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Abstract

The central problem of sentence classification
is to extract multi-scale n-gram features for
understanding the semantic meaning of sen-
tences. Most existing models tackle this prob-
lem by stacking CNN and RNN models, which
easily leads to feature redundancy and over-
fitting because of relatively limited datasets.
In this paper, we propose a simple yet ef-
fective model called Multi-scale Orthogonal
inDependEnt LSTM (MODE-LSTM), which
not only has effective parameters and good
generalization ability, but also considers multi-
scale n-gram features. We disentangle the hid-
den state of the LSTM into several indepen-
dently updated small hidden states and apply
an orthogonal constraint on their recurrent ma-
trices. We then equip this structure with slid-
ing windows of different sizes for extracting
multi-scale n-gram features. Extensive exper-
iments demonstrate that our model achieves
better or competitive performance against
state-of-the-art baselines on eight benchmark
datasets. We also combine our model with
BERT to further boost the generalization per-
formance.

1 Introduction

Sentence classification (SC) is a fundamental and
traditional task in natural language processing
(NLP), which is widely used in many subareas,
such as sentiment analysis (Wang et al., 2016a,
2018) and question classification (Shi et al., 2016).
The central problem of SC is to understand the se-
mantic meaning of a sentence by some key-phrases
located at different positions (Wang et al., 2015).

CNNs excel at extracting n-gram features of sen-
tences through a convolution operation followed
by non-linear and pooling layers and have achieved
impressive results in sentence classification (Kalch-
brenner et al., 2014; Kim, 2014). However, the con-
volution operation itself is linear, which may not be

sufficient to model the non-consecutive dependency
of the phrase (Lei et al., 2015) and may lose the
sequential information (Madasu and Anvesh Rao,
2019). As shown in Figure 1, the weighted sum
of the phrase “not almost as bad” does not capture
the non-consecutive dependency of “not bad” very
well and ignores the sequential information.

Figure 1: An example with variable-size phrases.

On the other hand, LSTMs (Hochreiter and
Schmidhuber, 1997) are suitable for encoding
structure-dependent semantics by storing previous
word representations and preserving sequential in-
formation. However, LSTMs are still biased toward
later words and ignoring the earlier words (Yin
et al., 2017), so some current methods (Lai et al.,
2015; Wang et al., 2016b; Zhang et al., 2016a; Song
et al., 2018) combine the CNN and LSTM by stack-
ing. However, merely stacking multiple layers can
easily lead to feature redundancy and overfitting,
because only relatively small training sets are avail-
able for SC tasks (Yin and Schütze, 2015; Guo
et al., 2019). Hence, some researchers (Zhao et al.,
2018a; Zhou et al., 2018; Madasu and Anvesh Rao,
2019) additionally attach an over-parameterized at-
tention mechanism to enhance salient features and
remove redundancy, but overfitting still occurs due
to the increase in parameters for limited datasets.

A flexible combination method is to model non-
linear mapping and non-consecutive dependency
by replacing the convolution operation with a ten-
sor product (Lei et al., 2015) or RNN unit (Shi
et al., 2016; Wang, 2018). However, these methods
only consider fixed-size n-gram features. This has
apparent drawbacks in that there may be variable-
size phrases (n-grams) in a sentence, as shown in
Figure 1, we need to extract variable-size n-gram
features to form a better sentence representation.
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The above observation motivates us to explore
a better structure for sentence classification, bal-
ancing the capability and complexity. In this pa-
per, we propose a lightweight model called Multi-
scale Orthogonal inDependEnt LSTM (MODE-
LSTM), which has minimal effective parameters,
good generalization performance, and considers
n-gram features of different scales. First, inspired
by (Kuchaiev and Ginsburg, 2017), we disentan-
gle the hidden state of LSTM into several inde-
pendently updated small hidden states, which re-
duces the number of parameters. Furthermore, an
orthogonal constraint is applied to the recurrent
transition matrices of the small hidden states to
improve the diversity of features. We call this
structure Orthogonal InDependEnt LSTM (ODE-
LSTM). Then we use ODE-LSTM within a local
window for extracting n-gram features instead of
simply using a weighted sum as in convolution.
Specifically, we introduce a Triple-S (Slide-Split-
Stack) operation that splits a sentence into multi-
ple sub-sentences by a sliding window and stacks
them together. These sub-sentences are regarded
as a mini-batch, which can be processed in parallel
by a shared ODE-LSTM. We take the last hidden
state of ODE-LSTM as the n-gram features for
each sub-sentence. Furthermore, in order to cap-
ture the variable-size phrases in sentences, we use
different scale windows with different initialized
ODE-LSTMs to extract features of multiple scale
phrases. We refer to this structure as a multi-scale
ODE-LSTM (MODE-LSTM).

MODE-LSTM can extract multi-scale n-gram
features like a CNN, while retaining the non-linear
ability and long-term dependency of LSTMs, so
it has stronger modeling ability but with fewer pa-
rameters than other methods. MODE-LSTM is
analogous to a 1D CNN using multiple filters with
different window sizes, but it uses recurrent tran-
sitions instead of the convolution operation. We
conduct experiments on eight sentence classifica-
tion datasets. The experimental results show that
our proposed model achieves comparable or better
results on these datasets with fewer parameters than
other models. In addition, we further improve our
model’s generalization performance by integrating
the BERT representation of the sentence.

2 Related Work

CNN-based models Kalchbrenner et al. (2014)
propose a deep CNN model with a dynamic k-max

pooling operation for the semantic modeling of
sentences. However, a simple one-layer CNN with
fine-tuned word embeddings also achieves remark-
able results (Kim, 2014). Some researchers also use
multiple word embeddings as inputs to further im-
prove performance (Yin and Schütze, 2015; Zhang
et al., 2016b). Xiao et al. (2018) propose a trans-
formable CNN that can adaptively adjust the scope
of the convolution filters. Although the above CNN-
based methods perform excellently in extracting
local semantic features, linear convolution opera-
tion limits the ability of modeling non-consecutive
dependency and sequential information.

RNN-based models RNNs are suitable for
processing text sequences and modeling long-term
dependencies, so it is also used for sentence model-
ing. Recently, some work incorporate residual con-
nections (Wang and Tian, 2016) or dense connec-
tions (Ding et al., 2018) into recurrent structures to
avoid vanishing gradients. Dangovski et al. (2019)
introduce a rotational unit of memory into RNNs
for recalling long-distance information. Zhang et al.
(2018) propose an HS-LSTM that can automati-
cally discover structured representation in a sen-
tence via reinforcement learning. However, these
RNN-based models still display the bias problem
where later words are more dominant than earlier
words (Yin et al., 2017).

Hybrid models A natural strategy is to com-
bine the advantages of CNNs and RNNs by stack-
ing. Lai et al. (2015) equip an RNN with max-
pooling to tackle the bias problem of RNNs.
Zhou et al. (2015) use 1D convolutions to ex-
tract phrase features followed by an LSTM to ob-
tain the sentence representation, and some subse-
quent work (Wang et al., 2016a,b; Lee and Der-
noncourt, 2016) are similar. Alternatively, Zhang
et al. (2016a) first model long-term dependencies
using an LSTM and then apply a CNN to ex-
tract task-specific features. However, these meth-
ods simply stack multiple layers, resulting in fea-
ture redundancy and overfitting because of limited
datasets (Yin and Schütze, 2015; Guo et al., 2019).
Some researchers have introduced attention mech-
anisms (Er et al., 2016; Lin et al., 2017; Zhao
et al., 2018a; Zhou et al., 2018) to enhance salient
features, but this leads to a large number of param-
eters that overfit for small-scale datasets. A more
flexible way is to combine them by replacing the
convolution operation with a tensor product (Lei
et al., 2015) or RNN unit (Shi et al., 2016; Wang
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et al., 2018), which can capture the non-linear n-
gram features directly. Nevertheless, these methods
currently only consider fixed-scale n-gram features.

Other models Some work (Tai et al., 2015;
Liu et al., 2017; Wang et al., 2019) has used tree-
LSTMs based on parse trees for sentiment analysis,
but the performance depends heavily on the quality
of the parser, and the parsing process itself is time-
consuming. Others (Gong et al., 2018; Zhao et al.,
2018b; Zheng et al., 2019) have tried using capsule
networks with dynamic routing for encoding text
representations.

The most relevant work to our approach is the
DRNN (Wang, 2018), which also uses RNNs lo-
cally to learn semantic features. The differences be-
tween their approach and ours are: (1) The DRNN
uses GRUs as the recurrent unit while we use the
ODE-LSTM, which has better generalization per-
formance. (2) We introduce the Triple-S operation
to execute all sub-sentences in parallel instead of in
sequence, which is faster than the DRNN. (3) We
consider multi-scale n-gram features in sentences,
while DRNN only considers a fixed scale.

3 Proposed Method

In the following, we start with our most straightfor-
ward model, which is a parameter-efficient struc-
ture of LSTMs to avoid over-fitting and achieve
better generalization performance. This structure is
then equipped with local sliding windows to learn
key phrase features of the sentence, which is the
central problem for understanding sentence seman-
tics (Wang et al., 2015). Finally, we further easily
extended our method to capture multi-scale fea-
tures of the sentence via using different sized win-
dows in parallel.

3.1 Orthogonal InDependEnt LSTM
(ODE-LSTM)

Given a sentence of T input vectors {x1, · · · ,xT },
where xt ∈ Rd0 , and d0 is the dimension of input
embeddings. The hidden state ht ∈ Rd of LSTM
cell can be expressed as follows:

ft
it
ot
gt

 = Wht−1 +Uxt + b, (1)

ct = σ(ft)� ct−1 + σ(it)� tanh(gt), (2)

ht = σ(ot)� tanh(ct), (3)

where ft, it,ot are the forget, input and output
gates respectively, and gt is the candidate cell state.
W ∈ R4d×d, U ∈ R4d×d0 , and b ∈ R4d are the
learnable parameters. σ denotes the sigmoid func-
tion, and � denotes element-wise multiplication.
The number of distinct parameters in the LSTM
are 4d(d0 + d + 1) which are O(d2). This easily
leads to over-fitting for the sentence classification
tasks where there are relatively limited data.

To reduce the number of parameters, inspired
by (Kuchaiev and Ginsburg, 2017), we disentangle
the hidden state ht of the LSTM into K indepen-
dently updated small hidden states. Specifically,
the hidden state at time step t is composed by K

small hidden states as h̃t = [h̃1
t , · · · , h̃K

t ]
>

, where
h̃t ∈ RK×p, p = d/K. The corresponding recur-
rent matrix is defined as W̃ = [W̃1, · · · ,W̃K ],
where W̃ ∈ RK×4p×p and W̃k ∈ R4p×p. Each
small hidden state h̃k

t is independently updated by
an individual recurrent matrix W̃k and then merged
via concatenation to constitute the hidden state h̃t

at time step t. The update equation of hidden state
h̃t is defined as :

f̃t
ĩt
õt
g̃t

 = W̃ ~ h̃t−1 +Uxt + b, (4)

c̃t = σ(f̃t)� c̃t−1 + σ(̃it)� tanh(g̃t), (5)

h̃t = σ(õt)� tanh(c̃t), (6)

where ~ is the tensor-dot operation which denotes
the product of two tensors along the K-axis, e.g.,

W̃ ~ h̃t−1 = [W̃1h̃1
t−1, · · · ,W̃K h̃K

t−1]
>

where
W̃kh̃k

t−1 ∈ R4p. Note that standard LSTM is a
special case of ODE-LSTM when K = 1.

The updated hidden state h̃t may be redundant
if all hidden states provide similar features. To
avoid this, we introduce a penalization loss that
orthogonally constrains W̃ to explicitly encourage
diversity among hidden states, inspired by (Lin
et al., 2017).

LP =

K∑
i=1

K∑
j=1

‖W̃W̃> − I‖
2

2. (7)

With the same size d of hidden states as the
LSTM, ODE-LSTM reduces the number of param-
eters by 4d(d − p). The smaller p is, the more
parameter reduction. Because of the disentangle-
ment of hidden states, each small hidden state can
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Figure 2: (a) The diagram of MODE-LSTM with three different scale windows [S1, S2, S3]. The input sentence
is converted into three mini-batches [B1, B2, B3] by the Triple-S operation. These mini-batches are respectively
fed into different initialized ODE-LSTMs to extract n-gram features for each scale. (b) The detail of Triple-S
operation. (c) The process of performing mini-batch B3 for an ODE-LSTM. (d) The comparison of ODE-LSTM
and LSTM. Here, ODE-LSTM disentangles the hidden state into two small hidden states. An orthogonal constraint
is apply on the recurrent matrix W̃ to improve the diversity of features.

focus on a different aspect of semantics, with better
generalization performance. Figure 2(d) shows the
comparison between ODE-LSTM and LSTM.

3.2 Equipping ODE-LSTM with Sliding
Window

The core of SC task is to understand the semantics
of the sentence, which are determined by key words
and variable-size phrases. Although a CNN can
capture n-grams, the linear convolution operation
is insufficient to model sequential information and
non-consecutive dependency of sentences. Our
ODE-LSTM can maintain word order, and control
information preserving or forgetting through gates
for modeling non-consecutive dependency. Taking
the phrase “not almost as bad” as an example, the
gates can selectively retain the representation of
“not” and “bad” while decaying the representation
of “almost” and “as”, allowing it to perceive the
relation “not bad”.

Hence, we equip ODE-LSTM with a sliding win-
dow for extracting n-gram features, which means
that the recurrent transition of ODE-LSTM is only
performed in a local window with size S sliding
along the sentence, as illustrated in the left of Fig-
ure 2(b). S is a hyperparameter. For each target
position t, ODE-LSTM will sequentially process S
consecutive words in the range (t−S+1, t) of the
sentence and generate relevant hidden states. The
last hidden state h̃t output by ODE-LSTM is used

as the n-gram feature of the target position:

h̃t = ODE-LSTM(xt−S+1, · · · ,xt). (8)

For convenience, we reshape h̃t ∈ RK×p to
a vector of d dimension. Meanwhile, we pad
(S − 1) zeros before the start position of the sen-
tence to maintain consistent window size at all po-
sitions. This kind of local way is analogous to
DRNN (Wang, 2018), but they process all win-
dows sequentially, equivalent to processing a sen-
tence of length S × T in order, which is highly
time-consuming. However, we observe that all
windows are independent of each other, so they can
be processed in parallel by a GPU, which greatly
improves the computational efficiency.

Correspondingly, we introduce a Triple-S (Slide-
Split-Stack) operation to compose all the windows,
as shown in Figure 2(b). First we split a sentence
into multiple sub-sentences by a sliding window
with size S, and then stack them together to form
a mini-batch B ∈ RT×S×d0 . The mini-batch B
is fed into an ODE-LSTM, obtaining the n-gram
feature matrix H̃ ∈ RT×d, as shown in Figure 2(c):

H̃ = [h̃1, · · · , h̃T ]
>
, (9)

where h̃t is calculated by equation (8), correspond-
ing to the n-gram feature at t-th position. In this
way, the recurrent steps of ODE-LSTM are deter-
mined by S rather than the sentence length T , so
the time complexity is much lower than DRNN.
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3.3 Multi-Scale ODE-LSTM (MODE-LSTM)

Sentence phrases have multiple granularities, i.e.,
n-gram features at different scales. Nevertheless,
what we consider above uses a fixed window size
S. A natural idea is to use multiple scale windows
in parallel with ODE-LSTM to extract n-gram fea-
tures of different scales. The Multi-scale ODE-
LSTM (MODE-LSTM) model is illustrated in Fig-
ure 2(a). According to the Triple-S operation de-
scribed in Section 3.2, the sentence is converted
into multiple mini-batches [B1, · · · , BM ] based on
different scale window sizes [S1, · · · , SM ], where
M is the number of scales. Then, the mini-batches
are fed into different ODE-LSTMs to obtain the
n-gram feature matrix :

H̃m = [h̃m,1, · · · , h̃m,T ]
>
, (10)

h̃m,t = ODE-LSTMm(xt−Sm+1, · · · ,xt), (11)

where H̃m ∈ RT×d denotes the n-gram feature
matrix of scale Sm, m = 1, · · · ,M . h̃m,t ∈ Rd

denotes the t-th n-gram feature of scale Sm. Sub-
sequently, we apply max pooling (MP) along the
T -axis over each n-gram feature matrix to extract
salient features for each scale, and then concatenate
them to constitute the multi-scale feature represen-
tation F ∈ RM×d :

F = [MP (H̃1), · · · ,MP (H̃M )]
>
. (12)

Afterward, the feature representation F is re-
shaped to a vector and fed into an MLP layer with
rectified linear unit (ReLU) activation function and
a softmax layer for the final classification.

3.4 Objective Function

The overall objective function includes a cross-
entropy category loss and the penalization loss for
all ODE-LSTMs. So it’s defined as:

L =
1

N

N∑
n=1

Lcross(yn, ŷn) + λ

M∑
m=1

LPm , (13)

where N is the number of samples, yn and ŷn are
the ground-truth label and softmax output respec-
tively, LPm is penalization term for the m-th ODE-
LSTM, and λ is a hyperparameter for balancing
the strength of the orthogonality constraint. We
minimize the above function by BPTT.

4 Experiments

4.1 Experimental Setup

Datasets To evaluate the effectiveness of our
model, we conduct experiments on eight widely-
studied datasets (Kim, 2014; Liu et al., 2017) for
sentence classification. Statistics of these datasets
are listed in Table 1. These datasets come from dif-
ferent topics, such as sentiment analysis, movie re-
views (MR, SST2, SST5), customer reviews (CR),
and idioms (IE); question type (TREC) classifi-
cation; opinion (MPQA) or subjectivity (SUBJ)
classification.

Dataset c l ml Train Dev Test

MR 2 19 53 10662 – CV
CR 2 19 100 3775 – CV

SUBJ 2 23 108 10000 – CV
MPQA 2 3 34 10606 – CV
TREC 6 10 33 5452 – 500

IE 3 16 75 2221 – 300
SST2 2 19 53 6920 872 1821
SST5 5 18 53 8544 1101 2210

Table 1: Statistics of eight datasets for sentence clas-
sification. c: Number of target classes. l: Aver-
age sentence length. ml: Maximum sentence length.
Train/Dev/Test: Size of train/development/test set
(CV means 10-fold cross validation is used).

Implementation Details We initialize the
word embeddings with 300D pre-trained GloVe
vectors (Pennington et al., 2014) and incorporate
50D character embeddings constructed by a convo-
lution layer with a max pooling layer to avoid the
Out-Of-Vocabulary (OOV) problem (Zhang et al.,
2019). These two embeddings are then concate-
nated as the input embeddings and fine-tuned along
with model parameters during training. We use
three scale windows, [5, 10, 15], to initialize var-
ious ODE-LSTMs. K is set to 2 and the size p
of each small hidden state is set to 50 for each
scale. This configuration results in a 300D multi-
scale feature representation for classification. For
regularization, we employ dropout with a rate of
0.2 and 0.5 for input embeddings and the single
MLP hidden layer, respectively. L2 regularization,
with a factor of 0.001, is applied to the weights of
the softmax layer. The hyperparameter λ is set to
0.01, and the batch size is set to 50. Our model is
optimized by Adam with a learning rate of 1e-3.
Similar to (Kim, 2014), these hyperparameters are
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Type Model #Params MR CR SUBJ TREC MPQA SST2 SST5 IE Average

Others

Tree-LSTM† – 80.7 83.2 91.3 91.8 – 85.7 50.1 – –
DC-treeLSTM† – 81.7 – 93.7 93.8 – 87.8 – 60.2 –

capsuleB† – 82.3 85.1 93.8 92.8 – 86.8 – – –
HAC† – 83.3 86.4 95.1 95.0 89.8 88.2 49.1 – –

CNN/RNN
-based

HM-LSTM – 82.1 – 93.7 – – – 49.8 – –
LSTM*† 827K 81.2 84.6 93.7 94.2 89.7 86.6 46.6 62.3 79.86

TextCNN*† 466K 81.7 85.2 94.3 93.6 89.9 87.5 47.8 62.0 80.25

Hybrid

DARLM 7.9M 83.2 – 94.1 96.0 – – 48.8 – –
DLSTM*† 827K 82.4 86.5 94.2 94.2 90.4 87.8 49.2 62.3 80.88
C-LSTM*† 1.1M 80.7 84.0 94.0 94.6 89.5 87.8 48.7 63.0 80.29

Self-Attentive*† 42M 82.0 85.9 94.4 93.8 90.0 86.8 49.7 61.3 80.49

Ours
ODE-LSTM† 527K 82.2 85.1 94.2 93.4 90.0 88.1 48.8 62.7 80.56
MODE-LSTM 527K 83.3 86.8 94.8 96.1 90.6 89.2 51.2 63.3 81.91

Combine with Pre-trained Sentence Representations

pre-training

InferSent‡ – 81.1 86.3 92.4 88.2 90.2 84.6 – – –
BOW + ELMo‡ – 79.7 85.1 94.3 93.4 89.6 86.3 48.7 – –

USE‡ – 81.2 87.5 93.6 98.1 87.3 86.7 – – –
HAC + ELMo‡ – 85.0 88.9 95.9 96.8 91.2 89.4 49.7 – –

BERTbase
‡ 110M 86.8 90.3 96.8 96.8 90.8 93.5 53.3 69.0 84.66

Ours
MODE-LSTM

+ BERTbase
111M 87.3 91.5 97.0 97.2 91.3 93.8 54.6 73.3 85.75

Table 2: Experimental accuracy comparison of our model and baselines on eight sentence classification bench-
marks. “#Params” represents the approximate number of parameters except input embedddings for models. The
results of models marked with * are obtained by our implementation. The input embeddings used in these base-
lines are the same as our models. Other parameter settings of models are consistent with their references. The
remaining results are collected from the corresponding papers. The model marked with † (‡) means MODE-LSTM
(with BERTbase) is significantly superior to compared model by paired t-test (Wilcoxon, 1945) at p < 0.05 level.

determined by a grid search on the MR dataset and
are applied to the other datasets§.

.
Baseline Methods We compare MODE-

LSTM with three types of strong baselines: 1)
CNN/RNN-based model: TextCNN (Kim, 2014),
LSTM (Tai et al., 2015) and HM-LSTM (Zhang
et al., 2018). 2) Hybrid models: C-LSTM (Zhou
et al., 2015) which directly stacks CNN and
LSTM, while DARLM (Zhou et al., 2018) and Self-
attentive (Lin et al., 2017) additionally includes an
attention mechanism for distilling important infor-
mation. Relatively, DRNN (Wang, 2018) incor-
porates position-invariance into RNN. For a fair
comparison, we use the LSTM as the basic unit
of DRNN, called DLSTM. 3) Other models: tree-
LSTM (Tai et al., 2015) and DC-treeLSTM (Liu
et al., 2017) based on parse trees; capsuleB (Zhao
et al., 2018b) and HAC (Zheng et al., 2019) based
on capsule networks. In addition to the above mod-
els, we use ODE-LSTM as a baseline. We set K

§The source code is publicly available at https://
github.com/qianlima-lab/MODE-LSTM.

to 6 and the size p of small hidden states to 50
to make the number of parameters consistent with
MODE-LSTM.

4.2 Experimental Results

Table 2 reports the performance of our approaches
against other methods. With fewer parameters,
MODE-LSTM significantly outperforms the com-
pared models and is superior to DLSTM with an
average accuracy gain over 1.0% because ours dis-
entangles the RNN hidden states and considers
multi-scale features in sentences. Meanwhile, our
model achieves better or similar performance with
recent state-of-the-art model HAC. HAC is a com-
plex model that uses deep dilated convolutional lay-
ers and a capsule module at each layer. However,
our model is simple yet effective, like the one-layer
TextCNN. Specifically, although the parameters
of TextCNN are less than ours, its parameters in-
crease with the size of the filter window, whereas
the parameters of our model are independent of the
window size. ODE-LSTM also outperforms LSTM
with an average accuracy gain 0.7%, which verifies

https://github.com/qianlima-lab/MODE-LSTM
https://github.com/qianlima-lab/MODE-LSTM
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Figure 3: The convergence analysis on MR and SST5 datasets. (a)(b) are the average train loss and average test
accuracy of 10-fold cross-validation on MR dataset, where the shaded area is the standard deviation. (c)(d) are the
train loss and development accuracy on SST5 dataset.

the effectiveness of disentangling the hidden states.
To investigate how our model makes a difference

with others, we visualize the convergence trends
in Figure 3. We observe that the direct-stacked
C-LSTM (dark blue line) converges quickly on the
training set but has poor performance on develop-
ment or testing sets. Although the Self-Attentive
(dark green line) can alleviate feature redundancy
by employing the attention mechanism, overfitting
still occurs due to a large number of parameters.
MODE-LSTM (red line) achieves better general-
ization performance on development or testing sets
than other models.

4.3 Combining MODE-LSTM with BERT

Recently, the pre-trained language model
BERT (Devlin et al., 2018) is more effective than
conventional word embeddings when fine-tuned
on downstream tasks. Compared with word
embeddings, BERT can learn context-dependent
sentence representations. Nevertheless, recent
work (Yang et al., 2018, 2019; Xu et al., 2019)
has indicated that the self-attention used in BERT
disperses the attention distribution and thus
overlooks the essential neighboring elements and
phrasal patterns. MODE-LSTM can explicitly
extract multi-scale local features, which is
complementary to BERT representation. Hence,
we try to combine MODE-LSTM with BERT to
improve the generalization performance of our
model further. Concretely, the sentence is fed into
BERTbase model, and the hidden representation
of the last layer of BERTbase is used as the input
embeddings of MODE-LSTM rather than GloVe
and character embeddings. BERT provides con-
textualized sentence-level representations, which
help MODE-LSTM understand sentence semantics
more accurately. The detailed diagram and the
hyper-parameter settings of this configuration can
be found in the appendix.

We compare MODE-LSTM equipped with
BERT (MODE-LSTM + BERT) with some recent
strong baselines that also combine with pre-trained
sentence representations, including InferSent (Con-
neau et al., 2017), combining ELMo with bag-of-
words (BOW + ELMo) (Perone et al., 2018) or
HAC (HAC + ELMo) (Zheng et al., 2019), uni-
versal sentence encoder (USE) (Cer et al., 2018),
and BERT. The results are shown in the bottom
row of Table 2. Using the BERT representation,
MODE-LSTM can further boost the generalization
performance. Although BERT already provides
strong performance on almost all datasets, it may
tend to ignore the local phrasal information due
to the self-attention mechanism. Therefore, the
combination of MODE-LSTM and BERT can fur-
ther improve the prediction power, which indicates
that our model can better understand the seman-
tic meaning. Notably, our model without BERT
has surpassed some pre-trained models, such as
InferSent and BOW + ELMo, and is comparable to
USE, verifying its effectiveness and generalization.

Scales Pena. Char. MR SUBJ SST5

5,10,15 X X 83.3 94.8 51.2
5,5,5 X X 83.1 93.9 50.7

10,10,10 X X 83.0 94.3 49.2
15,15,15 X X 82.9 94.3 50.0
5,10,15 × X 83.0 94.5 51.0
5,10,15 X × 82.7 94.6 51.0

Table 3: Ablation study on some datasets. “Pena.” de-
notes penalization loss. “Char.” denotes character em-
beddings.

4.4 Ablation Study

In this section, we investigate to study the inde-
pendent effect of each component in our proposed
model. We explore the influence of the window
scales, the penalization loss, and the character em-
beddings. The results are reported in Table 3. Com-
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Examples G.T. TextCNN DLSTM Ours
1. While it ’sgenuinely cool to hear characters talk about early

::::::::::::::::
rap records sugar hill gang

etc
::::::::::::::::::::::
the constant referencing of hip-hop arcana can

:::::::
alienate even the savviest audiences. N P N N

2.
::::::::::
I admire it and yet

:::::::
cannot recommend it because it

::::::::::::::::::
overstays its natural running time. N P P N

Table 4: Case study of our model compared to TextCNN and DLSTM. “G.T.” is ground-truth. “N” and “P”
represent Negative and Positive. Words with dotted lines, underlines, and wavy lines correspond to the important
positions extracted by TextCNN, DLSTM, and MODE-LSTM respectively.

pared to using multiple windows with different
scales (Row 1), using a single scale (Row 2-4) sig-
nificantly reduces the accuracy. This demonstrates
the necessity of integrating multi-scale windows to
learn variable-size phrases in sentences. We can
see that eliminating penalization loss (Row 5) or
character embeddings (Row 6) also hurts the per-
formance, which verifies that these components are
beneficial to our model.

4.5 Case study
To explore why our model outperforms TextCNN
and DLSTM, we display several most contribut-
ing positions in max-pooling by visualization tech-
niques introduced in (Li et al., 2015). Table 4
shows two examples on the MR dataset. In the first
example, CNN wrongly captures the key phrase
genuinely cool. Thus the sentence is misclassified
as Positive, while DLSTM and our model capture
the non-consecutive dependency according to the
key word while. Hence they attend to the second
half of the sentence for correct classification. In
the second sample, all the three models extract the
key phrase I admire it, which suggests classifying
the sentence as positive. Therefore, both TextCNN
and DLSTM fail in this case. However, our model
also extracts key phrases cannot and overstays its
natural by learning multi-scale features so that it
can obtain the correct answer.

4.6 Model Analysis
Impact of the value K To study the influence
of the value K (the number of small hidden states),
we conduct experiments on MR and SUBJ datasets.
We fix the multi-scale feature representation output
by MODE-LSTM to 300D and tune the value K.
The larger K is, the smaller the size of the small
hidden states. The results are reported in Figure
4(a). We found that K = 2 is a good trade-off be-
tween model accuracy and parameters. When K
is too large, the hidden size is too small to provide
enough features, which causes the overall perfor-
mance to decrease.

Impact of the window size We then explore
the effect of window size when using only one scale
window. We found that the optimal window size
may be different for different datasets, as shown
in Figure 4(b). The optimal window size for MR
is 5, while for SUBJ, it is 20. We speculate that
the reason is that the length of SUBJ sentences are
longer than MR, and so long-term dependencies
may be more prominent.

Figure 4: Impact of different K and window sizes.

Impact of training set size To further verify
our model’s generalization, we investigate the in-
fluence of different training set sizes. The results
on MR are shown in Figure 5(a). MODE-LSTM
outperforms others with an accuracy gain over 8%
when only having 100 training samples. As the size
continues to increase, the gain gradually decreases
but our model is still superior to the others.

Figure 5: Effect on training set size and training time.

Training time comparison We assess the
training time of our model and DLSTM on an
NVIDIA GTX 1080ti GPU in Figure 5(b), testing
on MR. In the case of using a single scale window,
the training time for each model’s epoch increases
with the window size due to the recurrent structure.
However, our model’s training time marginally in-
creases thanks to the ability to run in parallel by
the Triple-S operation, which is 5 ∼ 10 × faster
than DLSTM performs in sequence. Since mul-
tiple window scales are independent and parallel,
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the training time for our multi-scale version mainly
depends on the maximum window size. For ex-
ample, with the same number of parameters and
a maximum window size of 15, the training time
for a multi-scale version is similar to that of the
single-scale version on MR (15 vs. 13, T(s)/epoch).

5 Conclusion

This study presents a novel parameter-efficient
model called MODE-LSTM that can capture multi-
scale n-gram features in sentences. Instead of
the tradition of exploiting complicated operations
by stacking CNNs and RNNs, or attaching over-
parameterized attention mechanisms, our work pro-
vides a lightweight method for improving the abil-
ity of neural models for sentence classification.
Through disentangling the hidden states of the
LSTM and equipping the structure with multiple
sliding windows of different scales, MODE-LSTM
outperforms popular CNN/RNN-based methods
and hybrid methods on various benchmark datasets.
In future work, we plan to validate its effectiveness
for aspect-level sentiment classification.
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A The detailed diagram of combining
MODE-LSTM with BERT

We use BERTbase model, where the number of
transformer layers is 12 and the hidden size is

784. In detail, the sentence is fed into BERTbase

model, and the hidden representation of the last
layer of BERTbase is used as the input embeddings
of MODE-LSTM rather than GloVe and charac-
ter embeddings. Then the BERT representation is
fed into MODE-LSTM for extracting multi-scale
feature representation.

Figure 6: The diagram of combining MODE-LSTM
with BERT

.

B The hyper-parameter settings of
combining MODE-LSTM with BERT

The hyper-parameters of MODE-LSTM are the
same as we mentioned in the experimental setup
section of the main paper. That is we use three
scale windows, [5, 10, 15] with differently initial-
ized ODE-LSTMs. The number of small hidden
states K is set to 2 and the size p of each small
hidden state is set to 50 for each scale. This con-
figuration results in a 300D multi-scale feature rep-
resentation for classification. Specifically, we tune
learning rate in {1e−5, 3e−5, 5e−5} and dropout
rate in {0.8, 0.9} for each dataset.


