
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, pages 1067–1073,
November 16–20, 2020. c©2020 Association for Computational Linguistics

1067

Incorporating a Local Translation Mechanism
into Non-autoregressive Translation

Xiang Kong∗, Zhisong Zhang∗, Eduard Hovy
Language Technologies Institute, Carnegie Mellon University

{xiangk,zhisongz,hovy}@cs.cmu.edu

Abstract

In this work, we introduce a novel local au-
toregressive translation (LAT) mechanism into
non-autoregressive translation (NAT) models
so as to capture local dependencies among tar-
get outputs. Specifically, for each target decod-
ing position, instead of only one token, we pre-
dict a short sequence of tokens in an autore-
gressive way. We further design an efficient
merging algorithm to align and merge the out-
put pieces into one final output sequence. We
integrate LAT into the conditional masked lan-
guage model (CMLM; Ghazvininejad et al.,
2019) and similarly adopt iterative decod-
ing. Empirical results on five translation tasks
show that compared with CMLM, our method
achieves comparable or better performance
with fewer decoding iterations, bringing a 2.5x
speedup. Further analysis indicates that our
method reduces repeated translations and per-
forms better at longer sentences. The code for
our model is available at https://github.
com/shawnkx/NAT-with-Local-AT.

1 Introduction

Traditional neural machine translation (NMT) mod-
els (Sutskever et al., 2014; Cho et al., 2014; Bah-
danau et al., 2014; Gehring et al., 2017; Vaswani
et al., 2017) commonly make predictions in an
incremental token-by-token way, which is called
autoregressive translation (AT). Although this strat-
egy can capture the full translation history, it has
relatively high decoding latency. To make the de-
coding more efficient, non-autoregressive transla-
tion (NAT) (Gu et al., 2018) is introduced to gener-
ate multiple tokens at once instead of one-by-one.
However, with the conditional independence prop-
erty (Gu et al., 2018), NAT models do not directly
consider the dependencies among output tokens,
which may cause errors of repeated translation and

∗ Zhisong and Xiang contributed equally for this paper

Figure 1: An example of the LAT mechanism. For each
decoding position, a short sequence of tokens is gener-
ated in an autoregressive way. 〈sop〉 is the special start-
of-piece symbol. ‘pos*’ denotes the hidden state from
the decoder at that position.

incomplete translation (Wang et al., 2019). There
have been various methods in previous work (Stern
et al., 2019; Gu et al., 2019; Ma et al., 2018; Wei
et al., 2019; Ma et al., 2019; Tu et al., 2020) to miti-
gate this problem, including iterative decoding (Lee
et al., 2018; Ghazvininejad et al., 2019).

In this work, we introduce a novel mechanism,
i.e., local autoregressive translation (LAT), to take
local target dependencies into consideration. For a
decoding position, instead of generating one token,
we predict a short sequence of tokens (which we
call a translation piece) for the current and next
few positions in an autoregressive way. A simple
example is shown in Figure 1.

With this mechanism, there can be overlapping
tokens between nearby translation pieces. We take
advantage of these redundancies, and apply a sim-
ple algorithm to align and merge all these pieces
to obtain the full translation output. Specifically,
our algorithm builds the output by incrementally
aligning and merging adjacent pieces, based on the
hypothesis that each local piece is fluent and there
are overlapping tokens between adjacent pieces
as aligning points. Moreover, the final output se-

https://github.com/shawnkx/NAT-with-Local-AT
https://github.com/shawnkx/NAT-with-Local-AT

1068

quence is dynamically decided through the merging
algorithm, which makes the decoding process more
flexible.

We integrate our mechanism into the conditional
masked language model (CMLM) (Ghazvinine-
jad et al., 2019) and similarly adopt iterative
decoding, where tokens with low confidence
scores are masked for prediction in more itera-
tions. With evaluations on five translation tasks,
i.e., WMT’14 EN↔DE, WMT’16 EN↔RO and
IWSLT’14 DE→EN, we show that our method
could achieve similar or better performance com-
pared with CMLM and AT models while gaining
nearly 2.5 and 7 times speedups, respectively. Fur-
thermore, our method is shown to effectively re-
duce repeated translations and perform better at
longer sentences.

2 CMLM with LAT

2.1 Model
We integrate our LAT mechanism into CMLM,
which predicts the full target sequence based on
the source and partial target sequence. We adopt
a lightweight LSTM-based sequential decoder as
the local translator upon the CMLM decoder out-
puts. For a target position i, the CMLM decoder
produces a hidden vector posi, based on which the
local translator predicts a short sequence of tokens
in an autoregressive way, i.e., t1i , t

2
i , ..., t

K
i . HereK

is the number of location translation steps, which
is set to 3 in our experiments to avoid affecting the
speed much.

2.2 Decoding
During inference, a special token, 〈sop〉 (start of
piece) is fed into the local translator to generate a
short sequence based on the posi. After generating
the local pieces for all target positions in parallel,
we adopt a simple algorithm to merge them into
a full output sequence. This merging algorithm is
described in detail in Section 3. We also perform it-
erative decoding following the same Mask-Predict
strategy (Ghazvininejad et al., 2019; Devlin et al.,
2019). In each iteration, we take the output se-
quence from the last iteration and mask a subset
of tokens with low confidence scores by a special
〈mask〉 symbol. Then the masked sequence is fed
together with the source sequence to the decoder
for the next decoding iteration.

Following Ghazvininejad et al. (2019), a special
token LENGTH is added to the encoder, which is

utilized to predict the initial target sequence length.
Nevertheless, our algorithm can dynamically ad-
just the final output sequence and we find that our
method is not sensitive to the choice of target length
as long as it falls in a reasonable range.

2.3 Training
The training procedure is similar to that of
Ghazvininejad et al. (2019). Given a pair of source
and target sequences S and T , we first sample a
masking size from a uniform distribution from [1,
N], where N is the target length. Then this size
of tokens are randomly picked from the target se-
quence and replaced with the 〈mask〉 symbol. We
refer to the set of masked tokens as Tmask. Then
for each target position, we adopt a teacher-forcing
styled training scheme to collect the cross-entropy
losses for predicting the corresponding ground-
truth local sequences, the size of which is K = 3.

Assume that we are at position i, we simply
setup the ground-truth local sequence t1i , t

2
i , ..., t

K
i

as Ti, Ti+1, ..., Ti+K−1, where Ti denotes the i-th
token in the full target ground-truth sequence. We
include all tokens in our final loss, whether they
are in Tmask or not, but adopt different weights for
the masked tokens that do not appear in the inputs.
Therefore, our token prediction loss function is:

L =−
N∑
i=1

K∑
j=1

1

{
tji ∈ Tmask

}
log(p(tji))

−
N∑
i=1

K∑
j=1

1

{
tji /∈ Tmask

}
α log(p(tji))

Here, we adopt a weight α for the tokens that are
not masked in the target input, which is set as 0.1 so
that the model could be trained more on the unseen
tokens. Furthermore, we randomly delete certain
positions (the number of deletion is randomly sam-
pled from [1, 0.15*N]) from the target inputs to
encourage the model to learn insertion-styled op-
erations. The final loss is the addition of the token
prediction and the target length prediction loss.

3 Merging Algorithm

In decoding, the model generates local translation
pieces for all decoding positions. We adopt a sim-
ple algorithm that incrementally builds the output
through a piece-by-piece merging process. Our hy-
pothesis is that if the local autoregressive translator
is well-trained, then 1) the token sequence inside
each piece is fluent and well-translated, 2) there are

1069

going to study here will study in the
s1 s2

going to study here

will study in the

LCS:

-0.42

-0.54

-0.32

-0.17

going to study in the

Resolve
Conflicts:

Figure 2: An example of merging two pieces of tokens.

overlaps between nearby pieces, acting as aligning
points for merging.

We first illustrate the core operation of merg-
ing two consecutive pieces of tokens. Algorithm
1 describes the procedure and Figure 2 provides
an example. Given two token pieces s1 and s2,
we first use the Longest Common Subsequence
(LCS) algorithm to find matched tokens (Line 1).
If there is nothing that can be matched, then we
simply do concatenation (Line 3), otherwise we
solve the conflicts of the alternative spans by com-
paring their confidence scores (Line 9-14). Finally
we can arrive at the merged output after resolving
all conflicted spans.

In the above procedure, we need to specify the
score of a span. Through preliminary experiments,
we find a simple but effective scheme. From the
translation model, each token gets a model score
of its log probability. For the score of a span, we
average the scores of all the tokens inside. If the
span is empty, we utilize a pre-defined value, which
is empirically set to log 0.25. For aligned tokens,
we choose the highest scores among them for later
merging process (Line 16).

With this core merging operation, we apply a
left-to-right scan to merge all the pieces in a piece-
by-piece fashion. For each merging operation, we
only take the last K tokens of s1 and the first K
tokens of s2, while other tokens are directly copied.
This ensures that the merging will only be local, to
mitigate the risk of wrongly aligned tokens. Here,
K is again the local translation step size.

Our merging algorithm can be directly applied
at the end of each iteration in the iterative decoding.
However, since the output length of the merging
algorithm is not always the same as the number
of input pieces, we further adopt a length adjust-
ment procedure for intermediate iterations. Briefly
speaking, we adjust the output length to the pre-
dicted length by adding or deleting certain amounts
of special 〈mask〉 symbols. Please refer to the Ap-

Algorithm 1: Merging two pieces.
Input: Two pieces of tokens: s1, s2.
Output: A merged sequence s′.
// Call Longest Common Subsequence

1 MatchedPairs = LCS(s1, s2);
2 if MatchedPairs.size() == 0 then
3 return s1+s2 ; // Simple concat

4 else
5 s′ = [] ; // Initialize
6 p1, p2 = -1, -1 ; // Previous idxes

// Add sentinel indexes.
7 MatchedPairs += [(∞,∞)];
8 foreach i1, i2 in MatchedPairs do
9 span1 = s1[p1+1:i1];

10 span2 = s2[p2+1:i2];
// Solve conflicts by scores.

11 if score(span1) ≥ score(span2) then
12 s′ += span1;

13 else
14 s′ += span2;

// Align the matched ones.
15 if i1 6=∞ then
16 s′ += [align(s1[i1], s2[i2])];

17 p1, p2 = i1, i2;

18 return s′;

pendix for more details.
Although our merging algorithm is actually au-

toregressive, it does not include any neural network
computations and thus can run efficiently. In ad-
dition to efficiency, our method also makes the
decoding more flexible, since the final output is dy-
namically created through the merging algorithm.

4 Experiments

4.1 Experimental Setup
We evaluate our proposed method on five trans-
lation tasks, i.e., WMT’14 EN↔DE, WMT’16
EN↔RO and IWSLT’14 DE→EN. Following pre-
vious works (Hinton et al., 2015; Kim and Rush,
2016; Gu et al., 2018; Zhou et al., 2020), we train a
vanilla base transformer (Vaswani et al., 2017) on
each dataset and use its translations as the training
data. The BLEU score (Papineni et al., 2002) is
used to evaluate the translation quality. Latency,
the average decoding time (ms) per sentence with
batch size 1, is employed to measure the inference
speed. All models’ decoding speed is measured on
a single NVIDIA TITAN RTX GPU.

We follow most of the hyperparameters for the
CMLM (Ghazvininejad et al., 2019) in the base
configuration, i.e., 6 layers for encoder and de-
coder, 8 attention heads, 512 embedding dimen-
sions and 2048 hidden dimensions. The LAT is an

1070

Model Iterations WMT’14 WMT’16 IWSLT’14 latency (ms)EN-DE DE-EN EN-RO RO-EN DE-EN

1 AT N 27.46 31.87 34.39 33.98 34.18 486

2 CMLM 1 18.05 21.83 27.32 28.20 28.14 27
3 LAT 25.20 29.91 30.74 31.24 31.92 31

4 CMLM 4 25.94 29.90 32.53 33.23 32.87 72
5 LAT 27.35 32.04 32.87 33.26 34.08 73

6 CMLM 10 27.03 30.53 33.08 33.31 33.40 166

Table 1: The comparisons (on BLEU score and decoding latency) of CMLM, LAT and AT models.

Model Iteration ngram repeat rate (%)
1 2 3 4

CMLM 1 20.85 3.78 1.06 0.37
LAT 4.89 0.42 0.05 0.00

CMLM 4 3.97 0.14 0.03 0.02
LAT 3.32 0.08 0.00 0.00

CMLM 10 3.56 0.08 0.02 0.02

AT N 3.27 0.05 0.00 0.00
Reference - 2.49 0.03 0.00 0.00

Table 2: N-gram repeat rates of various models on
WMT’14 EN-DE test set.

local translation steps (K)
2 3 4 5 6

BLEU 32.9 33.8 34.4 34.5 34.2
latency (ms) 69 72 74 77 79

Table 3: The performance of LAT models with re-
spect to the number of local translation steps (K) on
IWSLT’14 DE-EN test set.

LSTM-based neural network of size 512. Finally,
we average 5 best checkpoints according to the val-
idation loss as our final model. Please refer to the
Appendix for more details of the settings.

4.2 Main results
The main results are shown in Table 1. Compared
with CMLM at the same number of decoding itera-
tions (row 2 vs. 3 and row 4 vs. 5), LAT performs
much better while keeping similar speed, especially
when the iteration number is 1. Note that since our
method is not sensitive to predicted length, we only
take one length candidate from our length predictor
instead of 5 as in CMLM. Furthermore, LAT with
4 iterations could achieve similar or better results
than CMLM with 10 iterations (row 5 vs. 6) but
have a nearly 2.5x decoding speedup.

Figure 3: The BLEU scores of various systems with
respect to the reference sentence lengths on WMT’14
EN-DE testset.

4.3 Analysis
On local translation step. We also explore the
effects of the number of local translation steps (K)
on the IWSLT’14 DE-EN dataset. The results are
shown in Table 3. Generally, with more local trans-
lation steps, there can be certain improvements on
BLEU but with an extra cost at inference time.

On repeated translation. We compute the n-
gram repeat rate (nrr, what percentage of n-grams
are repeated by certain nearby n-grams) of different
systems on WMT’14 EN-DE test set and the result
is shown in Table 2. The nrr of CMLM with one
iteration is much higher than other systems, show-
ing that it suffers from a severe repeated translation
problem. On the other hand, LAT can mitigate this
problem thanks to the merging algorithm.

On sentence length. We explore how various
systems perform on sentences with various lengths.
The WMT’14 EN-DE test set is split into 5 length
buckets by target length. Figure 3 show that LAT
performs better than CMLM on longer sentences,
which indicates the effectiveness of our methods at
capturing certain target dependencies.

1071

5 Related Work

Gu et al. (2018) begin to explore non-
autoregressive translation, the aim of which
is to generate sequences in parallel. In order to
mitigate multimodality issue, recent work mainly
tries to narrow the gap between NAT and AT.
Libovickỳ and Helcl (2018) design a NAT model
using CTC loss. Lee et al. (2018) uses iteration
decoding to refine translation. The conditional
masked language model (CMLM) (Ghazvininejad
et al., 2019) predicts partial target tokens based on
the source text and partially masked target sentence.
Ma et al. (2019) employs normalizing flows as
the the latent variable to produce sequences. Sun
et al. (2019) designs an efficient approximation for
CRF for NAT. Besides that, there are some works
trying to improving the decoding speed of the
autoregressive models. For example, Wang et al.
(2018) propose a semi-autoregressive translation
model, which adopts locally non-autoregressive,
but autoregressive decoding. And works mentioned
in Hayashi et al. (2019) use techniques such as
knowledge distillation, block-sparse regularization
to improve the decoding speed of autoregressive
models.

6 Conclusion

In this work, we incorporate a novel local autore-
gressive translation mechanism (LAT) into non-
autoregressive translation, predicting multiple short
sequences of tokens in parallel. With a simple and
efficient merging algorithm, we integrate LAT into
the conditional masked language model (CMLM
Ghazvininejad et al., 2019) and similarly adopt it-
erative decoding. We show that our method could
achieve similar results to CMLM with less decod-
ing iterations, which brings a 2.5x speedup. More-
over, analysis shows that LAT can reduce repeated
translations and perform better at longer sentences.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv preprint
arXiv:1409.0473.

Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint
arXiv:1406.1078.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 1243–1252. JMLR. org.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel de-
coding of conditional masked language models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6112–
6121, Hong Kong, China.

Jiatao Gu, James Bradbury, Caiming Xiong, Vic-
tor O.K. Li, and Richard Socher. 2018. Non-
autoregressive neural machine translation. In 6th
International Conference on Learning Representa-
tions, ICLR 2018, Vancouver, Canada, April 30-May
3, 2018, Conference Track Proceedings.

Jiatao Gu, Changhan Wang, and Junbo Zhao.
2019. Levenshtein transformer. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. dAlché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 11179–
11189. Curran Associates, Inc.

Hiroaki Hayashi, Yusuke Oda, Alexandra Birch, Ioan-
nis Konstas, Andrew Finch, Minh-Thang Luong,
Graham Neubig, and Katsuhito Sudoh. 2019. Find-
ings of the third workshop on neural generation and
translation. EMNLP-IJCNLP 2019, page 1.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015.
Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation. In Proceedings of the
2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1317–1327, Austin,
Texas. Association for Computational Linguistics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1173–
1182.

http://papers.nips.cc/paper/9297-levenshtein-transformer.pdf
https://doi.org/10.18653/v1/D16-1139
https://doi.org/10.18653/v1/D16-1139
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980

1072

Jindřich Libovickỳ and Jindřich Helcl. 2018. End-to-
end non-autoregressive neural machine translation
with connectionist temporal classification. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3016–
3021.

Shuming Ma, Xu Sun, Yizhong Wang, and Junyang
Lin. 2018. Bag-of-words as target for neural ma-
chine translation. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 332–
338, Melbourne, Australia. Association for Compu-
tational Linguistics.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neu-
big, and Eduard Hovy. 2019. Flowseq: Non-
autoregressive conditional sequence generation with
generative flow. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 4273–4283.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th annual meeting on association for compu-
tational linguistics, pages 311–318. Association for
Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725.

Mitchell Stern, William Chan, Jamie Kiros, and Jakob
Uszkoreit. 2019. Insertion transformer: Flexible se-
quence generation via insertion operations. arXiv
preprint arXiv:1902.03249.

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He,
Zi Lin, and Zhihong Deng. 2019. Fast structured de-
coding for sequence models. In Advances in Neural
Information Processing Systems, pages 3011–3020.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural networks.
In Advances in neural information processing sys-
tems, pages 3104–3112.

Lifu Tu, Richard Yuanzhe Pang, Sam Wiseman, and
Kevin Gimpel. 2020. Engine: Energy-based infer-
ence networks for non-autoregressive machine trans-
lation. arXiv preprint arXiv:2005.00850.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Chunqi Wang, Ji Zhang, and Haiqing Chen. 2018.
Semi-autoregressive neural machine translation. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages
479–488.

Yiren Wang, Fei Tian, Di He, Tao Qin, ChengXiang
Zhai, and Tie-Yan Liu. 2019. Non-autoregressive
machine translation with auxiliary regularization. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 33, pages 5377–5384.

Bingzhen Wei, Mingxuan Wang, Hao Zhou, Junyang
Lin, and Xu Sun. 2019. Imitation learning for non-
autoregressive neural machine translation. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1304–
1312.

Chunting Zhou, Jiatao Gu, and Graham Neubig.
2020. Understanding knowledge distillation in
non-autoregressive machine translation. 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020, Conference Track Proceedings.

Appendices

A Preprocessing
We follow the standard pre-processing procedure
in prior works (Vaswani et al., 2017; Lee et al.,
2018). All datasets are segmented into subwords
through byte pair encoding (BPE) (Sennrich et al.,
2016). The BPE code is learnt from the combina-
tion of source and target data for WMT datasets.
For IWSLT, the bpe code is learned from the source
and target data separately. Table 4 lists some details.

Dataset Vocab. Size Data size

IWSLT 10k 150k
WMT14 EN↔DE 32k 4.5M
WMT16 EN↔RO 40k 600k

Table 4: Pre-processing details of various translation
benchmarks. Vocab. size denotes vocabulary size.

B Optimization
We sample weights from N (0, 0.02), initialize bi-
ases to zero, and set layer normalization parame-
ters to β = 0, γ = 1. For regularization, we use
0.3 dropout, 0.01 L2 weight decay, and smoothed
cross-entropy loss with ε = 0.1. We train batches of
128k tokens using Adam (Kingma and Ba, 2015)
with β = (0.9, 0.999) and ε = 10−6. The learning
rate warms up to a peak of 5× 10−4 within 10,000

https://doi.org/10.18653/v1/P18-2053
https://doi.org/10.18653/v1/P18-2053

1073

Model Iterations WMT’14 WMT’16 IWSLT’14
EN-DE DE-EN EN-RO RO-EN DE-EN

AT N 26.13 31.06 34.74 35.76 33.59

CMLM 1 18.47 22.83 26.92 28.77 24.57
LAT 22.14 29.20 32.16 32.07 28.34

CMLM 4 24.73 29.18 33.06 34.31 29.06
LAT 26.03 31.66 33.49 34.77 34.05

CMLM 10 25.25 29.83 33.66 34.65 33.23

Table 5: The comparisons (on BLEU score and decoding latency) of CMLM, LAT and AT models on development
sets.

steps, and then decays with the inverse square-root
schedule. We train our models for 300k steps with
batch size 128k (Ghazvininejad et al., 2019) for
WMT datasets. For the IWSLT dataset, we train
our models for 50k steps with batch size 32k.

C Model Parameter Size
The averaged size of parameters for all models are
shown in Table 6. These three kinds of models
have similar number of parameters. LAT models
have the most number of parameters due to the
LSTM-based local translator.

Model Parameter size

AT 60M
CMLM 62M

LAT 64M

Table 6: Number of Parameters of different models.

D Validation Performance
The performance of different models on translation
tasks’ validation sets is reported in the Table 5. We
could find the similar trend to the performance on
the test set.

E Length Adjustment for Intermediate
Iterations

Since our merging algorithm produces the output
dynamically, the output length is usually not the
same as the number of input pieces. In iterative
decoding, we find it helpful to adjust the output se-
quence’s length to the input length in intermediate
iterations. This is achieved by adding or deleting
the special 〈mask〉 symbols. Notice that for the
final iteration, we do not apply any adjustments
and keep the merged output sequence as it is.

For the length adjustment in the intermediate
iterations, our goal is to adjust the output length

of the merger (Lout) to be close to the input target
length (Lin). If these two lengths are already equal
or their relative difference is within a certain range
(which is empirically set to 5%), we will do nothing.
Otherwise, there can be two cases: 1) when Lin

is larger than Lout, we further insert Lin − Lout

〈mask〉 tokens into the sequence; 2) otherwise, we
try to delete Lout−Lin 〈mask〉 tokens. Notice that
the addition or deletion operations happen after the
masking procedure for the next iteration.

Here, we describe the addition case in detail.
Suppose we need to further insert M masks into
the output sequence, we decide the insertion places
according to the position gaps. We adopt a sim-
ple position scheme for all the tokens. For each
original token tji (the j-th token in the i-th piece)
in the input translation pieces, we set i + j as its
position. For each token in the output sequence
after merging, since it can originate from multiple
input tokens through aligning, we take the aver-
aged value of all its source input tokens’ positions.
We calculate the position gap between each pair
of nearby unmasked tokens in the output sequence
and maintain a priority queue for all these gaps.
Then we insert M masks once at a time. For each
time, we select the current maximal gap, insert a
〈mask〉 to that position, and subtract that gap by 1.
The case for deletion would be similar but in the
opposite direction: select the minimal gap, delete
one 〈mask〉 if there are any, and increase that gap
by 1. We will delete nothing if there are no masked
tokens in the selected gap.

