in the following years, with collections of claims
of increasing size and various kinds of additional
information. Among them Ferreira and Vlachos
(2016)’s debunking dataset (300 rumoured claims
and 2,595 associated news articles) and Wang
(2017)’s LIAR dataset (12,836 short statements la-
beled for veracity, topic and various metadata on
the speaker). In the last years, most systems have
been developed over FEVER (Thorne et al., 2018),
a large-scale dataset for Fact Extraction and VER-
ification that consists of 185,445 claims and their
related evidence, labeled as either supporting, re-
futing or not containing enough information.

Approaches. There has been a large develop-
ment since the first approaches for fact verifica-
tion (Ferreira and Vlachos, 2016; Wang, 2017;
Long et al., 2017). To provide a strong base-

line for FEVER, Thorne et al. (2018) proposed a
pipeline consisting of document and sentence re-
trieval and a multi-layer perceptron as textual en-
tailment recognizer. More sophisticated models
followed. Among them, the Bi-Directional Atten-
tion Flow (BiDAF) network (Seo et al., 2016a),
originally introduced for machine comprehension,
has been recently adapted to the task of fact ver-
ification (Tokala et al., 2019). BiDAF combines
LSTMs with both a context-to-query and query-to-
context attention, to produce a query-aware context
representation at multiple hierarchical levels. Nie
et al. (2019) introduced the Neural Semantic Match-
ing Networks (NSMNs), which aligns two encoded
texts and computes the semantic matching between
the aligned representations with LSTMs and used
it to earn the first place in the first competitions
organized on the FEVER dataset. Soleimani et al.
(2019) exploits the contextualized representations
of a pre-trained BERT (Devlin et al., 2019) model
for both sentence selection and fact verification.

3 Method

Given a claim C = {c1, . . . , cn} and a piece of
evidence E = {e1, . . . , em}, two word sequences
of length n and m respectively, the fact verifica-
tion problem requires to predict the relation rel =
{(S)upports, (R)efutes, (I)nsufficient} between
E and C.
Framework. We propose a pipeline of two mod-
ules: a span extractor Mspan and a classifier
Mclassifier. The goal of Mspan(C,E) is to iden-
tify polarizing pieces of information {ei1 , . . . , eiN }
in E without which rel(E,C) would be neutral
(i.e. C would neither be entailed nor contradicted
by E). The identified pieces of information are
passed to Mclassifier, together with C and E, to per-
form a three-label classification aimed at predict-
ing rel(E,C): Mclassifier(C,E, {ei1 , . . . , eiN }) =
l ∈ {S,R, I}.

3.1 Span Extractor

We utilize the TokenMasker architecture from Shah
et al. (2020) for Mspan. This masker was devel-
oped to identify the minimal group of tokens with-
out which E would be neutral with respect to C.
Mspan is trained by getting feedback from a pre-
trained neutrality classifier. Shah et al. (2020) use
the ESIM model with GloVe embeddings trained
on FEVER as a neutrality classifier. We choose
to use the RoBERTa model (Liu et al., 2019) in-
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Figure 2: Framework outline: (i) the claim and the evidence pass through the span extractor, which quantifies
the relative importance of their words; (ii) claim, evidence and spans are then passed to the classification module,
which decides whether the evidence is supporting, refuting or insufficient to judge the claim.

stead, pretrained on an entailment task over a multi-
genre corpus (i.e. three-label classification: en-
tailment/neutral/contradiction on the MULTINLI
dataset (Williams et al., 2018)).

The choice of using a rationale-style extrac-
tor (Shah et al., 2020) is due to its ability to provide
informative spans that can be used as explanations
to the relation of the evidence with the claim. This
approach was shown to perform better than sim-
ply relying on the internal attention weights of a
classifier (Lei et al., 2016; Jain and Wallace, 2019).

3.2 Classifiers

To test our assumption, we consider three neural
network architectures that have achieved the best
performance on the first FEVER shared Task re-
cently: BiDAF (Seo et al., 2016b), NSMN (Nie
et al., 2019) and BERT (Devlin et al., 2019). Note
that the architecture of Mclassifier is independent
of Mspan. The spans extracted by Mclassifier are
forwarded to the classifier by concatenating them
to the original evidence, followed by a separator
token.
BiDAF consists of four layers: (i) the embedding
layer, which encodes two raw text sequences (i.e.
C and E) into two vector sequences Ĉ and Ê; (ii)
the attention layer, which computes the attention
scores between the two sequences and returns two
attended sequences CA and EA; (iii) the modeling
layer, which takes CA and EA as input and outputs
two fixed size vectors, ĈA and ÊA, that capture the
semantic similarity between the original sequences;
and (iv) the output layer, which takes ĈA and ÊA

and returns the output labels.
NSMN encodes C and E into vector sequences

Ĉ and Ê, similarly to BiDAF. It then applies an
alignment layer, which computes the alignment
matrix, A = ĈT Ê, and the aligned representations,
CA and EA, using Ĉ, Ê,A. It follows a matching
layer, which performs semantic matching using
LSTM between CA and Ĉ, as well as EA and Ê,
to output matching matrices MC and ME, which
are finally pooled by the output layer and mapped
to output labels.
BERT (we use the base-uncased version) con-
sists of 12 encoder layers with self-attention
(enc1, . . . , enc12) and one classification layer.
Each encoder enci takes an input sequence Ii−1

and outputs Ii, a sequence of the same length where
each token is replaced with an embedding captur-
ing its relationship with the other words in Ii−1.
The output of enci becomes the input of enci+1.
I0 is set as the concatenation of C and E, preceded
by the special [CLS] token. The output of the
last encoder enc12 is therefore an highly embedded
representation of C and E. It is passed to the clas-
sification layer which maps the representation of
the [CLS] token to the output labels.

4 Experiments

We evaluate the three classifiers described in sec-
tion 3 in two conditions: uninformed (W/O) and
informed (With), where the latter refers to the uti-
lization of the information extracted by Mspan.

4.1 Data

We use the FEVER dataset to train all of our clas-
sifiers. We evaluate the classifiers both on FEVER

and on SYMMETRIC FEVER.
FEVER dataset (Thorne et al., 2018): the current
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largest available Wikipedia-based dataset, consist-
ing of 185,445 claims. Each claim is matched with
supporting or refuting evidence from Wikipedia or
with a “not enough information” label.

We use the development set from FEVER’s
shared-task as our test set (containing 19,998 sam-
ples). We randomly split FEVER’s training set into
our training and validation sets. Following this pro-
cess, we have 125,451 samples in our training set
(73,369 support, 23,109 refute, and 28,973 insuffi-
cient information).

While evidence sentences for supporting and re-
futing examples are provided in the ground truth,
those for the “insufficient information” were ob-
tained by us. We use the document retrieval module
of the best performing system on the first FEVER

Shared Task (Nie et al., 2019). Given a claim
and the Wikipedia dump provided with the FEVER

dataset, this document retrieval module returns a
list of Wikipedia articles which are possibly related
to the claim, ranked with a score calculated by com-
paring the claim, the title of the article and its first
sentence. We keep the highest scoring document.
Thereafter, we pick the sentence with the highest
TF-IDF similarity with the claim. Also, to disam-
biguate pronouns, we extend all evidence sentences
by appending the title of their Wikipedia page.
SYMMETRIC FEVER (Schuster et al., 2019): a
smaller unbiased extension of FEVER, consisting of
712 claim-evidence pairs which were synthetically
generated from FEVER to remove strong cues in the
claims which could allow predicting the label with-
out looking at the evidence (give-away phrases).

4.2 Hyperparameters

TokenMasker is trained on the same dataset and
configuration as Shah et al. (2020). However, we
replace their neutrailty classifier with a RoBERTa
classifier, pretrained on MNLI. This model is
trained once and used in inference mode for all
subsequent experiments.
BiDAF is trained for 12 epochs using cross entropy
loss and Adam optimizer with initial learning rate
1e-3. We use a dropout probability of 0.2 and a
batch size of 8.
NSMN is trained for 12 epochs using cross entropy
loss and Adam optimizer with initial learning rate
1e-4. We use a dropout probability of 0.5 and a
batch size of 8.
BERT is fine-tuned for 8 epochs using cross en-
tropy loss and Adam optimizer with initial learning

rate 2e-5. We use a dropout probability of 0.1 and
a batch size of 16.

These hyperparemeters were found to achieve
the highest accuracy on our validation set. For our
final classifiers, we fix these settings and retrain
them using the full FEVER training set.

Model W/O With Test set

BiDAF 73.90% *75.12%
FEVERNSMN 72.88% **74.56%

BERT 84.16% 84.33%

BiDAF 49.16% **52.24%
SYMMETRICNSMN 53.35% 54.56%

BERT 71.12% 71.49%

Table 1: Accuracy of the models on the FEVER and the
SYMMETRIC datasets. Results for BERT are the aver-
age over 5 runs with the same hyperparameters. Signif-
icance: * if p < 0.1, ** if p < 0.05.

4.3 Results

Table 1 shows the results obtained in our experi-
ments on both FEVER and the SYMMETRIC dataset.
Scores are much higher in the first dataset as the
systems can rely on give-away phrases, some words
in the claims which have a high correlation with the
correct output label regardless of the evidence. This
situation does not exist in the SYMMETRIC dataset,
where the give-away phrases have been eliminated.
As expected, all systems perform worse on this
dataset, but the drop in performance is more signifi-
cant for the uninformed models (W/O) than for the
informed (With) ones. In fact, the informed models
consistently perform better than the uninformed
ones (W/O), often obtaining statistical significance.
While the difference in performance between W/O
and With is particularly relevant for BiDAF and
NSMN, it thins for BERT, which is already a strong
classifier leveraging on a robust pretraining.
Output Explainability. We also manually evalu-
ated the spans for 100 randomly extracted claim-
output pairs, to assess whether they represented
an understandable explanation for the verdict. The
spans were deemed explanatory in 88% of the cases
for refute claims and 67% of the support claims,
which leads to an aggregated score of 75%. The
extracted spans are therefore not only informative
to the classifier, but can also be used to produce
human-readable justifications for a positive or neg-
ative relation.
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5 Conclusions

This paper has introduced a classifier-agnostic
framework that allows fact verification models to
improve their performance and robustness, utiliz-
ing concise spans of the available evidence sen-
tences. The experiments have shown that the ex-
tracted spans are indeed informative for the final
classifier, supporting the usefulness of the frame-
work. Furthermore, this work opens the possibility
of providing to the human users a justification for
the model’s predictions.
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