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Abstract

Explainable question answering systems pre-
dict an answer together with an explanation
showing why the answer has been selected.
The goal is to enable users to assess the cor-
rectness of the system and understand its rea-
soning process. However, we show that cur-
rent models and evaluation settings have short-
comings regarding the coupling of answer and
explanation which might cause serious issues
in user experience. As a remedy, we propose
a hierarchical model and a new regularization
term to strengthen the answer-explanation cou-
pling as well as two evaluation scores to quan-
tify the coupling. We conduct experiments on
the HOTPOTQA benchmark data set and per-
form a user study. The user study shows that
our models increase the ability of the users
to judge the correctness of the system and
that scores like F1 are not enough to estimate
the usefulness of a model in a practical set-
ting with human users. Our scores are bet-
ter aligned with user experience, making them
promising candidates for model selection.

1 Introduction

Understanding the decisions of deep learning mod-
els is of utmost importance, especially when they
are deployed in critical domains, such as medicine
or finance (Ribeiro et al., 2016). In natural lan-
guage processing (NLP), a variety of tasks have
been addressed regarding explainability of neu-
ral networks, such as textual entailment (Camburu
et al., 2018), sentiment classification (Clos et al.,
2017), machine translation (Stahlberg et al., 2018)
and question answering (Yang et al., 2018). In this
paper, we address question answering (QA) due
to its proximity to users in real-life settings, for
instance, in the context of personal assistants.

Explainable question answering (XQA) is the
task of (i) answering a question and (ii) providing
an explanation that enables the user to understand

* The Kalahari Desert is a
large semi-arid sandy

savanna in Southern Africa
extending for 900000 km2 ,
covering much of Botswana,
parts of Namibia and regions

of South Africa. 

What is the area
of the desert

that Ghanzi is in
the middle of?

900000 km2, because:

* Ghanzi is a town in the middle of the
Kalahari Desert the western part of the
Republic of Botswana in southern Africa.
Ghanzi's area is 117,910 km².

Figure 1: Example output of a representative XQA sys-
tem (Yang et al., 2018) that would receive an answer-F1

of 1 and an explanation-F1 of 0.5 although the explana-
tion provides no value to the user since the actual an-
swer evidence (shown in cloud) is not included in the
explanation (asterisks mark ground truth explanation).

why the answer was selected, e.g., by pointing to
the facts that are needed for answering the ques-
tion. Compared to approaches that output impor-
tance weights or analyze gradients (Simonyan et al.,
2014; Ribeiro et al., 2016; Lundberg and Lee, 2017;
Sundararajan et al., 2017), this has the advantage
that the explanations are intuitively assessible even
by lay users without machine learning background.

A good explanation (i.e., one that is helpful for
the user) should therefore satisfy the following re-
quirements: (i) It should contain all information
that the model used to predict the answer for the
question. This is necessary so that the user can
reconstruct the model’s reasoning process. (ii) It
should not include additional information that it
did not use for predicting the answer. Otherwise,
the explanation will confuse the users rather than
help them. Note that these requirements do not
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only hold for correct model decisions but are also
valid for explaining wrong model answers so that
the user can assess the correctness of the answers.
Previous work on XQA mostly focuses on devel-
oping models that predict the correct answer and,
independent of this, the correct explanation (Yang
et al., 2018; Qi et al., 2019; Shao et al., 2020). This
can lead to model outputs in which the explanations
do not sufficiently relate to the answers. Consider
the example provided in Figure 1. The model gives
the correct answer to the question and provides an
explanation consisting of one out of two relevant
facts. However, the most important relevant fact
(in which the answer actually appears) is not part
of the explanation. As a result, the user cannot
assess whether the model answer is correct or not
and, thus, cannot trust the system. To strengthen
the coupling of answer and explanation prediction
in the model architecture and during training, we
propose two novel approaches in this paper: (i) a
hierarchical neural network architecture for XQA
that ensures that only information included in the
explanation is used to predict the answer to the
question, and (ii) a regularization term for the loss
function that explicitly couples answer and expla-
nation prediction during training.

A good evaluation measure should score expla-
nations by satisfying the following requirements:
(i) It should reward explanations that are coupled
to the answers of the model. (ii) It should pun-
ish explanations that are unrelated to the answers
of the model. (iii) It should be correlated to user
experience. Since explanations cannot only em-
power the user to assess the correctness of a sys-
tem (Biran and McKeown, 2017; Kim et al., 2016)
but also improve user satisfaction and confidence
(Sinha and Swearingen, 2002; Biran and McKe-
own, 2017) and, thus, increase the acceptance of
automatic systems (Herlocker et al., 2000; Cramer
et al., 2008), this aspect is very important when
evaluating models that should be applied in real-
life scenarios. In most recent works, evaluation of
XQA models focuses on optimizing F1-scores of
answers and explanations (a collection of so-called
supporting or relevant facts) (Yang et al., 2018).
However, F1-scores only assess model outputs with
respect to ground-truth annotations which only con-
tain explanations for the correct answer. Thus, they
fail to quantify the coherence between answer and
explanation, especially when the predicted model
answer is wrong. The example model output in

Figure 1 leads to an answer-F1-score of 1 and an
explanation-F1-score of 0.5 although the explana-
tion is useless for the user as described before. To
quantify the model’s answer-explanation coupling,
we propose two novel evaluation scores: (i) FARM
which tracks prediction changes when removing
facts, and (ii) LOCA which assesses whether the
answer is contained in the explanation or not. Both
scores do not require ground-truth annotations.

To summarize, we make contributions in two di-
rections in this paper: For modeling, (i) we propose
a hierarchical neural network architecture as well
as (ii) a regularization term for the loss function of
XQA systems. For evaluation, (iii) we propose two
scores that are able to quantify a model’s answer-
explanation coupling without relying on ground-
truth annotations. (iv) To investigate the relation
between different evaluation scores and user expe-
rience, we conduct a user study. The results show
that our proposed models increase the ability of
the user to judge the correctness of an answer and
that our scores are stronger predictors of human
behavior than standard scores like F1. (v) For repro-
ducibility and future research, we will release code
for our methods and for computing the evaluation
scores as well as the user study data.1

2 Related Work

In the context of XQA, Yang et al. (2018) present
the HOTPOTQA data set which we also use for the
experiments in this paper. In addition to questions
and answers, it contains explanations in the form
of relevant sentences from Wikipedia articles.

Most state-of-the-art models for HOTPOTQA ex-
tend the BiDaf++ architecture (Clark and Gard-
ner, 2018; Seo et al., 2017), e.g., (Yang et al.,
2018; Qi et al., 2019; Nishida et al., 2019; Ye
et al., 2019; Qiu et al., 2019; Shao et al., 2020).
Other approaches are based on question decom-
position (Min et al., 2019; Perez et al., 2020),
graph/hierarchical structures (Tu et al., 2019; Fang
et al., 2019; Asai et al., 2020), virtual knowledge
bases (Dhingra et al., 2020) or transformer models
(Zhao et al., 2020).

So far, all of the research work on HOTPOTQA
focuses on reaching higher F1-scores. In contrast,
we question whether this actually aligns with user
experience. To the best of our knowledge, only
Chen et al. (2019) additionally conduct a human

1https://github.com/boschresearch/
f1-is-not-enough

https://github.com/boschresearch/f1-is-not-enough
https://github.com/boschresearch/f1-is-not-enough
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evaluation. This confirms the observation of Adadi
and Berrada (2018) that only very few papers re-
lated to explainable AI address (human) evaluation
of explainability. Despite the large body of research
in the field of human computer interaction, Abdul
et al. (2018) show that there is a lack of collabo-
ration and transfer of results to machine learning
communities.

Another line of research our work relates to is the
criticism of automatic evaluation scores. One fre-
quently questioned score is BLEU (Papineni et al.,
2002), which was shown to only correlate weakly
with human judgements in tasks like machine trans-
lation (Callison-Burch et al., 2006), storytelling
(Wang et al., 2018) and dialogue response genera-
tion (Liu et al., 2016). F1 has been criticized from
various perspectives including theoretical consider-
ations and concrete applications (Hand and Chris-
ten, 2018; Chicco and Jurman, 2020; Sokolova
et al., 2006). Qian et al. (2016) show that modify-
ing F1-scores based on insights from psychometrics
improves their correlation with human evaluations.
In this paper we criticize the usage of F1 as a mea-
sure of explainability in XQA and show in a user
study that it is not related to user experience.

3 Methods for XQA

We built upon the model by Qi et al. (2019) as it is
an improved version of the BiDaf++ model, which
is used in numerous state-of-the-art XQA models
(Yang et al., 2018; Qi et al., 2019; Nishida et al.,
2019; Ye et al., 2019; Qiu et al., 2019) including the
best-scoring publication (Shao et al., 2020). It con-
sists of a question and context encoding part with
self-attention, followed by two prediction heads: a
prediction of relevant facts (i.e., the explanation)
and a prediction of the answer to the question. The
two heads are trained in a multi-task fashion based
on the sum of their respective losses. First, we
analyze the outputs of the model, revealing severe
weaknesses in answer-explanation coupling. To
address those weaknesses, we then propose (i) a
novel neural network architecture that selects and
forgets facts, and (ii) a novel answer-explanation
coupling regularization term for the loss function.

3.1 Limitations of Current Models

We manually analyze outputs of the models by Qi
et al. (2019) and Yang et al. (2018) and identify the
following two problems.

Silent Facts. The models make use of facts with-
out including them into their explanations (cf., Fig-
ure 1). As a result, the predicted answer does not
occur in the explanation, leaving the user unin-
formed about where it came from.

Unused Facts. The models predict facts to be
relevant without any relation to the predicted an-
swer. The second fact of the explanation in Figure
1 is an example for this. We also found examples
where the facts predicted to be relevant do not even
contain the entities from the question.

3.2 Select & Forget Architecture

To explicitly ensure that the model only uses infor-
mation from facts it predicts to be relevant for the
answer selection, we propose a hierarchical model
that first selects facts which are relevant to answer
the question and then forgets about all other facts
(see Figure 2). We use recurrent and self-attention
layers to create encodings of the question and the
context. In particular, we create two different en-
codings: one that will be used for predicting the
relevance of the facts (fact-specific encoding) and
one that will be used for predicting the answer to
the question (QA-specific encoding). Based on
the fact-specific encoding, the model first predicts
which facts are relevant to answer the question.
Next, we reduce the QA-specific encoding of the
context based on the relevance predictions. In par-
ticular, we mask all facts that were not predicted to
be relevant by zeroing out their encodings. The re-
duced context representation is concatenated with
the QA-specific question encoding and passed on
to the answer prediction, which we implement in
the same way as Qi et al. (2019). Thus, the answer
prediction now only receives encodings of facts
that the model has predicted to be relevant. It pre-
dicts the type of the answer (yes/no/text span), as
well as the start and end positions of the answer
span within the context.

3.3 Answer-Fact Coupling Regularizer

Our second method addresses the coupling of an-
swer and explanation prediction by modifying the
loss function. The loss function used by Qi et al.
(2019) is the sum of four cross entropy losses con-
cerning (i) the answer type (yes/no/span) distribu-
tion, (ii) the answer start token distribution, (iii)
the answer end token distribution, and (iv) the fact
relevance distributions. All terms are optimized
to be close to their respective ground truth annota-



7079

start logits

yes/no/span

relevant
facts

fact reduction

answer prediction

fact-specific
encoding

relevant fact
prediction

QA-specific
encoding

context question

question repr.context repr.

reduced context
repr.

end logits

question repr.

Figure 2: “Select and Forget” architecture with task-
specific encodings and fact reduction.

tions. This is the desired effect in many, but, as our
examples in Section 3.1 show, not in all situations.
The loss function especially encourages the model
to predict the ground truth explanation rather than
an explanation that explains the predicted answer.

In order to reward a coupling between answer
and explanation, we propose to add the following
regularization term to the loss function:

Jreg “ pa ¨ p

GT expl.
hkkikkj

pe ¨ 0 `

non-GT expl.
hkkkkkikkkkkj

p1´ peq ¨ c1q
loooooooooooooooomoooooooooooooooon

correct answer

`p1´ paq ¨ p

GT expl.
hkkikkj

pe ¨ c2 `

non-GT expl.
hkkkkkikkkkkj

p1´ peq ¨ c3q
loooooooooooooooooooomoooooooooooooooooooon

wrong answer

(1)

with pa corresponding to the probability of the
model for the correct answer span and pe denot-
ing the probability of the model for the ground
truth relevant facts. The term can be broken down
into four cases: (i) correct answer and ground truth
explanation, (ii) correct answer but non-ground
truth explanation, (iii) incorrect answer but ground
truth explanation and (iv) incorrect answer and non-
ground truth explanation. Each case corresponds
to a constant cost of 0, c1, c2 and c3, respectively,
with c1, c2, c3 being hyperparameters. The result-
ing cost Jreg is the sum of the four individual costs
weighted with their respective probabilities.

In particular, pa is defined as the product of
the probabilities assigned to start and end token
positions of the answer span. For a data set in-
stance with a context containing N facts, we define

st P t0, 1u
N as the ground truth annotations for the

relevant facts. Accordingly, we denote the model’s
relevance probability estimates with sp P r0, 1s

N .
Based on this, we define pe as p˚e “

ś

iPF spi with
F “ ti P t1, ..., Nu : sti “ 1u denoting the in-
dices that correspond to ground truth facts. This
corresponds to the joint probability of selecting the
ground truth facts assuming the single selection
probabilities to be independent. For our experi-
ments, we adapt this definition to a numerically
more stable term p`e by replacing the product with
a sum as this led to slightly better results on the
development set.

4 New Evaluation Scores for XQA

In this section, we motivate that standard scores
like F1 are not enough to score XQA systems by
presenting their limitations in those settings. To
be able to quantify the degree to which a model
is affected by those limitations, we propose two
scores that go beyond standard scores: the fact-
removal score and the answer-location score. Both
scores can be calculated without any assumptions
on model architecture and no need for ground truth
annotations for answers or supporting facts.

4.1 Limitations of Current Evaluation Scores

Current evaluation of XQA is focused on three
scores: (i) answer-F1, which is based on the to-
ken overlap between the predicted and the ground
truth answer, (ii) SP-F1, which calculates F1 based
on the overlap of predicted and ground truth rele-
vant (“supporting”) facts and (iii) joint-F1, which is
based on the definitions of joint precision and joint
recall as the products of answer and SP precision
and recall as described in Yang et al. (2018). For
HOTPOTQA, models are ranked based on joint-F1.
We argue that this creates a false incentive that po-
tentially hinders the development of truly usable
models for the following reasons.

No Empirical Evidence. There is no empirical
evidence that joint-F1 is related to user perfor-
mance or experience regarding XQA.

Rewarding Poor Explanations. Figure 1 shows
an example prediction that is rewarded with a joint-
F1 of 0.5 although its explanation provides no value
to the user. The reward stems from the overlap of
the explanation with the ground truth but does not
consider that the predicted answer is not contained
in any of the predicted relevant facts.
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Punishing Good Explanations. Consider a
model output in which the predicted answer is
wrong but the explanation perfectly explains this
wrong answer, showing to the user why the model
has selected it. Standard F1-scores compare the
model output to the ground truth annotations and
will, therefore, score both the answer and the ex-
planation with an F1 of 0. However, we argue that
an explanation should be evaluated with a score
higher than 0 if it is able to explain the reasoning
process of the model to the user and, thus, lets the
user identify the failure of the model.

4.2 Fact-Removal Score (FARM)
Ideally, the explanations of the model include all
facts that the model uses within its reasoning chain
but no additional facts beyond that. Note that even
for a wrong model answer, this assumption should
hold so that the relevant facts provide explanations
for the (wrongly) predicted answer. To quantify
the degree of answer-explanation coupling, we pro-
pose to iteratively remove parts (individual facts) of
the explanation, re-evaluate the model using the re-
duced context and track how many of the model’s
answers change. For a model with perfect cou-
pling of answer and explanation, the answer will
change with the first fact being removed (assuming
no redundancy) but will not change when remov-
ing irrelevant facts not belonging to the explanation.
We remove facts in order of decreasing predicted
relevance as more relevant facts should influence
the model’s reasoning process the strongest.

In the following, we denote an instance of the
data set by e P E with its corresponding question
eques and context econ. We use answerp¨, ¨q to de-
note the answer that a model predicts for a given
question and context. The functions reducerelp¨, kq
(reduceirrp¨, kq) return a context from which up to
k facts the model predicts to be relevant (irrelevant)
have been removed.2 We re-evaluate the model on
this reduced context and calculate the fraction of
changed answers crelpkq and cirrpkq, respectively.

apeq “ answerpeques, econq (2)

ârel,kpeq “ answerpeques, reducerelpecon, kqq(3)

âirr,kpeq “ answerpeques, reduceirrpecon, kqq (4)

crelpkq “
|te P E : apeq ‰ ârel,kpequ|

|E|
(5)

cirrpkq “
|te P E : apeq ‰ âirr,kpequ|

|E|
(6)

2If the number of facts predicted as (ir)relevant is less or
equal to k, we remove all (ir)relevant facts from the context.

Finally, we condense crelpkq and cirrpkq into a sin-
gle fact-removal score:

FARMpkq “
crelpkq

1` cirrpkq
P r0, 1s (7)

FARMpkq ranges between zero and one and a
higher score corresponds to a better explanation.

4.3 Answer-Location Score (LOCA)

A second important indicator for the degree of a
model’s answer-explanation coupling is the loca-
tion of the answer span: As shown in Figure 1, the
models can predict answers that are located outside
the facts they predict to be relevant, i.e., outside the
explanation. This is confusing for a user. There-
fore, we consider the fractions of answer spans that
are inside the explanation of the model and the frac-
tion of answer spans that are outside. For an ideal
model, all answer spans would be located inside
the explanation. We use I and O to denote the
number of answers inside/outside of the set of facts
predicted as relevant. A denotes the total number
of answers.3 Based on these counts, we propose
the answer-location score that we define as

LOCA “
I
A

1` O
A

“
I

A`O
P r0, 1s. (8)

The LOCA score ranges between zero and
one, with larger values indicating better answer-
explanation coupling.

5 Experiments and Results

In this section, we describe the dataset we used in
our experiments as well as our results. More details
for reproducibility, including hyperparameters, are
provided in the appendix.

5.1 Dataset

The HOTPOTQA data set is a multi-hop open-
domain explainable question answering data set
containing 113k questions with crowd-sourced an-
notations. Each instance of the training data con-
tains a question, a context consisting of the first
paragraph of ten Wikipedia articles, the annotated
answer and an explanation in the form of a selec-
tion of relevant sentences from the context. As
HOTPOTQA was designed as a multi-hop data set,

3In HOTPOTQA, answers can stem from article titles al-
though titles are never used as relevant facts. Thus, A ą I`O
is possible. Our score is still applicable in this case.
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Score Qi-2019 S&F reg. S&F+reg.
St

an
da

rd
Sc

or
es

Answer-EM 49.48 46.09 49.67 46.44
Answer-F1 63.76 59.99 63.56 60.60
Answer-P 66.26 62.41 66.27 62.77
Answer-R 65.52 61.61 65.06 62.53
SP-EM 39.81 42.16 25.98 30.45
SP-F1 79.34 80.07 75.60 77.53
SP-P 78.01 78.84 66.79 70.09
SP-R 85.26 85.45 93.26 92.03
Joint-EM 22.28 22.78 14.56 16.38
Joint-F1 52.51 50.71 49.66 48.99
Joint-P 53.33 51.40 45.64 45.74
Joint-R 57.92 55.61 62.09 59.52

Pr
op

os
ed

Sc
or

es FARMp4q 66.20 75.54 73.32 76.64
ë crelp4q 77.06 86.05 81.69 84.58
ë cirrelp4q 16.39 13.91 11.41 10.36
LOCA 60.49 70.60 67.92 75.56
ë I 67.48 71.68 72.60 76.32
ë O 11.55 1.53 6.89 1.01

Table 1: Comparison of our methods to Qi et al. (2019)
regarding evaluation scores from related work and our
proposed scores on the distractor dev set (SP: support-
ing facts). All values in %.

finding the answer to a question requires combin-
ing information from two different articles. The
eight other articles are distracting the system.4

5.2 Experimental Results

In our experiments, we assess the effects of our
Select & Forget architecture (S&F) and the regular-
ization term (reg.). Table 1 shows our approaches
in comparison to the model by Qi et al. (2019).5

While our S&F architecture performs compara-
ble in standard scores like answer-exact-match
(Answer-EM), answer-F1, joint-EM and joint-F1

(for some of them slightly better, for some of them
slightly lower), the regularization term increases
the recall of the relevant fact prediction consider-
ably.

In terms of our proposed scores for measuring
answer-explanation-coupling, all our three models
clearly outperform the baseline model (lower part
of Table 1). In the first three rows, we report the
models’ FARM scores and the fractions of changed
answers for k “ 4, i.e., when a maximum of four
facts are removed. We choose k “ 4 as this is the

4The data set also contains a full wiki test set in which
the context spans all collected Wikipedia articles. We focus
on the distractor setting in this paper. The data set can be
downloaded from https://hotpotqa.github.io/.

5We retrain their model using the implementation
and preprocessing provided at https://github.com/
qipeng/golden-retriever.

highest number of facts within an explanation in
the ground truth annotations of the HOTPOTQA
data. The last three rows show the LOCA scores
and the respective fractions of answers inside and
outside facts predicted as relevant.

The different behavior of models regarding joint-
F1 vs. FARM and LOCA raises the question which
scores are better suited to quantify explainability
in a real-life setting with human users. To answer
this, we conduct a user study in Section 6.

6 Human Evaluation

We conduct a user study to investigate whether
standard scores like F1 or our proposed scores are
better suited to predict user behavior and perfor-
mance. Moreover, the study provides another way
to compare our proposed methods to the model
by Qi et al. (2019) and the ground truth explana-
tions. In contrast to the human evaluation from
Chen et al. (2019), we evaluate explanations in the
context of the model answer, ask participants to
rate the predictions along multiple dimensions and
collect responses from 40 instead of 3 subjects.

6.1 Choice of Models

We choose to compare the model proposed by Qi
et al. (2019) (called “Qi-2019” in the following) as
a representative of the commonly used BiDaf++ ar-
chitecture (Clark and Gardner, 2018) in XQA, our
proposed Select & Forget architecture (S&F) and
our proposed regularization term (reg.). In addi-
tion, we include the ground truth (GT) annotations
to set an upper bound. Although the combination
of regularization and the S&F architecture reaches
promising performance in Table 1, we assess the
effects of our methods in isolation here and leave
the evaluation of the combination to future work.

6.2 Study Design

We make use of a unifactorial between-subject de-
sign in which each model constitutes one condition.
We randomly sample a set of 25 questions from
the HOTPOTQA dev set and collect the model an-
swer and explanation predictions (or annotations
for GT) for each condition. For each answer predic-
tion, we manually assess whether it is equivalent
to the ground truth answer.6 Each participant sees
the 25 questions and the answers and explanations

6For example, we consider the answer prediction “Firth of
Clyde, Scotland” to be equivalent to the ground truth answer
“Firth of Clyde”.

https://hotpotqa.github.io/
https://github.com/qipeng/golden-retriever
https://github.com/qipeng/golden-retriever
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Figure 3: Boxplots showing results from the user study. Boxes mark quartiles, whiskers mark 1.5 inter-quartile
ranges, outliers are plotted separately. Horizontal solid/dashed lines within boxes mark means and medians, resp.

of one model in a random permutation. For each
question, we ask the participants to rate whether
the model answer is correct. In addition, we ask
for multiple self-reports to assess, e.g., the trust of
the user in the system. In particular, we track the
variables discussed in the following subsection.

6.3 Dependent Variables

We derive multiple dependent variables from the
participants’ ratings, namely completion time (Lim
et al., 2009; Lage et al., 2019), several performance
variables indicating how well they judged the cor-
rectness of the model (fraction of correct ratings,
false positive ratio (FP), false negative ratio (FN),
true positive ratio (TP), true negative ratio (TN),
precision (P), recall (R) and F1 values), agreement
(fraction of model predictions that the users rate
as correct (Bussone et al., 2015)), and overestima-
tion (difference between agreement and true model
accuracy (Nourani et al., 2019)).

Furthermore, we collect the following variables
in self-reports with five-point Likert scales: cer-
tainty of the participants (Greis et al., 2017a),
completeness and helpfulness of the explanations
(Nourani et al., 2019), trust of the participants in
the model (Bussone et al., 2015), and satisfaction
(Kulesza et al., 2012; Greis et al., 2017b).

All the questions and screenshots of our study
are given in the appendix.

6.4 Participants and Data Cleaning

We collect the ratings of 40 participants (16 fe-
male, 24 male) with a mean age of 26.6 years
(SD “ 3.4). We filter out all responses with a
completion time smaller than 15 seconds or larger
than 5 minutes as this indicates that the participant
did not read the whole explanation or was inter-
rupted during the study. We further asked them

whether they knew the answer before and exclude
the responses to those questions from our evalua-
tion. In total, we discard 12.10% of the responses.

6.5 Results

In this section, we summarize the main results of
the user study. For better overview, we do not
include evaluations on every variable from Section
6.3 but show them in the appendix.

Figure 3a shows the fraction of correct user rat-
ings of model correctness. The correctness of our
proposed models can be better judged than the Qi-
2019 model: The regularized model and the S&F
model increase the fraction by 10.79% and 9.17%,
respectively, compared to Qi-2019. The GT com-
parison shows an upper bound.

Among the performance variables, the false pos-
itive ratio deserves particular attention as a false
positive corresponds to a user thinking the model
answer is correct while it is not. Such an error
can be dangerous in safety-critical domains. Fig-
ure 3b shows that the fraction of FPs is decreased
by 6.43% by the regularized model and by 9.25%
by the S&F model compared to Qi-2019. The
ground truth has zero false positives by definition.

A similar effect can be seen when evaluating
overestimation: Both our models alleviate overesti-
mation as shown in Figure 3c. While participants
overestimate the model accuracy of Qi-2019 by
2.93% on average, the regularized model only leads
to 0.87% overestimation. The S&F model is even
underestimated by 6.40% on average. While an
ideal model would lead to neither over- nor under-
estimation, underestimation can be preferable to
overestimation if the model is deployed into high-
risk environments, such as medical contexts. In
general, a reduction in overestimation can — be-
sides enhanced fact selection — also be linked to
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Standard Scores Proposed Scores

Answer Supporting Facts Joint Answer Changes FARM %-in-fact LOCA

Human eval. EM F1 P R EM F1 P R EM F1 P R rel. irrel. FARMp1q FARMp4q rel. irrel. LOCA

correct decision + - - + + +
overestimation + + - - - -
completion time + + - - - - +
human-FP + + - - - -
human-TP + - - + + +
human-FN - - + + + + -
human-TN + - - + + +
human-P - - + + + +
human-R + - - + + +
human-F1 + - - + + +

Table 2: The table shows whether sorting the conditions by a human score (rows) and an automatized score
(columns) results in the same order (+), the inverse order (-) or a different order (blank cell). Green (�) cells with
circles mark desirable relations, red (�) cells without circles mark undesirable relations.

an improved answer accuracy as better-performing
models naturally leave more room for underestima-
tion.

Finally, we consider relations within the vari-
ables from Section 6.3. Figure 3d shows that
mean completion time monotonously decreases
with increasing user certainty (with the exception
of “strongly disagree”).7 This confirms the findings
of Greis et al. (2017a) who investigate the effect of
user uncertainty on behavioral measurements.

6.6 Correlation with Evaluation Scores

Finally, we investigate the correlation of human
ratings with model evaluation scores. We rank the
models by (i) human measures obtained in the user
study and (ii) model evaluation scores. In Table 2,
a cell is marked with a “+” if the ranking with re-
spect to the human measure and the model score
is identical (e.g., the ranks regarding human-FPs
and answer-F1 are identical). If the ranks are ex-
actly reversed, we mark the cell with a “-”. All
other cells are left empty. “+” and “-” both indi-
cate a perfect correlation and do not imply one
being preferable over the other. Next, we consider
whether selecting a model based on the different
model scores would result in a desired change in
human evaluation scores or not. This depends on
whether a high score (e.g., F1) or a low score (e.g.,
the fraction of answers outside the predicted rele-
vant facts) is aimed for. We indicate desired model
selection with green circled cells and undesired
model selection with red cells (e.g., choosing a
model with a higher answer-F1 would result in a

7The low completion time for “strongly disagree” could
indicate that the users could not find any relation at all between
answer and explanation.
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Figure 4: Model score comparisons between human-
false positives and model scores. All scores are nor-
malized to r0, 1s. We show p1´human-FPq as less FPs
are better. The upper figure shows that F1 poorly corre-
lates to human performance. The lower figure shows a
much stronger correlation for our proposed scores.

model with more human-FPs. This is not desired.)
All F1-scores show at least one undesirable rank re-
lation. Notably, joint-F1 is among the least aligned
scores. In contrast, our scores have only desirable
relations. In particular, FARM(4) and LOCA lead
to a model ranking that is inverse to the ranking
by human-overestimation and human-FPs. This is
also confirmed in Figure 4, which shows how the
human-FP ratio varies in comparison to the three F1

scores (upper plot: no correlation) and to our pro-
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posed scores (lower plot: correlated). See appendix
for other dependent variables.

To sum up, our results indicate that (i) F1 is not
suited to quantify the explanatory power of a model
and (ii) our proposed scores predict user behavior
better than standard scores, opening the possibility
of using them for model selection.

7 Conclusion

In this paper, we investigated explainable question
answering, revealing that existing models lack an
explicit coupling of answers and explanations and
that evaluation scores used in related work fail to
quantify that. This highly impairs their applicabil-
ity in real-life scenarios with human users. As a
remedy, we addressed both modeling and evalua-
tion, proposing a hierarchical neural architecture, a
regularization term, as well as two new evaluation
scores. Our user study showed that our models help
the users assess their correctness and that our pro-
posed evaluation scores are better correlated with
user experience than standard measures like F1.

Acknowledgement

We thank the members of the BCAI NLP&KRR
research group and the anonymous reviewers for
their helpful comments. Ngoc Thang Vu is funded
by Carl Zeiss Foundation.

References
Ashraf Abdul, Jo Vermeulen, Danding Wang, Brian Y.

Lim, and Mohan Kankanhalli. 2018. Trends and tra-
jectories for explainable, accountable and intelligi-
ble systems: An hci research agenda. In Proceed-
ings of the 2018 CHI Conference on Human Factors
in Computing Systems, page 1–18, New York, NY,
USA. Association for Computing Machinery.

Amina Adadi and Mohammed Berrada. 2018. Peek-
ing inside the black-box: A survey on explainable
artificial intelligence (XAI). IEEE Access, 6:52138–
52160.

Akari Asai, Kazuma Hashimoto, Hannaneh Hajishirzi,
Richard Socher, and Caiming Xiong. 2020. Learn-
ing to retrieve reasoning paths over wikipedia graph
for question answering. In 8th International Con-
ference on Learning Representations, Addis Ababa,
Ethiopia.

Or Biran and Kathleen R. McKeown. 2017. Human-
centric justification of machine learning predic-
tions. In Proceedings of the Twenty-Sixth Inter-
national Joint Conference on Artificial Intelligence,
pages 1461–1467, Melbourne, Australia. Interna-
tional Joint Conferences on Artificial Intelligence.

Adrian Bussone, Simone Stumpf, and Dympna
O’Sullivan. 2015. The role of explanations on trust
and reliance in clinical decision support systems.
In 2015 International Conference on Healthcare In-
formatics, pages 160–169, Dallas, TX, USA. IEEE
Computer Society.

Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. 2006. Re-evaluating the role of Bleu in ma-
chine translation research. In 11th Conference of
the European Chapter of the Association for Com-
putational Linguistics, Trento, Italy. Association for
Computational Linguistics.

Oana-Maria Camburu, Tim Rocktäschel, Thomas
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Appendix

A HOTPOTQA Data Set

We conduct our analysis and experiments on the ex-
plainable multi-hop reasoning question answering
data set HOTPOTQA (Yang et al., 2018). The data
set contains 113k questions with crowd-sourced
annotations for answers and explanations. Expla-
nations correspond to a selection of supporting
facts (i.e., sentences) from Wikipedia articles. The
data set contains 90,564 training instances as well
as 7405 development instances. The test set is
split into two separate test sets with 7405 instances
each: the full-wiki test set and the distractor test
set. Models evaluated on the full-wiki test data
need to retrieve relevant articles from a given set
of Wikipedia articles (therefore full wiki) while the
distractor test set provides models with ten articles
of which two contain the supporting facts and the
other eight articles are distracting the system. Both
test sets are not publicly available. F1 values on
the test sets can be obtained by submitting a model
to the leaderboard. As our proposed FARM and
LOCA scores need to access context information,
we evaluate all tested models on the distractor de-
velopment set while training them on the provided
training data. The training and development data
as well as the leaderboard can be found online.8

8https://hotpotqa.github.io/

https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
http://arxiv.org/abs/2004.03096
http://arxiv.org/abs/2004.03096
https://doi.org/10.1145/506443.506619
https://doi.org/10.1145/506443.506619
https://doi.org/10.1007/11941439_114
https://doi.org/10.1007/11941439_114
https://doi.org/10.1007/11941439_114
https://doi.org/10.18653/v1/W18-5420
https://doi.org/10.18653/v1/W18-5420
http://arxiv.org/abs/1911.00484
http://arxiv.org/abs/1911.00484
http://arxiv.org/abs/1911.00484
https://doi.org/10.18653/v1/P18-1083
https://doi.org/10.18653/v1/P18-1083
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
https://doi.org/10.18653/v1/D18-1259
http://arxiv.org/abs/1911.02170
http://arxiv.org/abs/1911.02170
https://hotpotqa.github.io/


7087

B S&F Workflow Example

Figure 5 shows an exemplary workflow of the S&F
architecture. First, relevant facts are selected. Sec-
ond, all other facts are masked and third, the answer
is predicted based on the masked context.

question

"I Saw Her Again" was co-written by
what Canadian singer born in 1940?

context
...

"I Saw Her Again" is a pop song recorded by the
U.S. vocal group the Mamas & the Papas in 1966.

Co-written by band members John Phillips
and Denny Doherty [...].

Dennis Gerrard Stephen Doherty (November 29,
1940 – January 19, 2007) was a Canadian singer,

songwriter, musician and actor.

select

...

forget

answer

Dennis Gerrard
Stephen Doherty

predict

Figure 5: Exemplary workflow of the S&F model.

C Training Details and
Hyperparameters

We use the same preprocessing, hyperparameters
and early stopping procedure as Qi et al. (2019) to
train our models.9 The Qi-2019 model as well as
our regularized adaption contain 99M parameters,
our S&F model and its regularized version contain
100M parameters each. The additional hyperpa-
rameters of our regularization term are optimized
with random search using 100 runs. In particu-
lar, we sample ci „ Upr0.0, 5.0sq, i P t1, 2, 3u
and select p˚e and p`e with equal probability. We
select the best model based on the percentage of
answer spans inside facts predicted as relevant to
ensure decent answer-explanation coupling while
not directly optimizing on the LOCA. Based on our

9https://github.com/qipeng/
golden-retriever

Metric Yang-2018 Qi-2019

St
an

da
rd

Sc
or

es

Answer-EM 43.74 49.48
Answer-F1 57.29 63.76
Answer-P 59.76 66.26
Answer-R 58.74 65.52
SP-EM 24.54 39.81
SP-F1 68.02 79.34
SP-P 69.86 78.01
SP-R 72.90 85.26
Joint-EM 12.83 22.28
Joint-F1 41.12 52.51
Joint-P 43.43 53.33
Joint-R 45.44 57.92

Pr
op

os
ed

Sc
or

es FARMp4q 50.08 66.20
ë crelp4q 62.50 77.06
ë cirrelp4q 24.81 16.39
LOCA 44.78 60.49
ë I 54.90 67.48
ë O 22.60 11.55

Table 3: Comparison of the HOTPOTQA baseline
model by Yang et al. (2018) and the modified model
by Qi et al. (2019). The modified model outperforms
the baseline on all scores. All values in %.

hyperparameter search, the best regularization pa-
rameters for the model proposed by Qi et al. (2019)
are c1 “ 4.96, c2 “ 2.02 and c1 “ 3.10. The
best parameters for the regularized S&F model are
c1 “ 1.18, c2 “ 0.24 and c1 “ 1.61. We trained
all models on Nvidia Tesla V100 GPUs.

D Comparison of BiDaf++ Versions

We compare the BiDaf++ model used as the official
HOPOTQA baseline of Yang et al. (2018) to the
modified model by Qi et al. (2019) in Table 3. As
the modified model outperforms the Yang-2018
model on all metrics, we use the model proposed
by Qi et al. (2019) throughout our experiments as
well as the user study.

E Hierarchical Error Propagation

As the S&F model first selects the supporting facts
and then predicts the answer based on the selected
subset, we evaluate how errors in the fact selec-
tion effect the answer prediction and compare it
to the Qi-2019 model. For both models, we com-
pare the fraction of predictions with correct (exact
match) answers among predictions that (i) contain
all ground truth facts or (ii) contain no ground truth
facts. We observe that for Qi-2019 the fraction of
correct answers drops from 51.5% for predictions
with all ground truth facts to 25.8% for predictions
with no ground truth facts. For the S&F model, we
observe a drop from 50.4% to 20.6% respectively.

https://github.com/qipeng/golden-retriever
https://github.com/qipeng/golden-retriever
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Figure 6: Answer changes crelpkq and cirrpkq when re-
moving facts predicted as relevant (top) and irrelevant
(bottom).

This confirms our expectations of an increased er-
ror propagation in the S&F model. However, only
1.8% of the S&F fact predictions contain no ground
truth fact at all, whereas for Qi-2019 this case oc-
curs for 2.1% of the predictions.

F Answer Changes per Removal Step

Figure 6 shows the values of crelpkq (top), i.e., the
fraction of changed answers when removing k facts
predicted as relevant, and cirrpkq (bottom), i.e., the
fraction of changed answers when removing k facts
predicted as irrelevant, for k P t0, ..., 4u.

G User Study Design Details

All questions and statements that we ask partic-
ipants to answer/rate are listed in Table 4. Fig-
ure 7 and Figure 8 show screenshots of the study
interface for the question rating and the post-
questionnaire.

H Detailed User Study Results

Figure 9 shows boxplots per condition for all con-
tinuous dependent variables. Figure 10 shows rat-

ing distributions per condition for all ordinal de-
pendent variables. Figures 11 and 12 compare
model scores and human measures grouped into
F1-scores and our proposed FARMp4q and LOCA
scores. Rows alternate between F1-scores and our
scores. Table 5 shows pairwise Pearson correla-
tion coefficients between human and automatized
scores.
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Yes No

Strongly disagree Disagree Neutral Agree Strongly agree

Strongly disagree Disagree Neutral Agree Strongly agree

Yes No

Question 25 / 25

Question: Are Brainerd Lakes Regional Airport and Sawyer International Airport located in Europe?

System answer: no

System explanation:
[Brainerd Lakes Regional Airport]:
Brainerd Lakes Regional Airport (IATA: BRD, ICAO: KBRD, FAA LID: BRD) is a public use airport located three nautical miles (6 km)
northeast of the central business district of Brainerd, a city in Crow Wing County, Minnesota, United States.
[Sawyer International Airport]:
Sawyer International Airport (IATA: MQT, ICAO: KSAW, FAA LID: SAW) is a county owned public use airport in Marquette County,
Michigan, United States.

Do you think the system's answer is correct?

Please rate how much you disagree / agree to each of the following statements.

I am confident that my choice is correct.

The given explanation helps me to decide if the answer is correct.

Did you know the answer without the system's answer or explanations?

SUBMIT

Figure 7: Screenshot of the question rating interface.
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Context Question/Statement Answer Range
E

ac
h

Q
ue

st
io

n Do you think the system’s answer is correct? yes/no
Did you know the answer without the system’s answer or explanations? yes/no
I am confident that my choice is correct. 5-point Likert
The given explanation helps me to decide if the answer is correct. 5-point Likert

Po
st

Su
rv

ey I trust the question answering system. 5-point Likert
The explanations contained relevant information. 5-point Likert
The explanations also contained irrelevant information. 5-point Likert
I am satisfied with the question answering system and its explanations. 5-point Likert

Table 4: Questions and statements shown to the participants for (a) each question (upper part) and (b) in the
post questionnaire (lower part). Statements were presented along with the prompt “Please rate how much you
disagree/agree to each of the following statements”.

Strongly disagree Disagree Neutral Agree Strongly agree

Strongly disagree Disagree Neutral Agree Strongly agree

Strongly disagree Disagree Neutral Agree Strongly agree

Strongly disagree Disagree Neutral Agree Strongly agree

Questionnaire

The following questions are asked with regard to all model outputs you saw on the previous pages.

Please rate how much you disagree / agree to each of the following statements.

I trust the question answering system.

The explanations contained relevant information.

The explanations also contained irrelevant information.

I am satisfied with the question answering system and its explanation.

SUBMIT

Figure 8: Screenshot of the post-questionnaire.
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Figure 9: Boxplots for all continuous dependent variables. Boxes mark quartiles, whiskers mark 1.5 inter-quartile
ranges, outliers are plotted separately. Vertical solid lines within boxes mark means, vertical dashed lines mark
medians.
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Figure 10: Distribution of Likert scale ratings. White dots mark number of participants, bar widths correspond to
normalized frequency counts. Certainty and helpfulness ratings are aggregated per participant using the participant
ratings’ mode.
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Figure 11: Comparisons between human measures and model scores. All scores are normalized before plotting
by subtracting the minimum score and re-scaling the score span to r0, 1s. Human measures for which lower
values correspond to better performance are plotted as p1´scoreq for convenience of the reader. The figure shows
scores for completion time, fraction of correct user decisions, overestimation, agreement, false positives and true
positives.
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Figure 12: Comparisons between human measures and model scores. All scores are normalized before plotting by
subtracting the minimum score and re-scaling the score span to r0, 1s. Human measures for which lower values
correspond to better performance are plotted as p1´scoreq for convenience of the reader. The figure shows scores
for false negatives, true negatives, precision, recall and user F1.



7095

Standard Scores Proposed Scores

Answer Supporting Facts Joint Answer Changes FARM %-in-fact LOCA

Human eval. EM F1 P R EM F1 P R EM F1 P R rel. irrel. FARMp1q FARMp4q rel. irrel. LOCA

correct decision -0.33 -0.42 -0.37 -0.47 -0.50 -0.49 -0.57 0.63 -0.57 -0.97 -0.79 0.30 0.80 -0.93 0.99 0.93 1.00 -0.76 0.92

overestimation 0.97 0.99 0.98 0.99 -0.43 -0.45 -0.36 0.29 -0.36 0.35 -0.07 0.62 0.96 -0.74 0.98 1.00 0.93 -0.94 1.00

completion time 0.71 0.64 0.67 0.59 -1.00 -1.00 -0.99 0.97 -0.99 -0.63 -0.90 0.99 0.23 -0.95 0.67 0.49 0.79 -0.17 0.46

human-FP 0.70 0.77 0.73 0.80 0.09 0.07 0.16 -0.24 0.17 0.78 0.45 0.14 0.97 -0.30 0.73 0.87 0.61 -0.98 0.88

human-TP -0.45 -0.53 -0.49 -0.58 -0.39 -0.38 -0.46 0.53 -0.47 -0.94 -0.70 0.18 0.87 -0.87 1.00 0.97 0.99 -0.84 0.96

human-FN -0.55 -0.47 -0.51 -0.42 0.99 0.99 1.00 -1.00 1.00 0.77 0.97 -0.94 -0.03 0.87 -0.51 -0.30 -0.65 -0.03 -0.28

human-TN 0.12 0.02 0.07 -0.04 -0.83 -0.82 -0.87 0.91 -0.87 -0.98 -0.98 0.69 0.45 -1.00 0.83 0.68 0.91 -0.40 0.66

human-P -0.71 -0.78 -0.75 -0.81 -0.07 -0.05 -0.14 0.22 -0.15 -0.77 -0.43 -0.15 0.98 -0.66 0.95 1.00 0.88 -0.97 1.00

human-R 0.36 0.27 0.32 0.21 -0.94 -0.94 -0.97 0.98 -0.97 -0.89 -1.00 0.85 0.22 -0.95 0.66 0.48 0.78 -0.16 0.45

human-F1 -0.35 -0.43 -0.39 -0.49 -0.49 -0.47 -0.55 0.62 -0.56 -0.97 -0.78 0.28 0.81 -0.92 0.99 0.94 1.00 -0.77 0.93

Table 5: Pearson correlations between human and automatized scores.


