
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 1230–1240,
November 16–20, 2020. c©2020 Association for Computational Linguistics

1230

Acrostic Poem Generation

Rajat Agarwal
New York University

rajat.agarwal@nyu.edu

Katharina Kann
University of Colorado Boulder

katharina.kann@colorado.edu

Abstract

We propose a new task in the area of compu-
tational creativity: acrostic poem generation
in English. Acrostic poems are poems that
contain a hidden message; typically, the first
letter of each line spells out a word or short
phrase. We define the task as a generation
task with multiple constraints: given an input
word, 1) the initial letters of each line should
spell out the provided word, 2) the poem’s
semantics should also relate to it, and 3) the
poem should conform to a rhyming scheme.
We further provide a baseline model for the
task, which consists of a conditional neural
language model in combination with a neural
rhyming model. Since no dedicated datasets
for acrostic poem generation exist, we create
training data for our task by first training a
separate topic prediction model on a small set
of topic-annotated poems and then predicting
topics for additional poems. Our experiments
show that the acrostic poems generated by our
baseline are received well by humans and do
not lose much quality due to the additional con-
straints. Last, we confirm that poems gener-
ated by our model are indeed closely related to
the provided prompts, and that pretraining on
Wikipedia can boost performance.

1 Introduction

Poetry, derived from the Greek word poiesis
(”making”), is the art of combining rhythmic and
aesthetic properties of a language to convey a spe-
cific message. Its creation is a manifestation of
creativity, and, as such, hard to automate. How-
ever, since the development of creative machines
is a crucial step towards real artificial intelligence,
automatic poem generation is an important task at
the intersection of computational creativity and nat-
ural language generation, and earliest attempts date
back several decades; see Gonçalo Oliveira (2017)
for an overview.

Figure 1: An acrostic poem generated by our proposed
baseline model for the word poet.

With this paper, we add a new task to this re-
search area: acrostic poem generation in English.
Acrostic poems, or simply acrostics, are a special
type of poetry, in which typically the first letter of
each line spells out a word or message, as in the
example in Figure 1. While this is the only for-
mal characteristic of an acrostic, we here define the
task of acrostic poem generation as generating po-
ems such that, additionally, poems should also both
rhyme and relate to the topic of their hidden word,
e.g., the content of the poem in Figure 1 should
be related to the word ”poet”. As far as meter is
concerned, we are interested in free verse poems.
Acrostic poem generation, as we define it, is a chal-
lenging constrained generation task with multiple
constraints: semantic ones (the content of the poem
should follow a given topic), and structural ones
(the poem should rhyme, and the first letters should
spell out a given word).

We further propose a baseline model for the task,
which we call the neural poet. It is a generative
model, which consists of two components: a con-
ditional neural language model, which generates
an acrostic poem based on a given word, and a
rhyming model, trained on sonnets, which gener-
ates rhyming words for the last position in each
line. Furthermore, two acrostic-specific challenges
need to be solved: (i) generating such that the first
letters of all lines spell out the defined word, and
(ii) making sure that the resulting poem relates to



1231

Number of lines 4 5 6 7 8 Total

KnownTopicPoems 30,433 5,413 7,233 4,795 6,098 53,972

UnknownTopicPoems 26,986 10,765 11,609 6,433 9,487 65,280

Total 57,419 16,178 18,842 11,228 15,585 119,252

Table 1: Number of poems in our datasets used for training, listed by the number of lines they contain.

the topic of that word. We address the first chal-
lenge by limiting the choices in the output softmax
during sampling from the language model. For the
second challenge, we feed the word embedding of
the topic to the language model at each time step.
Since no large datasets for the task are available,
we scrape poems for given key words from the web
and train a separate discriminative model to predict
topics, which we then use to predict silver standard
topics for a larger poem dataset. Our final model is
trained on a combination of poems with predicted
and gold topics.

Human evaluation on fluency, meaningfulness,
and poeticness (Manurung, 2003) shows that our
additional constraints hardly reduce performance as
compared to unconstrained generation. Further, our
poems relate to the acrostic word, even if the topic
does not appear in the training set. Finally, we show
that model performance—in terms of perplexity
on a held-out validation set—can be improved by
pretraining on Wikipedia.

2 Datasets

To train the baseline model for our new task, we
make use of 4 datasets, which we will describe
here, before explaining the actual model in the next
section.

KnownTopicPoems. We scrape poems from the
web1 in order to create our first dataset (Known-
TopicPoems). The poems on this site are a good
match for our task, since they are sorted by top-
ics. Our resulting dataset contains 144 topics, and
a total of 32,786 poems. These poems are all of
different lengths, but we aim at generating poems
of up to 8 lines.2 Thus, we split all longer poems
such that they contain at least 4 and a maximum of
8 lines in the following way: First, we split poems
on empty lines, since those usually mark the end
of a semantic unit. Second, if any of the resulting
partial poems are still too long, we split them at

1https://poemhunter.com/poem-topics
2Extending our method to longer poems is straightforward.

full stops, but only use the beginning, since not
every new sentence makes for a meaningful start
of a poem. We add all possible options. This step
increases the number of poems to 53,972, belong-
ing to 144 topics. This dataset is used to train the
language model of our neural poet, and to train
the topic prediction model which is used to create
additional training data for poem generation. We
use 80%, 10%, and 10% of the data for training,
development, and test, respectively.

We tokenize all poems with the NLTK WordTree-
Bank tokenizer package (Loper and Bird, 2002).

UnknownTopicPoems. We further make use of
another poem dataset taken from Liu et al. (2018)3

(UnknownTopicPoems), since it is larger than
KnownTopicPoems. However, this dataset does
not explicitly state the topics of individual poems.
Thus, we automatically predict a topic for each
poem with the help of our topic prediction model,
which will be described in Subsection 3.3. The
poems in UnknownTopicPoems are again broken
down into poems with 4 to 8 lines, and, for our main
experiments, this dataset is combined with Known-
TopicPoems, increasing the number of samples to
119,252 poems for 144 topics. Table 1 shows de-
tailed statistics for both datasets. All poems are
tokenized with the help of NLTK.

Sonnets. The last poem dataset we make use of
is the sonnet poem dataset introduced by Lau et al.
(2018). This dataset consists of Shakespearean son-
nets. Since those differ significantly in style from
the poems in KnownTopicPoems and Unknown-
TopicPoems, we do not train our language model
directly on them. However, we make use of the
fact that sonnets follow a known rhyming scheme,
and leverage them to train a neural model to pro-
duce rhymes, which will be explained in detail in
Subsection 3.2. As for the previous two datasets,
poems are tokenized using NLTK.

3https://github.com/researchmm/
img2poem/blob/master/data/unim_poem.json

https://poemhunter.com/poem-topics
https://github.com/researchmm/img2poem/blob/master/data/unim_poem.json
https://github.com/researchmm/img2poem/blob/master/data/unim_poem.json


1232

Wikipedia. Finally, we utilize a large English
Wikipedia corpus4 for pretraining. While this cor-
pus does not consist of poems, we expect pretrain-
ing a language model on English text to help the
overall coherence of the generated output. Again,
we tokenize all sentences using NLTK.

3 The Neural Poet

We now describe all models that are either part of
our baseline for acrostic poem generation or used
for data preprocessing. An overview of our final
neural poet is shown in Figure 2.

3.1 Neural Poem Language Model
We model the probability of a poem x, which con-
sists of the word sequence x1x2...xn, as:

p(x) =
n∏

i=1

p(xi|{x0, ...xi−1}, u, v, w) (1)

x0 is a start-of-sequence token, u is a given topic,
v is the acrostic word, and w is the number of lines
the poem should consist of. We then model the
conditional probability as

pLM (xi|{x0, ...xi−1}, u, v, w)
=g({x0, ...xi−1}, u, v, w) (2)

for all but the first word in each line, since, for each
first word, the probability depends on the acros-
tic word as described at the end of this subsec-
tion. The non-linear function g is parameterized
as a 3-layer uni-directional long short-term mem-
ory (LSTM; Hochreiter and Schmidhuber, 1997)
language model. For generation – but not during
training –, u and v correspond to the same word.

At each time step, the model is given the last
generated word, the topic of the poem, the charac-
ters of the acrostic word, and the number of lines to
generate as input. Each letter of the acrostic word
v is represented as a one-hot vector of size 27.5

Our language model is trained to generate poems
with up to 8 lines. Hence, the input matrix for the
acrostic word is of size 8 ∗ 27, where, for poems
corresponding to words with less than 8 letters, we
make use of a padding token. All word-level in-
put is represented by pretrained GloVe embeddings
(Pennington et al., 2014). The number of lines is
represented in the model by a single-digit tensor.

4Version from 2018/10/01; downloaded from
https://linguatools.org/tools/corpora/
wikipedia-monolingual-corpora/

5We represent letters from A− Z, ignoring case, and add
an additional padding token.

The first word of each line. The task of English
acrostic poem generation as we define it demands
that each line starts with a predefined letter. We
want to enforce this constraint, while, at the same
time, using the first word to guide the poem’s con-
tent to stay close to the acrostic word. In order
to achieve this with our baseline and still ensure
coherent poem generation, we generate the initial
words of each line as follows.

First, from all words in our vocabulary which
start with the indicated character, we compute the
k = 5 nearest neighbors n1, . . . , nk to the topic
word u, using cosine similarity and our pretrained
embeddings:

sim(x, u) =
emb(x) · emb(u)
‖emb(x)‖ · ‖emb(u)‖

Then, we select our output with a probability of
m1 = 0.7 as

argmaxi
(
pLM (n1), pLM (n2), . . . , pLM (nk)

)
(3)

However, this can cause the output to frequently
become incoherent. Thus, we sample the first word
from the language model, masking out all words
that start with a wrong letter, with a probability of
m2 = 0.3.6

The last symbol of each line. Since the num-
ber of lines we want to generate is defined by the
acrostic word, besides feeding an embedding which
represents the number of lines to our model, we fur-
ther enforce the right poem length by substituting
each end-of-sentence symbol by end-of-line, if the
number of lines is still too small. We do the same
the other way around. Whenever this would lead
to the last symbol of a poem being ”,” or ”;”, we
substitute it by ”.”.

Thus, while our intuition is that having knowl-
edge of the target number of lines will help our
model for planning during generation, we do not
require it to learn something that is already known.

3.2 Rhyming Model

We further make use of a separate neural model
to generate rhyming words for the last position
in each line. We aim at generating the follow-
ing rhyming schemes. 4 lines: ABAB; 5 lines:

6When sampling from the nearest neighbors, we find it
necessary to not permit end-of-line tokens as the second word
in the line, since those are generated with a high frequency.

https://linguatools.org/tools/corpora/wikipedia-monolingual-corpora/
https://linguatools.org/tools/corpora/wikipedia-monolingual-corpora/


1233

[x3, u, v, w]

...LSTM LSTM LSTM LSTM

[x0, u, v, w]

x1

[topic, acrostic letters, number
of lines]

linear layer linear layer linear layerlinear layer

[x1, u, v, w] [x2, u, v, w]

x2 x3 xn-1

+ + + +

[xn-1, u, v, w]

+

\n

acrostic and
topic

constraints
rhyming
model

Figure 2: Overview of the baseline model we introduce together with the task of acrostic poem generation.

ABABC; 6 lines: ABABCC; 7 lines: ABABCDC;
8 lines: ABABCDCD.

Whenever a rhyming word is required, our
rhyming model computes the probability of an
output word c, consisting of a character sequence
c1c2...cl, as:

p(c) =

l∏
i=1

p(ci|{c0, ...ci−1}, a, b)

(4)

a is the first word of the rhyme pair, i.e., the word
c should rhyme with, and b denotes the poem up
to c. a is represented as an encoding produced by
concatenating the two last hidden states of a bidi-
rectional character-level LSTM. b is the last hidden
state of a uni-directional character-level LSTM,
which encodes the poem.

Training and hyperparameters. Our rhyming
model is trained on sonnet data (cf. Section 2),
since sonnets follow a known rhyming scheme.
The LSTM which encodes the word to rhyme with
has 1 hidden layer and 256-dimensional hidden
states. The LSTM which encodes the poem also
has 1 hidden layer, but 512-dimensional hidden
states. Character embeddings are randomly initial-
ized. The rhyming model is trained with Adam
(Kingma and Ba, 2014) with an initial learning rate
of 0.0005, and a batch size of 64.

Generation. The words generated by the
rhyming model substitute the last word in lines
which are second in a rhyming pair. For instance,
considering a 4-line poem which follows the
scheme ABAB, the rhyming model would provide
the last word of the third and fourth line, taking the
last words of the first and, respectively, second line
as input. During generation, we use beam search
with width 5 to generate 5 candidates. Similarly
to the line starts described above, we choose the
candidate word with the highest language model
probability as our final output.

3.3 Topic Prediction Model
Since our poem generator expects the topic of each
poem, but the UnknownTopicPoems dataset does
not provide any, we train a topic prediction model
to create silver standard topic annotations.

We model the probability of poem x, consisting
of the word sequence x1x2...xn, belonging to topic
y as:

p(y) = d({x0, x1, ..., xn, xn+1}) (5)

where x0 is a start-of-sequence token, xn+1 is an
end-of-sequence token, and d is a bidirectional
word-level LSTM.

Training and hyperparameters. Our topic pre-
diction LSTM has 1 hidden layer and a hidden size



1234

Model Perplexity

GOLD+ 24.22
GOLD- 23.79
PRED/GOLD+ 19.94
PRED/GOLD- 18.79
WIKI+ 16.87
WIKI- 18.19

Table 2: Perplexity on the test set of KnownTopicPo-
ems for all language models; best score in bold.

of 1024. It is trained on the KnownTopicPoems
dataset. We use Adam with an initial learning rate
of 0.0005 and a batch size of 128.

4 Experiments

4.1 Language Model Evaluation
Experimental setup.

Models. We train multiple language models to
select the best basis for our neural poet:

• GOLD+ and GOLD-. Our first networks are
only trained on gold poems, i.e., our Known-
TopicPoems dataset. ”+” and ”-” indicate if
topics are fed into the model (+) or substituted
by zero vectors (-).

• PRED/GOLD+ and PRED/GOLD-. We
further train language models on both the
KnownTopicPoems dataset and the Unknown-
TopicPoem dataset. ”+” and ”-” indicate if
topics are fed into the model (+) or substituted
by zero vectors (-).

• WIKI+ and WIKI-. Finally, we pretrain two
language models on Wikipedia and finetune
them on a combination of KnownTopicPoems
and UnknownTopicPoem. Again, ”+” and ”-”
indicate if topics are fed into the model (+) or
substituted by zero vectors (-).

Hyperparameters. All language models have 3
hidden layers and hidden states of size 1024 in all
layers. Dropout (Srivastava et al., 2014) of 0.4
is applied between layers for regularization. 100-
dimensional GloVe embeddings are used to encode
the input. The number of tokens in the GloVe em-
beddings are reduced to the 50,000 most frequently
occurring tokens in the dataset. We keep the GloVe
and character embeddings fixed and do not update
them during training. All models are trained with

early stopping with patience 25 on the development
split from KnownTopicPoems.

Results. Results on the test split of Known-
TopicPoems are shown in Table 2 . WIKI+ and
WIKI- obtain the lowest perplexity scores. Thus,
we use them as the basis of our neural poet for the
remaining experiments in this paper.

4.2 Human Evaluation Of Poems
Experimental setup. In order to get an idea of
the difficulty of our proposed task, we need to as-
sess the quality of the poems generated by our
baseline. Following previous work (Manurung,
2003; Zhang and Lapata, 2014; Loller-Andersen
and Gambäck, 2018), we ask human annotators to
evaluate 40 poems generated for the words in Table
4 for readability (lexical and syntactic coherence),
meaningfulness (if the poem can be interpreted as
conveying a message to its reader), and poeticness
(if the poem rhymes and looks like a poem) on a
scale from 1 (worst) to 5 (best). Additionally, we
also ask for an overall score. We collect a minimum
of 2 and a maximum of 5 ratings for each aspect
of each poem. All annotators are fluent in English:
they either are or have in the past been working or
studying at an English-speaking institution.

Models. In order to further obtain insight into the
effect of the different components of our model, we
perform an ablation study: we evaluate our final
neural poet including the rhyming model, a given
topic, and acrostic forcing against versions of the
model without selected components. We evaluate
the following models:

• NeuralPoet. This is our final model with
all components. It has been pretrained on
Wikipedia and fine-tuned on both Known-
TopicPoems and UnknownTopicPoems.

• NeuralPoet-ST. This is NeuralPoet, but we
do not choose the first word of each line from
the nearest neighbors of the topic, i.e., we set
m1 = 0 and m2 = 1 in the notation from
Section 3.1.

• NeuralPoet-ST-AC. Next, we additionally
switch off acrostic forcing, i.e., we do not
enforce that the first letters spell out the acros-
tic word. Since the language model receives
embeddings of the characters as input, we
observe that NeuralPoet-ST-AC still largely
produces the acrostic word, but the language



1235

All Known♥ Unknown♠
F M P A F M P A F M P A

Human 4.1 3.95 4.22 3.67 4.1 3.95 4.22 3.67 - - - -

NeuralPoet 3.48 2.75 3.66 2.55 3.70 2.86 3.77 2.79 3.25 2.63 3.56 2.31

NeuralPoet-ST 3.51 2.79 3.25 2.59 3.39 2.81 3.31 2.73 3.62 2.76 3.20 2.43

NeuralPoet-ST-AC 3.60 2.95 3.59 2.62 3.58 3.12 3.35 2.70 3.62 3.03 3.83 2.56

NeuralPoet-ST-RH 3.36 2.94 3.32 2.54 3.40 2.99 3.41 2.69 3.32 2.89 3.27 2.38

NeuralPoet-ST-TP 3.60 3.11 3.52 2.87 3.70 3.06 3.57 2.84 3.50 3.15 3.48 2.90

Table 3: Human evaluation and ablation study; F = Fluency; M = Meaning; P = Poeticness; A = Over-
all; ST=selecting first words for each line according to the acrostic; AC=acrostic forcing; RH=rhyming model;
TP=feeding of topic vector.

Known♥ Unknown♠

alone bird
fire blizzard
food cake
heaven canyons
hero clever
home curse
january diary
laughter east
loss ending
marriage feather
memory general
money holiday
music local
nature song
ocean special
respect summer
river sweet
star tear
thanks tomorrow
trust width

Table 4: The acrostic words used to generate poems in
our experiments, corresponding to known or unknown
topics.

model has more freedom to generate coherent
and fluent text.

• NeuralPoet-ST-RH. This is NeuralPoet-ST,
but we switch off the rhyming model, i.e.,
the last words are generated directly from the
language model. We expect this to also be
more fluent and coherent, but less poem-like.

• NeuralPoet-ST-TP. This version of

NeuralPoet-ST does not receive the topic as
input. To achieve this, we set the topic vector
to zero during both training and generation.

We further collect ratings for human poems from
our training set for comparison; some of them are
partial poems as used for training.

Results. All ratings are displayed in Table 3. We
can see that human poems obtain the highest scores
overall; they serve as a rough upper bound on the
scores of our models. We then compare the differ-
ent versions of our neural poet on the basis of our
four criteria. We observe the following:

• NeuralPoet. This model performs well in
most evaluations, and it has the highest per-
formance among all models for fluency and
poeticness for Known. For All, NeuralPoet
obtains the best poeticness score. This shows
the effectiveness of our proposed baseline.

• NeuralPoet-ST. We only notice small differ-
ences in the scores for poems generated by
this model and the previous one. However,
differences in poeticness are relatively large:
0.41, 0.46, and 0.36 for All, Known, and Un-
known, respectively. We hypothesize that a
reason for this might be that the generated
words are not always closely related to the
given topic. Thus, the poems loose context
and cohesiveness more often, leading to a
worse overall impression.

• NeuralPoet-ST-AC. Without enforcement of
the acrostic constraints, the language model
has more autonomy in selecting words. As
expected, the results show that the poems gen-
erated are more fluent than those of most other



1236

alone♥

Alone we spoke,
Less, do not fear my heart,
Only later, i may not love,
Not to have hoped that i would not apart,
Even... i am sure.

nature♥

Not still a child
Am i one of you
That look in the wild
Upon your paradise full of view
Remember my soul ’s face well
Experience ’s as shall.

cake♠

Chocolate wall and marble cup
Apples howl with golden hair
Kitchen of the world they stir
Eat bread and eat there.

tear♠

Tear that out my soul,
Earth ’s heart,
Angry, up,
Rocks of death.

ending♠

Everything is done at the random quality
Next after the wide circuit of the past
Days of the day
In the end of the last
New york ’s, complete words
Going nowhere heard.

Table 5: Example poems generated by our model for
the indicated topics and used in our evaluation.♠ = un-
known topic; ♥ = known topic.

models: it obtains the highest fluency scores
for All and Unknown. However, differences
to NeuralPoet are relatively small, showing
that we do not lose much quality by enforcing
acrostics. Another effect of fewer constraints
is that the poems are more coherent: they get
the highest meaningfulness scores for Known,
and the second highest for All.

• NeuralPoet-ST-RH. This version of our
model gets scores in the lower half for all in-
dividual evaluations. This clearly shows that
rhyming seems to be evaluated highly by hu-

Known♥ Unknown♠ Total

Correct 9 12 21

Disagreement 8 7 15

Incorrect 3 1 4

Table 6: Number of poems correctly or incorrectly iden-
tified by human annotators as belonging to the given
topic. Disagreement denotes examples where the anno-
tators selected different poems.

man annotators and that the rhyming model is
an important component of our neural poet.

• NeuralPoet-ST-TP. This version of the
model, which is not given a topic, obtains
highest or close-to-highest scores for most
individual evaluations. In particular, the gen-
erated poems seem to be more fluent and co-
herent than the alternatives. However, they do
not relate to any specific topic, which proba-
bly causes the drop in quality for poeticness,
where this model always performs worse than
NeuralPoet.

4.3 Human Evaluation Of Topicality
Experimental setup. Besides the first characters
of all lines forming the input prompt, our acrostic
poem generation task further requires that the con-
tent of the poem should relate to the input word. In
order to gain insight if we succeed with the latter,
we further conduct the following evaluation: we
create poems with (i) our final neural poet and (ii)
a version of the poet that only sees zero vectors as
topic vectors during training and generation. Both
models are forced to generate acrostics. We then
show poems generated by both models together
with the acrostic word to human evaluators and ask
which poem is more closely related to the topic.

Models. We compare poems generated by the
following two models:

• NeuralPoet. Our final baseline model with
all components. It is pretrained on Wikipedia
and fine-tuned on a combination of Known-
TopicPoems and UnknownTopicPoems.

• NeuralPoet-ST-TP. This version of our
model, as described in the last subsection, has
no component which takes the topic as input:
the first word of the line is generated exclu-
sively by the language model, and the topic



1237

vector is set to zero. It, thus, makes it pos-
sible to evaluate if the topic is indeed being
reflected in our poems.

Results. As shown in Table 6, our annotators
agree on the poem generated by NeuralPoet to be
closer related to its topic for 21 out of 40 poems. In
15 cases, the two annotators disagree, and only in 4
cases they find the poem generated by NeuralPoet-
ST-TP, i.e., the model that does in fact not know
about the topic, to be more similar to it. This indi-
cates that our poems indeed confirm with the topic
given by the acrostic word.

Considering poems for known and unknown top-
ics separately, we get a similar picture. Suprisingly,
however, 12 out of 20 and 9 out of 20 poems are
recognized correctly for know and unknown words,
respectively. Thus, our model works well even for
topics it has not seen during training.

5 Related Work

Automated poetry generation has long been get-
ting attention from researchers at the intersection
of artificial intelligence and computational creativ-
ity. Even before the advent of deep learning, re-
searchers used stochastic models and algorithms to
generate poems (Queneau, 1961; Oulipo (Associa-
tion), 1981; Gervás, 2000; Manurung, 2003). With
the advancements in deep learning, more and more
researchers are exploring possibilities of training
neural networks to generate poems which mimic
human creativity. The authors of Lau et al. (2018)
trained a model on generating Shakespearean son-
nets. They used a hybrid word-character LSTM-
based recurrent neural network to generate poems,
and used separate rhythmic and rhyming models to
enforce sonnet structure on the poems generated.
All three component were trained in a multi-task
fashion. Their crowd-work and expert evaluations
suggested that the generated poems conformed to
the sonnet structure, however lacked readability
and coherent meaning. We make use of explicit
representations of topics to address the poem co-
herence and readability concern: as our poems are
generated based on a topic, we expect them to be
more coherent.
Authors of Wang et al. (2018) generated Chinese
poems based on images, rather than topic words.
They used a combination of a convolutional neural
network (CNN) and a gated recurrent unit (GRU)
to generate poems which related to the target im-
age. They also generated acrostic poems, but used

character-level modelling to achieve this – which
was simpler than in our case, since they worked
with Chinese text where characters often corre-
spond to entire words. Our preliminary experi-
ments on English showed that character-level mod-
els learn easily to generate acrostics by themselves,
however do not follow the topic as coherently as
word-level models. Zhang and Lapata (2014);
Zhang et al. (2017); Yang et al. (2017); Yi et al.
(2018a,c); Yang et al. (2019) are other examples
of work on generating Chinese poems, but did not
focus on acrostics.

Ghazvininejad et al. (2016, 2017) built a model
to generate poems based on topics in a similar fash-
ion to ours. However, they chose words related to
a given topic to be the last words in each line – and
to rhyme. For this, they built rhyming classes for
an input topic first, from which rhyming pairs were
chosen. The most obvious differences to our work
are, however, that they produced poems following
predefined stress patterns, while we are interested
in free verse poems and that we generate acrostic
poems, while they did not.

Finally, some additional work on poem gener-
ation includes Yi et al. (2018b), who applied re-
inforcement learning to the problem, in order to
overcome the mismatch of training loss and evalua-
tion metric.

6 Conclusion

We introduce a new task in the area of computa-
tional creativity: acrostic poem generation in En-
glish. The task consists of creating poems with
the following constraints: 1) the first letters of all
lines should spell out a given word, 2) the poem’s
content should also be related to that word, and
3) the poem should conform to a rhyming scheme.
We further present a baseline for the task, based on
a neural language model which has been pretrained
on Wikipedia and fine-tuned on a combination of
poems with gold standard and automatically pre-
dicted topics. A separate rhyming model is respon-
sible for generating rhymes.

We perform a manual evaluation of the generated
poems and find that, while human poets still outper-
form automatic approaches, poems written by our
neural poet obtain good ratings. Our additional con-
straints only slightly decrease fluency and meaning-
fulness and, in fact, even increase the poeticness of
the generated poems. Furthermore, our model’s
poems are indeed topic-wise closely related to



1238

the acrostic word. Our neural poet is available
at https://nala-cub.github.io/resources as
a baseline for future research on the task.

Acknowledgments

We would like to thank the members of NYU’s
ML2 group for their help with the human evalu-
ation and their feedback on our paper! We are
also grateful to the anonymous reviewers for their
insightful comments.

References
Pablo Gervás. 2000. Wasp: Evaluation of different

strategies for the automatic generation of spanish
verse. In AISB symposium on creative & cultural
aspects of AI.

Marjan Ghazvininejad, Xing Shi, Yejin Choi, and
Kevin Knight. 2016. Generating topical poetry. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
1183–1191, Austin, Texas. Association for Compu-
tational Linguistics.

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and
Kevin Knight. 2017. Hafez: an interactive poetry
generation system. In Proceedings of ACL 2017,
System Demonstrations, pages 43–48, Vancouver,
Canada. Association for Computational Linguistics.

Hugo Gonçalo Oliveira. 2017. A survey on intelligent
poetry generation: Languages, features, techniques,
reutilisation and evaluation. In Proceedings of the
10th International Conference on Natural Language
Generation, pages 11–20, Santiago de Compostela,
Spain. Association for Computational Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Diederik P Kingma and Jimmy Ba. 2014.
Adam: A method for stochastic optimization.
arXiv:1412.6980.

Jey Han Lau, Trevor Cohn, Timothy Baldwin, Julian
Brooke, and Adam Hammond. 2018. Deep-speare:
A joint neural model of poetic language, meter and
rhyme. arXiv:1807.03491.

Bei Liu, Jianlong Fu, Makoto P Kato, and Masatoshi
Yoshikawa. 2018. Beyond narrative description:
generating poetry from images by multi-adversarial
training. In ACM MM.

Malte Loller-Andersen and Björn Gambäck. 2018.
Deep learning-based poetry generation given visual
input. In ICCC.

Edward Loper and Steven Bird. 2002. NLTK: The natu-
ral language toolkit. In Workshop on Effective Tools
and Methodologies for Teaching Natural Language
Processing and Computational Linguistics.

Hisar Manurung. 2003. An evolutionary algorithm ap-
proach to poetry generation. Ph.D. thesis, Univer-
sity of Edinburgh, College of Science and Engineer-
ing.

Oulipo (Association). 1981. Atlas de littérature poten-
tielle. Gallimard.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word rep-
resentation. In EMNLP.

Raymond Queneau. 1961. 100.000. 000.000. 000 de
poèmes. Gallimard Series. Schoenhof’s Foreign
Books, Incorporated.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. JMLR, 15(1):1929–1958.

Xiaoyu Wang, Xian Zhong, and Lin Li. 2018. Gener-
ating chinese classical poems based on images. In
IMECS.

Xiaopeng Yang, Xiaowen Lin, Shunda Suo, and Ming
Li. 2017. Generating thematic chinese poetry using
conditional variational autoencoders with hybrid de-
coders. In IJCAI.

Zhichao Yang, Pengshan Cai, Yansong Feng, Fei Li,
Weijiang Feng, Elena Suet-Ying Chiu, and Hong Yu.
2019. Generating classical chinese poems from ver-
nacular chinese. In EMNLP-IJCNLP.

Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. 2018a. Chi-
nese poetry generation with a salient-clue mecha-
nism. In CoNLL.

Xiaoyuan Yi, Maosong Sun, Ruoyu Li, and Wenhao Li.
2018b. Automatic poetry generation with mutual re-
inforcement learning. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3143–3153, Brussels, Bel-
gium. Association for Computational Linguistics.

Xiaoyuan Yi, Maosong Sun, Ruoyu Li, and Zonghan
Yang. 2018c. Chinese poetry generation with a
working memory model. In IJCAI.

Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang,
Andrew Abel, Shiyue Zhang, and Andi Zhang. 2017.
Flexible and creative Chinese poetry generation us-
ing neural memory. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1364–
1373, Vancouver, Canada. Association for Computa-
tional Linguistics.

https://nala-cub.github.io/resources
https://doi.org/10.18653/v1/D16-1126
https://www.aclweb.org/anthology/P17-4008
https://www.aclweb.org/anthology/P17-4008
https://doi.org/10.18653/v1/W17-3502
https://doi.org/10.18653/v1/W17-3502
https://doi.org/10.18653/v1/W17-3502
https://doi.org/10.18653/v1/D18-1353
https://doi.org/10.18653/v1/D18-1353
https://doi.org/10.18653/v1/P17-1125
https://doi.org/10.18653/v1/P17-1125


1239

Xingxing Zhang and Mirella Lapata. 2014. Chinese po-
etry generation with recurrent neural networks. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 670–680, Doha, Qatar. Association for Com-
putational Linguistics.

https://doi.org/10.3115/v1/D14-1074
https://doi.org/10.3115/v1/D14-1074


1240

Appendix A: Details on Computing

Model Training Time Number Epochs Number Parameters

Wikipedia pretraining 600 minutes 3 2298764
Sonnet pretraining 100 minutes 30 1833642
Neural poet 2440 minutes 50 1833642
Rhyming model 60 minutes 50 36788
Topic prediction model 60 minutes 50 140244

Table 7: Training times and number of parameters for our models. All models have been trained with a batch size
of 128 on an NVIDIA Titan V GPU with 12 GB RAM.

Appendix B: Details on Hyperparameters

Our hyperparameters have been manually tuned over small sets of intuitive values.


