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Abstract

Recent advances in automatic evaluation met-
rics for text have shown that deep contextual-
ized word representations, such as those gen-
erated by BERT encoders, are helpful for de-
signing metrics that correlate well with human
judgements. At the same time, it has been ar-
gued that contextualized word representations
exhibit sub-optimal statistical properties for
encoding the true similarity between words or
sentences. In this paper, we present two tech-
niques for improving encoding representations
for similarity metrics: a batch-mean center-
ing strategy that improves statistical proper-
ties; and a computationally efficient tempered
Word Mover Distance, for better fusion of the
information in the contextualized word repre-
sentations. We conduct numerical experiments
that demonstrate the robustness of our tech-
niques, reporting results over various BERT-
backbone learned metrics and achieving state
of the art correlation with human ratings on
several benchmarks.

1 Introduction

Automatic evaluation metrics play an important
role in comparing candidate sentences generated
by machines against human references. First-
generation metrics such as BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) use predefined
handcrafted rules to measure surface similarity be-
tween sentences and have no ability, or very lit-
tle ability (Banerjee and Lavie, 2005), to go be-
yond word surface level. To address this problem,
later work (Kusner et al., 2015; Zhelezniak et al.,
2019) utilize static embedding techniques such as
word2vec (Mikolov et al., 2013) and Glove (Pen-
nington et al., 2014) to represent the words in sen-
tences as vectors in a low-dimensional continuous
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space, so that word-to-word correlation can be mea-
sured by their cosine similarity. However, static
embeddings cannot capture the rich syntactic, se-
mantic, and pragmatic aspects of word usage across
sentences and paragraphs.

Modern deep learning models based on the
Transformer (Vaswani et al., 2017) utilize a multi-
layered self-attention structure that encodes not
only a global representation of each word (a word
embedding), but also its contextualized information
within the context considered. Such contextualized
word representations have yielded significant im-
provements on various tasks, including machine
translation (Vaswani et al., 2017), NLU tasks (De-
vlin et al., 2019; Liu et al., 2019; Lan et al., 2020),
summarization (Zhang et al., 2019a), and automatic
evaluation metrics (Reimers and Gurevych, 2019;
Zhang et al., 2019b; Zhao et al., 2019; Sellam et al.,
2020).

In this paper, we investigate how to better use
BERT-based contextualized embeddings in order to
arrive at effective evaluation metrics for generated
text. We formalize a unified family of text similar-
ity metrics, which operate either at the word/token
or sentence level, and show how a number of ex-
isting embedding-based similarity metrics belong
to this family. In this context, we present a tem-
pered Word Mover Distance (TWMD) formulation
by utilizing the Sinkhorn distance (Cuturi, 2013),
which adds an entropy regularizer to the objec-
tive of WMD (Kusner et al., 2015). Compared to
WMD, our TWMD formulation allows for a more
efficient optimization using the iterative Sinkhorn
algorithm (Cuturi, 2013). Although in theory the
Sinkhorn algorithm may require a number of itera-
tions to converge, we find that a single iteration is
sufficient and surprisingly effective for TWMD.

Moreover, we follow (Ethayarajh, 2019) and
carefully analyze the similarity between contex-
tualized word representations along the different
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layers of a BERT model. We posit three proper-
ties that multi-layered contextualized word repre-
sentations should have (Section 5): (1) zero ex-
pected similarity between random words, (2) de-
creasing out-of-context self-similarity, and (3) in-
creasing in-context similarity between words. As
already shown by Ethayarajh (2019), cosine simi-
larity between BERT word-embeddings does not
satisfy some of these properties. To address these
issues, we design and analyze several centering
techniques and find one that satisfies the three prop-
erties above. The usefulness of the centering tech-
nique and TWMD formulation is validated by our
empirical studies over several well-known bench-
marks, where we obtain significant numerical im-
provements and SoTA correlations with human rat-
ings.

2 Related Work

Recent work on learned automatic evaluation met-
rics leverage pretrained contextualized embeddings
by building on top of BERT (Devlin et al., 2019)
or variant (Liu et al., 2019) representations.

SentenceBERT (Reimers and Gurevych, 2019)
uses cosine similarity of two mean-pooled sentence
embedding from the top layer of BERT. BERTscore
(Zhang et al., 2019b) computes the similarity of two
sentences as a sum of cosine similarities between
maximum-matching tokens embeddings. Mover-
Score (Zhao et al., 2019) measures word distance
using BERT embeddings and computes the Word
Mover Distance (WMD) (Kusner et al., 2015) from
the word distribution of the system text to that of
the human reference.

In the next section we propose an abstract frame-
work of embedding-based similarity metrics and
show that it contains the metrics mentioned above.
We then extend this family of metrics with our own
improved evaluation metric.

3 A Family of Similarity Metrics

We consider a family of normalized similarity met-
rics for both word-level and sentence-level repre-
sentations parameterized by a function C, as fol-
lows:

Sim(x1,x2) =
C(x1,x2)√

C(x1,x1)C(x2,x2)
. (1)

Clearly, Sim(x,x) = 1, and furthermore,
if C(x1,x2)

2 ≤ C(x1,x1)C(x2,x2), then
Sim(x1,x2) ∈ [−1, 1].

For word similarity, x represents a single word
vector. A standard choice is defining C(x1,x2) =
〈x1,x2〉, the inner product between the two
vectors. The resulting word similarity metric
Sim(x1,x2) =

〈
x1
‖x1 ‖ ,

x2
‖x2 ‖

〉
becomes the co-

sine similarity between the two word vectors. If
the word vectors are pre-normalized such that
‖x ‖ = 1, then Sim(x1,x2) = 〈x1,x2〉.

For sentence similarity, we use X =(
x1,x2, . . . ,xL

)
to denote a D × L matrix com-

posed by L word vectors belonging to the sentence
embedded in a D-dimensional space.

In what follows, we briefly review existing sen-
tence similarity metrics and show that they be-
long to our family of similarity metrics Eq.(1) with
different choices of C(X1,X2) (with L1 and L2

denoting the sentence length for X1 and X2, re-
spectively). Note that we do not consider word
re-weighting schemes (e.g. by IDF as in (Zhang
et al., 2019b)) in this paper, as their contribution
does not appear to be consistent over various tasks.
In addition, we assume that all word vectors are
already pre-normalized.

Sentence-BERT Sentence-BERT (Reimers and
Gurevych, 2019) uses the cosine-similarity be-
tween two mean-pooling sentence embeddings.
This is the same as Eq.(1) when

C(X1,X2) =

〈
1

L1

L1∑
i=1

xi1,
1

L2

L2∑
j=1

xj2

〉

=
1

L1L2

L1∑
i=1

L2∑
j=1

〈
xi1,x

j
2

〉
.

Wordset-CKA Wordset-CKA (Zhelezniak et al.,
2019) uses the centered kernel alignment between
the two sentences represented as word sets, where

C(X1,X2) = Tr
(
X1X

>
1 X2X

>
2

)
=

L1∑
i=1

L2∑
j=1

〈
xi1,x

j
2

〉2
.

Here we assume each word embedding x is pre-
centered by the mean of its own dimensions. We
refer to this centering method as dimension-mean
centering.

MoverScore MoverScore (Zhao et al., 2019)
measures the sentence similarity using the Word
Mover Distance (Kusner et al., 2015) from the word



53

distribution of the hypothesis to that of the gold ref-
erence:

C(X1,X2) = max
π

L1∑
i=1

L2∑
j=1

πij

〈
xi1,x

j
2

〉

s.t.
L1∑
i=1

πij =
1

L2
,

L2∑
j=1

πij =
1

L1
. (2)

The original MoverScore does not normalize
C(X1,X2) by

√
C(X1,X1)C(X2,X2). In prac-

tice, we find the performance to be similar with or
without such normalization.

BERTscore BERTscore (Zhang et al., 2019b) in-
troduces three metrics corresponding to recall, pre-
cision, and F1 score. We focus the discussion here
on BERTscore-Recall, as it performs most consis-
tently across all tasks (see discussions of the pre-
cision and F1 scores in Appendix C). BERTscore-
Recall uses the sum of cosine similarities between
maximum-matching tokens embeddings:

C(X1,X2) =
1

L1

L1∑
i=1

max
j=1...L2

〈
xi1,x

j
2

〉
. (3)

For BERTscore, since the words are pre-
normalized, we have C(X1,X1) = C(X2,X2) =
1 and therefore Sim(X1,X2) = C(X1,X2).

Note that BERTscore is closely related to Mover-
Score, since Eq.(3) is the solution of the Relaxed-
WMD (Kusner et al., 2015):

C(X1,X2) = max
π

L1∑
i=1

L2∑
j=1

πij

〈
xi1,x

j
2

〉

s.t.
L2∑
j=1

πij =
1

L1
. (4)

which is the same as Eq.(2) but without the first
constraint.

4 Tempered Word Mover Distance

Word Mover Distance (Kusner et al., 2015) used
in MoverScore (Zhao et al., 2019) is rooted in the
classical optimal transport distance for probabil-
ity measures and histograms of features. Despite
its excellent performance and intuitive formula-
tion, its computation involves a linear programming
solver whose cost scales as O(L3 logL) and be-
comes prohibitive for long sentences or documents
with more than a few hundreds of words/tokens.

For this reason, (Kusner et al., 2015) proposed a
Relaxed-WMD (RWMD) with only one constraint
(see Eq.(4)), which can be evaluated in O(L2).
However, RWMD uses the closest distance without
considering there may be multiple words transform-
ing to single words.

Inspired by the Sinkhorn distance (Cuturi, 2013)
which smooths the classic optimal transport prob-
lem with an entropic regularization term, we intro-
duce the following formulation, which we refer to
as tempered-WMD (TWMD):

max
π

L1∑
i=1

L2∑
j=1

πij

〈
xi1,x

j
2

〉
− T

L1∑
i=1

L2∑
j=1

πij log πij

s.t.
L1∑
i=1

πij =
1

L2
,

L2∑
j=1

πij =
1

L1
. (5)

The temperature parameter T ≥ 0 determines the
trade-off between the two terms. When T = 0,
Eq.(5) reduce to the original WMD as in Eq.(2).
When T is larger, (5) encourages more homoge-
neous distributions.

The added entropy term makes Eq.(5) a strictly
concave problem, which can be solved using a
matrix scaling algorithm with a linear conver-
gence rate. For example, the Sinkhorn algo-
rithm (Cuturi, 2013) uses the initial condition
π0ij = exp

(
− 1
T

〈
xi1,x

j
2

〉)
and alternates between

ξtij =
πt−1ij

L2
∑

i π
t−1
ij

, πtij =
ξtij

L1
∑

j ξ
t
ij

. (6)

The computational cost for each iteration is O(L2),
which is more efficient than to that of WMD. Al-
though in theory this iterative algorithm may re-
quire a few of iterations to converge, our experi-
ments show that a single iteration (i.e., t = 1) is
sufficient and surprisingly effective.

Similarly, a tempered-RWMD (TRWMD) can
be obtained by adding an entropy term to Eq.(4):

max
π

L1∑
i=1

L2∑
j=1

πij

〈
xi1,x

j
2

〉
− T

L1∑
i=1

L2∑
j=1

πij log πij

s.t.
L2∑
j=1

πij =
1

L1
.

By taking the derivative of the Lagrangian of the
above objective, the following closed-form solution
is obtained:

π∗ij =
1

L1
softmaxj

(
1

T

〈
xi1,x

j
2

〉)
.
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Plugging in the optimal π∗ij back into the objective
yields the following metric:

C(X1,X2) =

=
T

L1

L1∑
i=1

log

 L2∑
j=1

exp

(
1

T

〈
xi1,x

j
2

〉) . (7)

We note that as T → 0, T log
∑

j exp(fj/T ) →
maxj(fj), and therefore Eq.(7) reduces to Eq.(3).

5 Centered Word Vectors

Ethayarajh (2019) reports that representations ob-
tained by deep models such as BERT exhibit high
cosine similarity between any two random words in
a corpus, especially at higher layers. They attribute
this phenomenon to a highly anisotropic distribu-
tion of the word vectors, and further argue that
such high similarity represents a bias that blurs the
true similarity relationship between word (and sen-
tence) representations and hampers performance in
NLP tasks (Mu and Viswanath, 2018). We repro-
duce here the main results of (Ethayarajh, 2019),
including the cosine similarity between two ran-
dom words (baseline), same words in two different
sentences (self-similarity) and two random words
in the same sentence (intra-similarity). Figure 1
shows these results for several BERT and BERT-
like models. As the leftmost figure shows, most of

Figure 1: Cosine similarity between two random words
(baseline), same words in two different sentences (self-
similarity) and two random words in the same sentence
(intra-similarity) for five base models, using the origi-
nal layer representation of words.

these models indeed have a high baseline similarity
that quickly increases with layer depth. Ethayarajh
(2019) proposes to mitigate this bias by subtract-
ing the baseline similarity from the self-similarity
and intra-similarity values (per layer). However,
the mathematical and statistical meaning of this
solution remains unclear.

In this context, we posit the following three prop-
erties that are desirable for word vector representa-
tions in context:

1. Zero expected similarity: The word similar-
ity between two random word vectors in the
corpus is approximately zero, which indicates
random words are unrelated.

2. Decreasing self-similarity: The word similar-
ity between representations of the same word
taken from different sentences decreases in
higher layers, as each representation encodes
more contextual information about its respec-
tive sentence.

3. Increasing intra-similarity: The word sim-
ilarity between different words within the
same sentence increases in higher layers, as
the words encode more common information
about the sentence.

Besides their intuitive appeal, our empirical results
(in Section 6) do validate that word representations
that obey these properties result in higher perfor-
mance with respect to modeling similarity.

Since the original word representations does not
satisfy these three properties, we explore three
methods for centering the word vectors distribu-
tion. Consider a corpus C containing M sentences
{si}, each of length Ni. Each word vector is
D-dimensional, wi,j = [w

(1)
i,j , ..., w

(D)
i,j ]. We pro-

pose three candidate word distribution centering
approaches:

• Dimension mean centering: centering a word
by subtracting the mean of the dimensions
within each word vector,

vi,j = wi,j −
1

D

D∑
l=1

w
(l)
i,j .

The second term on the RHS is a scalar, which
broadcasts to all dimensions of wi,j .

• Sentence mean centering: centering a word
by subtracting the mean of the words within
the corresponding sentence,

vi,j = wi,j −
1

N

N∑
k=1

wi,k .

• Corpus mean centering: centering a word by
subtracting the mean of the words in the entire
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corpus,

vi,j = wi,j −
1∑
iNi

M∑
i=1

Ni∑
k=1

wi,k .

We compare these three centering approaches in
Figure 2. Due to the layer norm operation in the
BERT models, the dimension mean is a small con-
stant that has little effect after subtraction, and
therefore it fails on properties 1 and 2 above. The
sentence mean centering achieves approximately
zero baseline (property 1), but it also reduces the
intra-sim to approximately zero (failing property 3).
This indicates the subtraction of sentence mean re-
moves the common knowledge of the words about
the sentence, which can have a detrimental effect
on modeling similarity. Lastly, corpus-mean center-
ing fulfills all three properties above (Fig. 2, bottom
row). In this context, we note that, after applying
corpus mean centering, cosine-similarity function
is reduced to Pearson’s correlation.

Since the computational cost of corpus mean
centering can be prohibitive for a large dataset, we
consider a batch-mean centering approach, which
would be especially useful for fine-tuning tasks.
In practice, we find that the values obtained from
batch-mean–centered word vectors are very close
to those of corpus-mean–centered word vectors.
Therefore and henceforth, we use batch-mean cen-
tering to approximate the effect of corpus-mean
centering.

Finally, it is worth noting that corpus (batch)-
mean centering has recently been applied in nor-
malizing multilingual representations (Libovickỳ
et al., 2019; Zhao et al., 2020). However, we are
the first to demonstrate its superiority over various
other centering methods in single-language by ana-
lyzing the inter-layer representation similarities.

6 Experiments

In order to demonstrate the effectiveness of our
newly proposed approaches, we conduct extensive
numerical experiments based on two commonly-
used benchmarks: Semantic Textual Similarity
(STS), and WMT 17-18 metrics shared task. Our
experiments are designed to answer the following
questions: (1) Are corpus (batch) centered word
vectors better than other centered and un-centered
word vectors, across different sentence similarity
metrics? (2) How do tempered WMD and RWMD
compare to their family-relatives MoverScore and

Figure 2: Comparison of the three centering ap-
proaches. Dimension mean centering has very little
effect. Sentence mean centering removes too much
common sentence information. Corpus mean centering
shows the correct word contextualization.

BERTscore? (3) How do the temperature hyper-
parameter and the Sinkhorn iterations affect the
performance, and how sensitive are they?

To show that our results are consistent across
different BERT variants, we analyze our simi-
larity metrics over four backbone models: bert-
base-uncased, bert-large-uncased, roberta-base and
roberta-large, all obtained from the Huggingface∗

Transformers package. (Zhang et al., 2019b) found
that the better layers for evaluation metric are usu-
ally not the top layer, since the top one is greatly im-
pacted by the pretraining task. In particular, (Zhang
et al., 2019b) perform an an extensive layer sweep
analysis and report that the better layers were al-
ways around Layer-10 for the base models, and
Layer-19 for the large models. Therefore, in our

∗https://huggingface.co/models

https://huggingface.co/models
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experiments, we used Layer-10 for all base models,
and Layer-19 for all large models. We also present
the results of evaluation metrics using different lay-
ers in the Appendix A and confirm that our main
conclusion is not affected by the choice of layer.

6.1 Semantic Textual Similarity (STS)

The STS benchmark (Agirre et al., 2016) contains
sentence pairs and human evaluated scores between
0 and 5 for each pair, with higher scores indicating
higher semantic relatedness or similarity for the
pair. From 2012 to 2016, it contains 3108, 1500,
3750, 3000, and 1186 records, respectively.

We answer the first question by comparing batch-
centered word vectors with other centered and un-
centered word vectors using several sentence simi-
larity metrics, including Sentence-BERT, Wordset-
CKA, BERTscore and MoverScore.

The results on STS 12-16 for various metrics
are shown in Table 1. In general, for all four
models (per column: base and large version of
BERT and RoBERTa), batch centering gets higher
Pearson and Spearman’s correlation of sentence-
mean cosine similarity (SBERT) and BERTscore.
Dimension-mean centering has very little effect on
performance, while sentence-mean improves per-
formance for a few methods. Since Sentence-BERT
uses the mean-pooling of the sentence (which
would become zero after sentence mean center-
ing), we exclude sentence-mean centering from
Sentence-BERT. Overall, batch-mean centering
brings an averaged +3.41 / +3.02 improvement,
and sentence-mean centering brings an averaged
-0.02 / +0.55 on Pearson and Spearman coefficients,
across different metrics and models.

6.2 WMT metrics shared task

The WMT metrics shared task is an annual compe-
tition for comparing translation metrics against hu-
man assessments on machine-translated sentences.
We use years 2017 and 2018 of the official WMT
test set for evaluation. The 2017 test data in-
cludes 3,920 pairs of sentences from the news do-
main (including a system generated sentence and
a groundtruth sentence by human) with human rat-
ings. Similarly, the 2018 test data includes 138,188
pairs of sentences with human ratings but is re-
ported to be much noisier (Sellam et al., 2020).

Evaluation metrics without fine-tuning
We compare the Tempered WMD (TWMD) and
TRWMD with the original WMD (Moverscore)

and RWMD (BERTscore) as well as SBERT and
WordSet-CKA on WMT 17 and 18. We report the
results of RoBERTa-base and RoBERTa-large for
WMT 17 and WMT 18, because they appear to
be the best performing backbone models for these
tasks.

To choose reasonable temperatures for TWMD
and TRWMD, we tried a few values between 0.001
and 0.15 on WMT 15-16, and chose for each
method based on the best averaged performance
(details in Appendix B). The resulting tempera-
tures for TWMD, TRWMD, TWMD-b (where “-b”
stands for batch centering of word vectors) and
TRWMD-b are T = 0.02, 0.02, 0.10, 0.15 respec-
tively. We used a single Sinkhorn iteration for
TWMD(-b).

The main results of WMT 17 and 18 are sum-
marized in Table 2 and 3. Batch-mean centering
appears to be helpful in improving the scores for
all methods. TWMD-b performs the best in most
of the cases. In particular, it is on average +2.3 /
+2.8 higher than the WMD-based Moverscore-b in
WMT-17 and +1.1 / +1.9 higher in WMT-18.

Evaluation metrics with fine-tuning
We also test the effectiveness of batch-mean center-
ing and TWMD in the fine-tuning process. Similar
to (Sellam et al., 2020), we make use of the human
ratings from WMT 15-16 for training, and evaluate
the fine-tuned models on WMT 17 and 18. We use
the L2 loss function during fine-tuning,

Loss =MSE(Sim(X1,X2), ŷ),

where X1, X2 denotes two sentences, and ŷ is the
human score.

We present the result of TWMD based on the
RoBERTa-base and RoBERTa-large backbones
in Table 4. We compare the result with that
of state-of-the-art BLEURT (Sellam et al., 2020)
models. BLEURTbase-pre and BLEURT-pre are
directly fine-tuned on WMT 15-16 (with 5344
records in total), while BLEURTbase and BLEURT
are additionally pretrained on a large amount of
synthetic data from Wikipedia. The scores ob-
tained by TWMD-b not only clearly outperform
BLEURTbase-pre and BLEURT-pre with the same
training setting, but are comparable or better than
the performance of BLEURT with the extra pre-
training stage, on both base and large conditions.
This last result is especially notable considering
that the synthetic data and the task setup used to fur-
ther pretrain BLUERT were designed with metric
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Table 1: Experimental results for various metrics on STS 12-16 datasets (averaged) with BERT/Roberta pretrained
checkpoints. The correlations are Pearson (left) and Spearman’s rank (right).

Metric bert-base-uncased
r / ρ

bert-large-uncased
r / ρ

roberta-base
r / ρ

roberta-large
r / ρ

SBERT 58.7 / 58.9 56.9 / 57.3 58.0 / 59.6 58.5 / 60.2
SBERT-batch 63.8 / 62.8 62.8 / 62.3 65.9 / 65.1 67.1 / 66.3
SBERT-dim 58.7 / 58.9 56.9 / 57.3 58.0 / 59.6 58.5 / 60.2

CKA 59.8 / 59.5 58.7 / 58.9 58.6 / 59.9 59.1 / 60.4
CKA-batch 60.3 / 61.1 58.9 / 60.0 61.1 / 61.5 62.3 / 62.5
CKA-sent 58.6 / 59.8 59.1 / 60.5 58.7 / 59.2 60.6 / 61.0
CKA-dim 59.8 / 59.5 58.7 / 58.9 58.6 / 59.9 59.1 / 60.4

MoverScore 56.3 / 58.2 54.4 / 56.7 54.8 / 56.2 54.5 / 56.0
MoverScore-batch 58.0 / 60.1 56.2 / 58.6 57.2 / 59.0 57.7 / 59.3
MoverScore-sent 54.2 / 57.4 54.9 / 58.3 54.1 / 56.5 55.9 / 58.1
MoverScore-dim 56.3 / 58.2 54.4 / 56.7 54.8 / 56.2 54.5 / 56.0

BERTscore 59.3 / 59.0 57.7 / 57.8 57.3 / 57.2 57.0 / 57.1
BERTscore-batch 61.1 / 60.9 59.6 / 59.7 60.6 / 60.6 61.5 / 61.4
BERTscore-sent 57.3 / 57.6 58.1 / 58.6 56.8 / 57.2 59.0 / 59.2
BERTscore-dim 59.3 / 59.0 57.7 / 57.8 57.3 / 57.2 57.0 / 57.1

Table 2: Correlation with human scores on the WMT17 Metrics Shared Task. ‘-b’ stands for batch centering of
word vectors.

Metric cs-en
τ / r

de-en
τ / r

fi-en
τ / r

lv-en
τ / r

ru-en
τ / r

tr-en
τ / r

zh-en
τ / r

Avg.
τ / r

roberta-base
SBERT 45.1 / 60.0 44.6 / 58.3 58.4 / 69.6 42.9 / 60.6 45.8 / 63.1 46.3 / 52.9 46.0 / 62.0 47.0 / 60.9

SBERT-b 45.2 / 63.4 45.8 / 64.1 56.8 / 74.6 45.1 / 64.9 44.9 / 64.0 47.8 / 63.4 45.4 / 66.1 47.3 / 65.8
CKA 45.0 / 60.5 44.8 / 58.8 58.3 / 70.5 42.8 / 61.0 45.9 / 63.4 46.3 / 53.9 46.1 / 62.4 47.0 / 61.5

CKA-b 48.8 / 68.4 49.1 / 69.1 61.3 / 81.3 48.5 / 69.6 49.6 / 69.6 52.1 / 71.7 49.6 / 70.8 51.3 / 71.5
MoverScore 48.5 / 66.0 47.1 / 65.9 61.6 / 80.9 48.9 / 68.2 51.6 / 69.8 53.8 / 74.2 53.4 / 74.0 52.1 / 71.3

MoverScore-b 47.9 / 66.3 47.3 / 66.1 61.6 / 81.2 48.6 / 68.6 51.4 / 69.8 54.3 / 74.9 52.2 / 72.8 51.9 / 71.3
BERTscore 47.4 / 64.7 48.0 / 66.9 61.9 / 79.9 49.7 / 69.6 50.8 / 69.5 53.4 / 71.3 50.8 / 71.7 51.7 / 70.5

BERTscore-b 47.5 / 66.4 48.8 / 68.7 61.7 / 81.3 49.9 / 70.6 50.7 / 69.8 53.8 / 73.2 49.1 / 70.1 51.6 / 71.5
TWMD 48.3 / 65.8 49.6 / 68.8 62.5 / 81.2 51.3 / 70.5 52.1 / 71.2 54.6 / 73.8 54.7 / 75.5 53.3 / 72.3

TWMD-b 50.0 / 68.5 51.5 / 70.8 63.0 / 82.8 51.9 / 72.3 53.5 / 73.2 56.6 / 77.0 54.0 / 75.0 54.4 / 74.3
TRWMD 47.4 / 64.9 47.9 / 67.0 61.8 / 80.1 49.5 / 69.3 50.9 / 69.5 53.4 / 71.8 50.7 / 71.7 51.7 / 70.7

TRWMD-b 48.5 / 66.8 49.0 / 68.5 61.1 / 81.3 49.5 / 69.3 51.4 / 69.8 54.3 / 74.7 50.2 / 70.8 52.0 / 71.6
roberta-large

SBERT 50.9 / 67.2 53.1 / 70.8 61.3 / 73.6 51.6 / 70.5 51.4 / 69.0 52.4 / 61.4 51.9 / 68.0 53.2 / 68.6
SBERT-b 47.6 / 66.9 50.7 / 69.5 56.8 / 74.1 47.9 / 67.8 47.3 / 66.4 48.5 / 65.2 47.6 / 67.5 49.5 / 68.2

CKA 51.4 / 68.7 53.4 / 71.3 61.5 / 74.5 51.8 / 71.1 51.8 / 69.3 52.7 / 62.7 52.1 / 68.8 53.5 / 69.5
CKA-b 51.6 / 72.3 54.4 / 74.2 61.8 / 81.6 52.5 / 73.7 53.2 / 73.0 53.6 / 73.8 52.7 / 73.5 54.3 / 74.6

MoverScore 51.6 / 68.8 53.9 / 71.8 62.0 / 81.1 53.4 / 71.7 54.5 / 71.8 56.3 / 76.2 56.3 / 76.1 55.5 / 73.9
MoverScore-b 51.2 / 69.6 53.2 / 71.7 63.1 / 82.1 53.3 / 72.7 54.5 / 72.8 56.8 / 76.9 55.1 / 75.4 55.3 / 74.5

BERTscore 50.9 / 66.9 53.4 / 72.3 61.7 / 79.6 53.5 / 71.6 53.8 / 71.5 54.8 / 71.7 53.9 / 74.4 54.6 / 72.6
BERTscore-b 51.7 / 71.2 53.9 / 74.1 63.6 / 82.5 54.8 / 75.1 54.8 / 73.7 55.6 / 75.0 52.7 / 73.6 55.3 / 75.0

TWMD 52.3 / 69.1 55.7 / 74.4 63.1 / 81.5 54.1 / 72.6 56.0 / 74.1 55.7 / 74.5 57.5 / 77.7 56.3 / 74.9
TWMD-b 53.9 / 73.3 56.4 / 75.9 64.4 / 83.5 55.2 / 75.1 56.9 / 76.2 57.9 / 78.1 56.8 / 77.4 57.4 / 77.1
TRWMD 50.8 / 67.3 53.3 / 72.1 61.5 / 79.7 53.1 / 71.3 54.0 / 71.5 54.5 / 72.0 54.0 / 74.3 54.5 / 72.6

TRWMD-b 52.5 / 71.2 53.9 / 73.4 62.7 / 82.0 53.8 / 73.4 54.8 / 72.8 55.7 / 76.1 53.4 / 74.1 55.3 / 74.7

similarity in mind (by leveraging on classical evalu-
ation metrics for MT such as BLEU and ROUGE),
whereas TWMD owes its performance solely to a
better use of the representations.

Temperature dependence

The results of TWMD, TRWMD, TWMD-
b, TRWMD-b in Table 2 and 3 used the
fixed temperature (tuned in WMT15-16) T =
0.02, 0.02, 0.10, 0.15 for evaluation. A natural
question to ask is how sensitive does the result
depend on these hyperparameters.

Figure 3 shows the Pearson correlation vs. tem-
perature for all four models and metrics with dif-
ferent temperature hyperparameters in WMT 15-
18. We can see that the TWMD-b and TRWMD-b
methods are robust with temperature. In compar-

Figure 3: Pearson correlation vs. temperature in evalu-
ation of WMT 17-18.
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Table 3: Correlation with human scores on the WMT18 Metrics Shared Task. ‘-b’ stands for batch centering of
word vectors.

Metric cs-en
τ / r

zh-en
τ / r

ru-en
τ / r

fi-en
τ / r

tr-en
τ / r

et-en
τ / r

de-en
τ / r

Avg.
τ / r

roberta-base
SBERT 26.2 / 34.2 22.9 / 29.0 23.5 / 34.2 23.1 / 32.4 25.3 / 34.6 30.3 / 42.3 35.6 / 48.5 26.7 / 36.5

SBERT-b 28.7 / 40.6 25.8 / 35.6 26.5 / 38.4 25.1 / 36.6 28.7 / 39.8 33.4 / 46.9 38.4 / 54.1 29.5 / 41.6
CKA 26.2 / 34.6 23.0 / 29.5 23.5 / 34.5 23.2 / 32.7 25.4 / 35.1 30.4 / 42.6 35.8 / 48.9 26.8 / 36.9

CKA-b 28.9 / 41.6 26.4 / 37.4 27.2 / 39.9 25.7 / 37.8 30.0 / 42.6 34.2 / 49.3 39.0 / 55.7 30.2 / 43.5
MoverScore 28.5 / 40.6 28.2 / 37.8 27.9 / 39.4 25.1 / 35.8 31.3 / 43.4 34.3 / 48.5 38.9 / 54.2 30.5 / 42.8

MoverScore-b 28.7 / 40.6 28.1 / 37.7 27.8 / 39.2 25.2 / 36.0 31.3 / 43.2 34.4 / 48.6 38.9 / 54.2 30.5 / 42.8
BERTscore 27.6 / 39.5 27.2 / 37.5 27.6 / 39.4 24.9 / 36.0 31.1 / 43.3 34.4 / 48.6 39.3 / 56.1 30.3 / 42.9

BERTscore-b 27.8 / 39.9 26.9 / 37.5 27.5 / 39.3 25.2 / 37.1 31.1 / 43.4 34.4 / 49.0 39.5 / 56.5 30.4 / 43.2
TWMD 28.7 / 40.9 28.2 / 38.4 28.1 / 39.9 25.5 / 36.7 31.7 / 43.9 34.9 / 49.3 39.9 / 56.6 31.0 / 43.7

TWMD-b 29.5 / 42.0 28.4 / 38.9 28.7 / 40.6 26.4 / 38.2 32.3 / 44.5 35.4 / 50.2 40.4 / 57.4 31.6 / 44.6
TRWMD 27.6 / 39.4 27.3 / 37.6 27.6 / 39.3 24.9 / 35.9 31.1 / 43.3 34.4 / 48.5 39.4 / 56.2 30.3 / 42.9

TRWMD-b 28.1 / 39.9 27.6 / 37.6 27.9 / 39.2 25.3 / 36.6 31.4 / 43.2 34.6 / 49.1 39.9 / 56.7 30.7 / 43.2
roberta-large

SBERT 29.0 / 40.4 24.9 / 33.2 26.6 / 38.2 26.2 / 37.6 28.4 / 39.3 33.9 / 44.1 39.0 / 54.3 29.7 / 41.0
SBERT-b 30.4 / 42.6 26.6 / 35.8 27.9 / 38.9 27.0 / 38.7 29.9 / 41.1 35.0 / 47.1 40.1 / 55.9 31.0 / 42.9

CKA 29.2 / 40.8 25.0 / 33.6 26.7 / 38.6 26.3 / 37.8 28.5 / 39.7 34.0 / 44.7 39.1 / 54.7 29.7 / 41.4
CKA-b 30.4 / 43.9 27.0 / 37.8 28.2 / 41.0 27.0 / 39.5 30.5 / 43.5 35.5 / 50.6 40.4 / 57.6 31.3 / 44.8

MoverScore 29.9 / 41.8 28.7 / 38.0 29.2 / 40.2 26.5 / 37.2 31.9 / 43.6 35.9 / 49.9 40.8 / 56.2 31.9 / 43.8
MoverScore-b 30.0 / 42.1 28.7 / 38.1 28.9 / 40.0 26.5 / 37.5 31.7 / 43.5 35.6 / 49.7 40.4 / 55.6 31.7 / 43.8

BERTscore 29.4 / 41.5 27.9 / 37.9 28.9 / 40.3 26.0 / 36.6 31.6 / 43.6 35.9 / 49.6 41.1 / 58.4 31.6 / 44.0
BERTscore-b 29.7 / 42.6 27.6 / 38.2 28.9 / 40.9 26.4 / 38.4 31.6 / 44.2 35.9 / 50.1 41.0 / 58.5 31.6 / 44.7

TWMD 30.5 / 42.9 28.9 / 39.0 29.5 / 40.9 27.2 / 38.1 32.4 / 44.4 36.5 / 50.5 41.8 / 58.9 32.4 / 45.0
TWMD-b 31.1 / 44.2 28.9 / 39.5 29.7 / 41.8 27.6 / 39.6 32.6 / 45.1 36.7 / 51.3 41.8 / 59.0 32.7 / 45.8
TRWMD 29.2 / 41.4 28.0 / 37.8 28.9 / 40.2 25.9 / 36.5 31.6 / 43.5 35.9 / 49.5 41.1 / 58.3 31.5 / 43.9

TRWMD-b 29.8 / 42.3 28.1 / 38.1 29.2 / 40.6 26.3 / 37.7 31.8 / 43.8 36.0 / 50.2 41.3 / 58.4 31.8 / 44.4

Table 4: Correlation with human scores on the
WMT17-18 after fine-tuning on WMT15-16.
BLEURTbase and BLEURT have an extra pretraining
step, as described in (Sellam et al., 2020)

.

Metric WMT-17
Avg.

WMT-18
Avg.

base models (τ / r) (τ )
BLEURTbase -pre 56.8 / 75.8 33.6

BLEURTbase 61.0 / 80.2 34.9
TWMDbase 61.7 / 81.0 34.7

TWMDbase-b 61.1 / 80.7 34.7
large models (τ / r) (τ )

BLEURT -pre 59.8 / 79.2 34.5
BLEURT 62.5 / 81.8 35.6
TWMD 62.8 / 81.7 35.5

TWMD-b 63.4 / 82.9 35.5

ison, TWMD and TRWMD without batch-mean
centering appears sensitive to the temperature. The
Kendall τ correlation follow a similar trend.

Figure 4: Left: Pearson correlation as a function of the
number of iteration in Sinkhorn algorithm. Right: the
convergence rate of the Sinkhorn algorithm. The un-
derlying model in this figure is roberta-base with batch
mean centered word vectors.

Sinkhorn iteration dependence for
Tempered-WMD
We also investigate how the Sinkhorn iterations
affect the TWMD-b. (Figure 4, left) shows the
Pearson correlation vs the number of Sinkhorn it-
erations in four different temperatures. Somewhat
surprisingly, although Sinkhorn algorithm needs
more iterations to converge especially for low tem-
peratures (Figure 4, right), the Pearson correlation
of TWMD with only 1 iteration is the highest† of
the Sinkhorn update for various temperatures.

7 Conclusion

Designing automatic evaluation metrics for text is a
challenging task. Recent advances in the field lever-
age contextualized word representations, which are
in turn generated by deep neural network models
such as BERT and its variants. We present two
techniques for improving such similarity metrics:
a batch-mean centering strategy for word represen-
tations which addresses the statistical biases within
deep contextualized word representations, and a
computationally efficient tempered Word Mover
Distance. Numerical experiments conducted using
representations obtained from a range of BERT-like
models confirm that our proposed metric consis-
tently improves the correlation with human judge-
ments.
†A minor exception appears to be for T = 0.01, where the

1-iter TWMD-b is slightly worse than the 10-iter TWMD-b.



59

References
Eneko Agirre, Carmen Banea, Daniel Cer, Mona

Diab, Aitor Gonzalez Agirre, Rada Mihalcea, Ger-
man Rigau Claramunt, and Janyce Wiebe. 2016.
Semeval-2016 task 1: Semantic textual similar-
ity, monolingual and cross-lingual evaluation. In
SemEval-2016. 10th International Workshop on Se-
mantic Evaluation; 2016 Jun 16-17; San Diego, CA.
Stroudsburg (PA): ACL; 2016. p. 497-511. ACL (As-
sociation for Computational Linguistics).

Satanjeev Banerjee and Alon Lavie. 2005. METEOR:
An automatic metric for MT evaluation with im-
proved correlation with human judgments. In Pro-
ceedings of the ACL Workshop on intrinsic and ex-
trinsic evaluation measures for machine translation
and/or summarization.

Marco Cuturi. 2013. Sinkhorn distances: Lightspeed
computation of optimal transport. In Advances in
neural information processing systems, pages 2292–
2300.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Kawin Ethayarajh. 2019. How contextual are contextu-
alized word representations? IJCNLP.

Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian
Weinberger. 2015. From word embeddings to doc-
ument distances. In International conference on ma-
chine learning, pages 957–966.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learn-
ing of language representations.
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